User login
Genetic Test Combo May Help Identify Global Development Delay
, a new study suggests.
Researchers, led by Jiamei Zhang, MS, Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China, in a multicenter, prospective cohort study enrolled patients ages 12 to 60 months with GDD from six centers in China from July 2020 through August 2023. Participants underwent trio whole exome sequencing (trio-WES) paired with copy number variation sequencing (CNV-seq).
“To the best of our knowledge, this study represents the largest prospective examination of combined genetic testing methods in a GDD cohort,” the authors reported in JAMA Network Open.
GDD is a common neurodevelopmental disorder, marked by cognitive impairment, and affects about 1% of children, the paper states. Most children with GDD develop intellectual disability (ID) after 5 years of age, with implications for quality of life, their physical abilities, and social functioning. Early and accurate diagnosis followed by appropriately targeted treatment is critical, but lacking. Researchers note that there is lack of consensus among health care professionals on whether genetic testing is necessary.
Genetics are known to play a significant role in pathogenesis of GDD, but definitive biomarkers have been elusive.
Positive Detection Rate of 61%
In this study, the combined use of trio-WES with CNV-seq in children with early-stage GDD resulted in a positive detection rate of 61%, a significant improvement over performing individual tests, “enhancing the positive detection rate by 18%-40%,” the researchers wrote. The combined approach also saves families time and costs, they note, while leading to more comprehensive genetic analysis and fewer missed diagnoses.
The combined approach also addressed the limitations of trio-WES and CNV-seq used alone, the authors wrote. Because of technological constraints, trio-WES may miss 55% of CNV variations, and CNV-seq has a missed diagnosis rate of 3%.
The study included 434 patients with GDD (60% male; average age, 25 months) with diverse degrees of cognitive impairment: mild (23%); moderate (32%); severe (28%); and profound (17%).
Three characteristics were linked with higher likelihood of having genetic variants: Craniofacial abnormalities (odds ratio [OR], 2.27; 95% confidence interval [CI], 1.45-3.56); moderate or severe cognitive impairment (OR, 1.69; 95% CI, 1.05-2.70); and age between 12 and 24 months (OR, 1.57; 95% CI, 1.05-2.35).
Dopaminergic Pathway Promising for Treatment
Researchers also discovered that GDD-related genes were primarily enriched in lysosome, dopaminergic synapse, and lysine degradation pathways. Dopaminergic synapse emerged as a significant pathway linked with GDD.
“In this cohort study, our findings support the correlation between dopaminergic synapse and cognitive impairment, as substantiated by prior research and animal models. Therefore, targeting the dopaminergic pathway holds promise for treating GDD and ID,” the authors wrote.
However, the authors note in the limitations that they used only a subset of 100 patients with GDD to measure dopamine concentration.
“Expanding the sample size and conducting in vivo and in vitro experiments are necessary steps to verify whether dopamine can be targeted for clinical precision medical intervention in patients with GDD,” they wrote.
The authors reported no relevant financial relationships.
, a new study suggests.
Researchers, led by Jiamei Zhang, MS, Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China, in a multicenter, prospective cohort study enrolled patients ages 12 to 60 months with GDD from six centers in China from July 2020 through August 2023. Participants underwent trio whole exome sequencing (trio-WES) paired with copy number variation sequencing (CNV-seq).
“To the best of our knowledge, this study represents the largest prospective examination of combined genetic testing methods in a GDD cohort,” the authors reported in JAMA Network Open.
GDD is a common neurodevelopmental disorder, marked by cognitive impairment, and affects about 1% of children, the paper states. Most children with GDD develop intellectual disability (ID) after 5 years of age, with implications for quality of life, their physical abilities, and social functioning. Early and accurate diagnosis followed by appropriately targeted treatment is critical, but lacking. Researchers note that there is lack of consensus among health care professionals on whether genetic testing is necessary.
Genetics are known to play a significant role in pathogenesis of GDD, but definitive biomarkers have been elusive.
Positive Detection Rate of 61%
In this study, the combined use of trio-WES with CNV-seq in children with early-stage GDD resulted in a positive detection rate of 61%, a significant improvement over performing individual tests, “enhancing the positive detection rate by 18%-40%,” the researchers wrote. The combined approach also saves families time and costs, they note, while leading to more comprehensive genetic analysis and fewer missed diagnoses.
The combined approach also addressed the limitations of trio-WES and CNV-seq used alone, the authors wrote. Because of technological constraints, trio-WES may miss 55% of CNV variations, and CNV-seq has a missed diagnosis rate of 3%.
The study included 434 patients with GDD (60% male; average age, 25 months) with diverse degrees of cognitive impairment: mild (23%); moderate (32%); severe (28%); and profound (17%).
Three characteristics were linked with higher likelihood of having genetic variants: Craniofacial abnormalities (odds ratio [OR], 2.27; 95% confidence interval [CI], 1.45-3.56); moderate or severe cognitive impairment (OR, 1.69; 95% CI, 1.05-2.70); and age between 12 and 24 months (OR, 1.57; 95% CI, 1.05-2.35).
Dopaminergic Pathway Promising for Treatment
Researchers also discovered that GDD-related genes were primarily enriched in lysosome, dopaminergic synapse, and lysine degradation pathways. Dopaminergic synapse emerged as a significant pathway linked with GDD.
“In this cohort study, our findings support the correlation between dopaminergic synapse and cognitive impairment, as substantiated by prior research and animal models. Therefore, targeting the dopaminergic pathway holds promise for treating GDD and ID,” the authors wrote.
However, the authors note in the limitations that they used only a subset of 100 patients with GDD to measure dopamine concentration.
“Expanding the sample size and conducting in vivo and in vitro experiments are necessary steps to verify whether dopamine can be targeted for clinical precision medical intervention in patients with GDD,” they wrote.
The authors reported no relevant financial relationships.
, a new study suggests.
Researchers, led by Jiamei Zhang, MS, Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China, in a multicenter, prospective cohort study enrolled patients ages 12 to 60 months with GDD from six centers in China from July 2020 through August 2023. Participants underwent trio whole exome sequencing (trio-WES) paired with copy number variation sequencing (CNV-seq).
“To the best of our knowledge, this study represents the largest prospective examination of combined genetic testing methods in a GDD cohort,” the authors reported in JAMA Network Open.
GDD is a common neurodevelopmental disorder, marked by cognitive impairment, and affects about 1% of children, the paper states. Most children with GDD develop intellectual disability (ID) after 5 years of age, with implications for quality of life, their physical abilities, and social functioning. Early and accurate diagnosis followed by appropriately targeted treatment is critical, but lacking. Researchers note that there is lack of consensus among health care professionals on whether genetic testing is necessary.
Genetics are known to play a significant role in pathogenesis of GDD, but definitive biomarkers have been elusive.
Positive Detection Rate of 61%
In this study, the combined use of trio-WES with CNV-seq in children with early-stage GDD resulted in a positive detection rate of 61%, a significant improvement over performing individual tests, “enhancing the positive detection rate by 18%-40%,” the researchers wrote. The combined approach also saves families time and costs, they note, while leading to more comprehensive genetic analysis and fewer missed diagnoses.
The combined approach also addressed the limitations of trio-WES and CNV-seq used alone, the authors wrote. Because of technological constraints, trio-WES may miss 55% of CNV variations, and CNV-seq has a missed diagnosis rate of 3%.
The study included 434 patients with GDD (60% male; average age, 25 months) with diverse degrees of cognitive impairment: mild (23%); moderate (32%); severe (28%); and profound (17%).
Three characteristics were linked with higher likelihood of having genetic variants: Craniofacial abnormalities (odds ratio [OR], 2.27; 95% confidence interval [CI], 1.45-3.56); moderate or severe cognitive impairment (OR, 1.69; 95% CI, 1.05-2.70); and age between 12 and 24 months (OR, 1.57; 95% CI, 1.05-2.35).
Dopaminergic Pathway Promising for Treatment
Researchers also discovered that GDD-related genes were primarily enriched in lysosome, dopaminergic synapse, and lysine degradation pathways. Dopaminergic synapse emerged as a significant pathway linked with GDD.
“In this cohort study, our findings support the correlation between dopaminergic synapse and cognitive impairment, as substantiated by prior research and animal models. Therefore, targeting the dopaminergic pathway holds promise for treating GDD and ID,” the authors wrote.
However, the authors note in the limitations that they used only a subset of 100 patients with GDD to measure dopamine concentration.
“Expanding the sample size and conducting in vivo and in vitro experiments are necessary steps to verify whether dopamine can be targeted for clinical precision medical intervention in patients with GDD,” they wrote.
The authors reported no relevant financial relationships.
FROM JAMA NETWORK OPEN
What Toxic Stress Can Do to Health
We recently shared a clinical case drawn from a family medicine practice about the effect of adverse childhood experiences (ACEs) on health. The widespread epidemiology and significant health consequences require a focus on the prevention and management of ACEs.
The Centers for Disease Control and Prevention published an important monograph on ACEs in 2019. Although it is evidence based, most of the interventions recommended to reduce ACEs and their sequelae are larger policy and public health efforts that go well beyond the clinician’s office. Important highlights from these recommended strategies to reduce ACEs include:
- Strengthen economic support for families through policies such as the earned income tax credit and child tax credit.
- Establish routine parental work/shift times to optimize cognitive outcomes in children.
- Promote social norms for healthy families through public health campaigns and legislative efforts to reduce corporal punishment of children. Bystander training that targets boys and men has also proven effective in reducing sexual violence.
- Facilitate early in-home visitation for at-risk families as well as high-quality childcare.
- Employ social-emotional learning approaches for children and adolescents, which can improve aggressive or violent behavior, rates of substance use, and academic success.
- Connect youth to after-school programs featuring caring adults.
But clinicians still play a vital role in the prevention and management of ACEs among their patients. Akin to gathering a patient’s past medical history or family history is initiating universal ACE screening in practice and exploring related topics in conversation.
The ACEs Aware initiative in California provides a comprehensive ACE screening clinical workflow to help implement these conversations in practice, including the assessment of associated health conditions and their appropriate clinical follow-up. While it is encouraged to universally screen patients, the key screenings to prioritize for the pediatric population are “parental depression, severe stress, unhealthy drug use, domestic violence, harsh punishment, [and] food insecurity.” Moreover, a systematic review by Steen and colleagues shared insight into newer interpretations of ACE screening which relate trauma to “[...] community violence, poverty, housing instability, structural racism, environmental blight, and climate change.”
These exposures are now being investigated for a connection to the toxic stress response. In the long term, this genetic regulatory mechanism can be affected by “high doses of cumulative adversity experienced during critical and sensitive periods of early life development — without the buffering protections of trusted, nurturing caregivers and safe, stable environments.” This micro and macro lens fosters a deeper clinician understanding of a patient’s trauma origin and can better guide appropriate clinical follow-up.
ACE-associated health conditions can be neurologic, endocrine, metabolic, or immune system–related. Early diagnosis and treatment of these conditions can help prevent long-term health care complications, costly for both patient and the health care system.
The ACEs Aware Stress Buster wheel highlights seven targets to strategize stress regulation. This wheel can be used to identify existing protective factors for patients and track treatment progress, which may buffer the negative impact of stressors and contribute to health and resilience.
The burden of universal screenings in primary care is high. Without ACE screening, however, the opportunity to address downstream health effects from toxic stress may be lost. Dubowitz and colleagues suggest ways to successfully incorporate ACE screenings in clinical workflow:
- Utilize technology to implement a streamlined referral processing/tracking system.
- Train clinicians to respond competently to positive ACE screens.
- Gather in-network and community-based resources for patients.
In addition, prioritize screening for families with children younger than 6 years of age to begin interventions as early as possible. Primary care clinicians have the unique opportunity to provide appropriate intervention over continual care. An intervention as simple as encouraging pediatric patient involvement in after-school programs may mitigate toxic stress and prevent the development of an ACE-associated health condition.
Dr. Vega, Health Sciences Clinical Professor, Family Medicine, University of California, Irvine, disclosed ties with McNeil Pharmaceuticals. Alejandra Hurtado, MD candidate, University of California, Irvine School of Medicine, has disclosed no relevant financial relationships.
A version of this article appeared on Medscape.com.
We recently shared a clinical case drawn from a family medicine practice about the effect of adverse childhood experiences (ACEs) on health. The widespread epidemiology and significant health consequences require a focus on the prevention and management of ACEs.
The Centers for Disease Control and Prevention published an important monograph on ACEs in 2019. Although it is evidence based, most of the interventions recommended to reduce ACEs and their sequelae are larger policy and public health efforts that go well beyond the clinician’s office. Important highlights from these recommended strategies to reduce ACEs include:
- Strengthen economic support for families through policies such as the earned income tax credit and child tax credit.
- Establish routine parental work/shift times to optimize cognitive outcomes in children.
- Promote social norms for healthy families through public health campaigns and legislative efforts to reduce corporal punishment of children. Bystander training that targets boys and men has also proven effective in reducing sexual violence.
- Facilitate early in-home visitation for at-risk families as well as high-quality childcare.
- Employ social-emotional learning approaches for children and adolescents, which can improve aggressive or violent behavior, rates of substance use, and academic success.
- Connect youth to after-school programs featuring caring adults.
But clinicians still play a vital role in the prevention and management of ACEs among their patients. Akin to gathering a patient’s past medical history or family history is initiating universal ACE screening in practice and exploring related topics in conversation.
The ACEs Aware initiative in California provides a comprehensive ACE screening clinical workflow to help implement these conversations in practice, including the assessment of associated health conditions and their appropriate clinical follow-up. While it is encouraged to universally screen patients, the key screenings to prioritize for the pediatric population are “parental depression, severe stress, unhealthy drug use, domestic violence, harsh punishment, [and] food insecurity.” Moreover, a systematic review by Steen and colleagues shared insight into newer interpretations of ACE screening which relate trauma to “[...] community violence, poverty, housing instability, structural racism, environmental blight, and climate change.”
These exposures are now being investigated for a connection to the toxic stress response. In the long term, this genetic regulatory mechanism can be affected by “high doses of cumulative adversity experienced during critical and sensitive periods of early life development — without the buffering protections of trusted, nurturing caregivers and safe, stable environments.” This micro and macro lens fosters a deeper clinician understanding of a patient’s trauma origin and can better guide appropriate clinical follow-up.
ACE-associated health conditions can be neurologic, endocrine, metabolic, or immune system–related. Early diagnosis and treatment of these conditions can help prevent long-term health care complications, costly for both patient and the health care system.
The ACEs Aware Stress Buster wheel highlights seven targets to strategize stress regulation. This wheel can be used to identify existing protective factors for patients and track treatment progress, which may buffer the negative impact of stressors and contribute to health and resilience.
The burden of universal screenings in primary care is high. Without ACE screening, however, the opportunity to address downstream health effects from toxic stress may be lost. Dubowitz and colleagues suggest ways to successfully incorporate ACE screenings in clinical workflow:
- Utilize technology to implement a streamlined referral processing/tracking system.
- Train clinicians to respond competently to positive ACE screens.
- Gather in-network and community-based resources for patients.
In addition, prioritize screening for families with children younger than 6 years of age to begin interventions as early as possible. Primary care clinicians have the unique opportunity to provide appropriate intervention over continual care. An intervention as simple as encouraging pediatric patient involvement in after-school programs may mitigate toxic stress and prevent the development of an ACE-associated health condition.
Dr. Vega, Health Sciences Clinical Professor, Family Medicine, University of California, Irvine, disclosed ties with McNeil Pharmaceuticals. Alejandra Hurtado, MD candidate, University of California, Irvine School of Medicine, has disclosed no relevant financial relationships.
A version of this article appeared on Medscape.com.
We recently shared a clinical case drawn from a family medicine practice about the effect of adverse childhood experiences (ACEs) on health. The widespread epidemiology and significant health consequences require a focus on the prevention and management of ACEs.
The Centers for Disease Control and Prevention published an important monograph on ACEs in 2019. Although it is evidence based, most of the interventions recommended to reduce ACEs and their sequelae are larger policy and public health efforts that go well beyond the clinician’s office. Important highlights from these recommended strategies to reduce ACEs include:
- Strengthen economic support for families through policies such as the earned income tax credit and child tax credit.
- Establish routine parental work/shift times to optimize cognitive outcomes in children.
- Promote social norms for healthy families through public health campaigns and legislative efforts to reduce corporal punishment of children. Bystander training that targets boys and men has also proven effective in reducing sexual violence.
- Facilitate early in-home visitation for at-risk families as well as high-quality childcare.
- Employ social-emotional learning approaches for children and adolescents, which can improve aggressive or violent behavior, rates of substance use, and academic success.
- Connect youth to after-school programs featuring caring adults.
But clinicians still play a vital role in the prevention and management of ACEs among their patients. Akin to gathering a patient’s past medical history or family history is initiating universal ACE screening in practice and exploring related topics in conversation.
The ACEs Aware initiative in California provides a comprehensive ACE screening clinical workflow to help implement these conversations in practice, including the assessment of associated health conditions and their appropriate clinical follow-up. While it is encouraged to universally screen patients, the key screenings to prioritize for the pediatric population are “parental depression, severe stress, unhealthy drug use, domestic violence, harsh punishment, [and] food insecurity.” Moreover, a systematic review by Steen and colleagues shared insight into newer interpretations of ACE screening which relate trauma to “[...] community violence, poverty, housing instability, structural racism, environmental blight, and climate change.”
These exposures are now being investigated for a connection to the toxic stress response. In the long term, this genetic regulatory mechanism can be affected by “high doses of cumulative adversity experienced during critical and sensitive periods of early life development — without the buffering protections of trusted, nurturing caregivers and safe, stable environments.” This micro and macro lens fosters a deeper clinician understanding of a patient’s trauma origin and can better guide appropriate clinical follow-up.
ACE-associated health conditions can be neurologic, endocrine, metabolic, or immune system–related. Early diagnosis and treatment of these conditions can help prevent long-term health care complications, costly for both patient and the health care system.
The ACEs Aware Stress Buster wheel highlights seven targets to strategize stress regulation. This wheel can be used to identify existing protective factors for patients and track treatment progress, which may buffer the negative impact of stressors and contribute to health and resilience.
The burden of universal screenings in primary care is high. Without ACE screening, however, the opportunity to address downstream health effects from toxic stress may be lost. Dubowitz and colleagues suggest ways to successfully incorporate ACE screenings in clinical workflow:
- Utilize technology to implement a streamlined referral processing/tracking system.
- Train clinicians to respond competently to positive ACE screens.
- Gather in-network and community-based resources for patients.
In addition, prioritize screening for families with children younger than 6 years of age to begin interventions as early as possible. Primary care clinicians have the unique opportunity to provide appropriate intervention over continual care. An intervention as simple as encouraging pediatric patient involvement in after-school programs may mitigate toxic stress and prevent the development of an ACE-associated health condition.
Dr. Vega, Health Sciences Clinical Professor, Family Medicine, University of California, Irvine, disclosed ties with McNeil Pharmaceuticals. Alejandra Hurtado, MD candidate, University of California, Irvine School of Medicine, has disclosed no relevant financial relationships.
A version of this article appeared on Medscape.com.
Anticoagulation Shows No Benefit in Preventing Second Stroke
BOSTON — Patients who have had a stroke are thought to be at a higher risk for another one, but oral anticoagulation with edoxaban led to no discernible reduction in the risk for a second stroke, and the risk for major bleeding was more than quadruple the risk with no anticoagulation, a subanalysis of a major European trial has shown.
“There is no interaction between prior stroke or TIA [transient ischemic attack] and the treatment effect, and this is true for the primary outcome and the safety outcome,” Paulus Kirchoff, MD, director of cardiology at the University Heart and Vascular Center in Hamburg, Germany, said during his presentation of a subanalysis of the NOAH-AFNET 6 trial at the annual meeting of the Heart Rhythm Society (HRS) 2024. However, “there is a signal for more safety events in patients randomized to anticoagulation with a prior stroke.”
The subanalysis involved 253 patients who had had a stroke or TIA and who had device-detected atrial fibrillation (AF) from the overall NOAH-AFNET 6 population of 2536 patients, which enrolled patients 65 years and older with at least one additional CHA2DS-VASc risk factor and patients 75 years and older with device-detected subclinical AF episodes of at least 6 minutes. Patients were randomized to either edoxaban or no anticoagulation, but 53.9% of the no-anticoagulation group was taking aspirin at trial enrollment. Anticoagulation with edoxaban was shown to have no significant impact on stroke rates or other cardiovascular outcomes.
Subanalysis Results
In the subanalysis, a composite of stroke, systemic embolism, and cardiovascular death — the primary outcome — was similar in the edoxaban and no-anticoagulation groups (14/122 patients [11.5%] vs 16/131 patients [12.2%]; 5.7% vs 6.3% per patient-year).
The rate of recurrent stroke was also similar in the edoxaban and no-anticoagulation groups (4 of 122 patients [3.3%] vs 6 of 131 patients [4.6%]; 1.6% vs 2.3% per patient-year). And there were eight cardiovascular deaths in each group.
However, edoxaban patients had significantly higher rates of major bleeding.
“This is a subanalysis, so what we see in terms of the number of patients with events is not powered for a definitive answer, but we do see that there were 10 major bleeds in the group of patients with a prior stroke or TIA in NOAH,” Dr. Kirchoff reported. “Eight of those 10 major bleeds occurred in patients randomized to edoxaban.”
Results from the NOAH-AFNET 6 trial have been compared with those from the ARTESiA trial, which compared apixaban anticoagulation with aspirin in patients with subclinical AF and was also presented at HRS 2024. ARTESiA showed that apixaban significantly lowered the risk for stroke and systemic embolism.
“In ARTESiA, everyone was on aspirin when they were randomized to no anticoagulation; in NOAH, only about half were on aspirin,” Dr. Kirchoff said.
Both studies had similar outcomes for cardiovascular death in the anticoagulation and no-anticoagulation groups. “It’s not significant; it may be chance, but it’s definitely not the reduction in death that we have seen in the anticoagulant trials,” Dr. Kirchoff said. “When you look at the meta-analyses of the early anticoagulation trials, there’s a one third reduction in death, and here we’re talking about a smaller reduction.”
This research points to a need for a better way to evaluate stroke risk. “We need new markers,” Dr. Kirchoff said. “Some of them may be in the blood or imaging, genetics maybe, and one thing that really emerges from my perspective is that we now have the first evidence to suggest that patients with a very low atrial fibrillation burden have a low stroke rate.”
More research is needed to better understand AF characteristics and stroke risk, he said.
AF Care Enters a ‘Gray Zone’
The NOAH-AFNET 6 results, coupled with those from ARTESiA, are changing the paradigm for anticoagulation in patients with stroke, said Taya Glotzer, MD, an electrophysiologist at the Hackensack University Medical Center in Hackensack, New Jersey, who compiled her own analysis of the studies’ outcomes.
“In ARTESiA, the stroke reduction was only 0.44% a year, with a number needed to treat of 250,” she said. “In the NOAH-AFNET 6 main trial, the stroke reduction was 0.2%, with the number needed to treat of 500, and in the NOAH prior stroke patients, there was a 0.7% reduction, with a number needed to treat of 143.”
None of these trials would meet the standard for a class 1 recommendation for anticoagulation with a reduction of even 1%-2% per year, she noted, but they do show that the stroke rate “is very, very low” in prior patients with stroke.
“Prior to 2024, we knew what was black and white; we knew who to anticoagulate and who not to anticoagulate. And now we are in a gray zone, trying to balance the risk of stroke and bleeding. We have to individualize or hope for substudies, perhaps using the CHA2DS-VASc score or other information about the left atrium, to help us make decisions in these patients. It’s not just going to be black and white,” she said.
Dr. Kirchoff had no relevant financial relationships to disclose. Dr. Glotzer disclosed financial relationships with Medtronic, Abbott, Boston Scientific, and MediaSphere Medical.
A version of this article first appeared on Medscape.com.
BOSTON — Patients who have had a stroke are thought to be at a higher risk for another one, but oral anticoagulation with edoxaban led to no discernible reduction in the risk for a second stroke, and the risk for major bleeding was more than quadruple the risk with no anticoagulation, a subanalysis of a major European trial has shown.
“There is no interaction between prior stroke or TIA [transient ischemic attack] and the treatment effect, and this is true for the primary outcome and the safety outcome,” Paulus Kirchoff, MD, director of cardiology at the University Heart and Vascular Center in Hamburg, Germany, said during his presentation of a subanalysis of the NOAH-AFNET 6 trial at the annual meeting of the Heart Rhythm Society (HRS) 2024. However, “there is a signal for more safety events in patients randomized to anticoagulation with a prior stroke.”
The subanalysis involved 253 patients who had had a stroke or TIA and who had device-detected atrial fibrillation (AF) from the overall NOAH-AFNET 6 population of 2536 patients, which enrolled patients 65 years and older with at least one additional CHA2DS-VASc risk factor and patients 75 years and older with device-detected subclinical AF episodes of at least 6 minutes. Patients were randomized to either edoxaban or no anticoagulation, but 53.9% of the no-anticoagulation group was taking aspirin at trial enrollment. Anticoagulation with edoxaban was shown to have no significant impact on stroke rates or other cardiovascular outcomes.
Subanalysis Results
In the subanalysis, a composite of stroke, systemic embolism, and cardiovascular death — the primary outcome — was similar in the edoxaban and no-anticoagulation groups (14/122 patients [11.5%] vs 16/131 patients [12.2%]; 5.7% vs 6.3% per patient-year).
The rate of recurrent stroke was also similar in the edoxaban and no-anticoagulation groups (4 of 122 patients [3.3%] vs 6 of 131 patients [4.6%]; 1.6% vs 2.3% per patient-year). And there were eight cardiovascular deaths in each group.
However, edoxaban patients had significantly higher rates of major bleeding.
“This is a subanalysis, so what we see in terms of the number of patients with events is not powered for a definitive answer, but we do see that there were 10 major bleeds in the group of patients with a prior stroke or TIA in NOAH,” Dr. Kirchoff reported. “Eight of those 10 major bleeds occurred in patients randomized to edoxaban.”
Results from the NOAH-AFNET 6 trial have been compared with those from the ARTESiA trial, which compared apixaban anticoagulation with aspirin in patients with subclinical AF and was also presented at HRS 2024. ARTESiA showed that apixaban significantly lowered the risk for stroke and systemic embolism.
“In ARTESiA, everyone was on aspirin when they were randomized to no anticoagulation; in NOAH, only about half were on aspirin,” Dr. Kirchoff said.
Both studies had similar outcomes for cardiovascular death in the anticoagulation and no-anticoagulation groups. “It’s not significant; it may be chance, but it’s definitely not the reduction in death that we have seen in the anticoagulant trials,” Dr. Kirchoff said. “When you look at the meta-analyses of the early anticoagulation trials, there’s a one third reduction in death, and here we’re talking about a smaller reduction.”
This research points to a need for a better way to evaluate stroke risk. “We need new markers,” Dr. Kirchoff said. “Some of them may be in the blood or imaging, genetics maybe, and one thing that really emerges from my perspective is that we now have the first evidence to suggest that patients with a very low atrial fibrillation burden have a low stroke rate.”
More research is needed to better understand AF characteristics and stroke risk, he said.
AF Care Enters a ‘Gray Zone’
The NOAH-AFNET 6 results, coupled with those from ARTESiA, are changing the paradigm for anticoagulation in patients with stroke, said Taya Glotzer, MD, an electrophysiologist at the Hackensack University Medical Center in Hackensack, New Jersey, who compiled her own analysis of the studies’ outcomes.
“In ARTESiA, the stroke reduction was only 0.44% a year, with a number needed to treat of 250,” she said. “In the NOAH-AFNET 6 main trial, the stroke reduction was 0.2%, with the number needed to treat of 500, and in the NOAH prior stroke patients, there was a 0.7% reduction, with a number needed to treat of 143.”
None of these trials would meet the standard for a class 1 recommendation for anticoagulation with a reduction of even 1%-2% per year, she noted, but they do show that the stroke rate “is very, very low” in prior patients with stroke.
“Prior to 2024, we knew what was black and white; we knew who to anticoagulate and who not to anticoagulate. And now we are in a gray zone, trying to balance the risk of stroke and bleeding. We have to individualize or hope for substudies, perhaps using the CHA2DS-VASc score or other information about the left atrium, to help us make decisions in these patients. It’s not just going to be black and white,” she said.
Dr. Kirchoff had no relevant financial relationships to disclose. Dr. Glotzer disclosed financial relationships with Medtronic, Abbott, Boston Scientific, and MediaSphere Medical.
A version of this article first appeared on Medscape.com.
BOSTON — Patients who have had a stroke are thought to be at a higher risk for another one, but oral anticoagulation with edoxaban led to no discernible reduction in the risk for a second stroke, and the risk for major bleeding was more than quadruple the risk with no anticoagulation, a subanalysis of a major European trial has shown.
“There is no interaction between prior stroke or TIA [transient ischemic attack] and the treatment effect, and this is true for the primary outcome and the safety outcome,” Paulus Kirchoff, MD, director of cardiology at the University Heart and Vascular Center in Hamburg, Germany, said during his presentation of a subanalysis of the NOAH-AFNET 6 trial at the annual meeting of the Heart Rhythm Society (HRS) 2024. However, “there is a signal for more safety events in patients randomized to anticoagulation with a prior stroke.”
The subanalysis involved 253 patients who had had a stroke or TIA and who had device-detected atrial fibrillation (AF) from the overall NOAH-AFNET 6 population of 2536 patients, which enrolled patients 65 years and older with at least one additional CHA2DS-VASc risk factor and patients 75 years and older with device-detected subclinical AF episodes of at least 6 minutes. Patients were randomized to either edoxaban or no anticoagulation, but 53.9% of the no-anticoagulation group was taking aspirin at trial enrollment. Anticoagulation with edoxaban was shown to have no significant impact on stroke rates or other cardiovascular outcomes.
Subanalysis Results
In the subanalysis, a composite of stroke, systemic embolism, and cardiovascular death — the primary outcome — was similar in the edoxaban and no-anticoagulation groups (14/122 patients [11.5%] vs 16/131 patients [12.2%]; 5.7% vs 6.3% per patient-year).
The rate of recurrent stroke was also similar in the edoxaban and no-anticoagulation groups (4 of 122 patients [3.3%] vs 6 of 131 patients [4.6%]; 1.6% vs 2.3% per patient-year). And there were eight cardiovascular deaths in each group.
However, edoxaban patients had significantly higher rates of major bleeding.
“This is a subanalysis, so what we see in terms of the number of patients with events is not powered for a definitive answer, but we do see that there were 10 major bleeds in the group of patients with a prior stroke or TIA in NOAH,” Dr. Kirchoff reported. “Eight of those 10 major bleeds occurred in patients randomized to edoxaban.”
Results from the NOAH-AFNET 6 trial have been compared with those from the ARTESiA trial, which compared apixaban anticoagulation with aspirin in patients with subclinical AF and was also presented at HRS 2024. ARTESiA showed that apixaban significantly lowered the risk for stroke and systemic embolism.
“In ARTESiA, everyone was on aspirin when they were randomized to no anticoagulation; in NOAH, only about half were on aspirin,” Dr. Kirchoff said.
Both studies had similar outcomes for cardiovascular death in the anticoagulation and no-anticoagulation groups. “It’s not significant; it may be chance, but it’s definitely not the reduction in death that we have seen in the anticoagulant trials,” Dr. Kirchoff said. “When you look at the meta-analyses of the early anticoagulation trials, there’s a one third reduction in death, and here we’re talking about a smaller reduction.”
This research points to a need for a better way to evaluate stroke risk. “We need new markers,” Dr. Kirchoff said. “Some of them may be in the blood or imaging, genetics maybe, and one thing that really emerges from my perspective is that we now have the first evidence to suggest that patients with a very low atrial fibrillation burden have a low stroke rate.”
More research is needed to better understand AF characteristics and stroke risk, he said.
AF Care Enters a ‘Gray Zone’
The NOAH-AFNET 6 results, coupled with those from ARTESiA, are changing the paradigm for anticoagulation in patients with stroke, said Taya Glotzer, MD, an electrophysiologist at the Hackensack University Medical Center in Hackensack, New Jersey, who compiled her own analysis of the studies’ outcomes.
“In ARTESiA, the stroke reduction was only 0.44% a year, with a number needed to treat of 250,” she said. “In the NOAH-AFNET 6 main trial, the stroke reduction was 0.2%, with the number needed to treat of 500, and in the NOAH prior stroke patients, there was a 0.7% reduction, with a number needed to treat of 143.”
None of these trials would meet the standard for a class 1 recommendation for anticoagulation with a reduction of even 1%-2% per year, she noted, but they do show that the stroke rate “is very, very low” in prior patients with stroke.
“Prior to 2024, we knew what was black and white; we knew who to anticoagulate and who not to anticoagulate. And now we are in a gray zone, trying to balance the risk of stroke and bleeding. We have to individualize or hope for substudies, perhaps using the CHA2DS-VASc score or other information about the left atrium, to help us make decisions in these patients. It’s not just going to be black and white,” she said.
Dr. Kirchoff had no relevant financial relationships to disclose. Dr. Glotzer disclosed financial relationships with Medtronic, Abbott, Boston Scientific, and MediaSphere Medical.
A version of this article first appeared on Medscape.com.
FROM HRS 2024
Delays After Tests for Suspected Heart Failure ‘a Scandal’
LISBON, PORTUGAL — Few people with suspected heart failure and elevated N-terminal prohormone of brain natriuretic peptide (NT-proBNP) levels are receiving a diagnosis after a year, reported investigators, who say high rates of hospitalization are common.
Presenting here at the Heart Failure Association of the European Society of Cardiology (HFA-ESC) 2024, researchers shared results from the REVOLUTION-HF study involving almost 8000 people who consulted outpatient primary and secondary care over a 5-year period.
The outcomes were even worse in patients with high NT-proBNP levels.
Patients with suspected heart failure are “waiting far too long to see a specialist, and that results in a delay to guideline-directed medical therapy, despite the fact that we’re perfectly happy to slap them all on diuretics,” said study presenter Lisa Anderson, MD, PhD, Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St George’s Hospital, University of London, England.
“We need to rethink our management of heart failure patients presenting in the community,” she said.
A big gap exists internationally between presentation with heart failure, an elevated NT-proBNP, and confirmatory specialist assessment, she explained.
“It’s a scandal that patients are coming to the GP with signs and symptoms of heart failure, they get tested for natriuretic peptides, and nothing happens,” said co-author Antoni Bayés-Genís, MD, PhD, Heart Institute director, Hospital Universitari Germans Trias i Pujol Catedràtic, Barcelona, Spain.
“These patients may receive an echo, or not, in the coming 12 months,” and “during these 12 months, there is a huge number of heart failure hospitalizations and deaths that could probably be prevented.”
Why the Reluctance to Diagnose?
Many issues get in the way of early diagnosis, Dr. Bayés-Genís said. “Inertia, comorbidities, ageism.”
A lot of patients with heart failure are elderly women with some degree of weight gain, he said. “And they come to the clinic with fatigue, so we tell them, ‘Well, that’s normal.”
But “it may not be normal,” he added. “This is a very important topic that we, as a society, need to address.”
There are several “misconceptions” about heart failure, said Ileana L. Piña, MD, MPH, the Robert Stein Chair for Quality and Safety, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, who was not involved in the study.
For example, “we’re all convinced that guideline-directed medical therapy works,” but the evidence is only for patients “with a diagnosis.” In addition, “millions of patients get tested” for heart failure, but they already have a “known diagnosis.”
“When we study these drugs, we’re studying them on patients with manifest disease,” who are only then randomized, Dr. Piña said. “But we seldom see them while they’re developing heart failure. And it’s a process; it doesn’t happen overnight.”
Patients initially often think they may have asthma, and so what follows is an extended period of “uncertainty” and “important time lost” before they finally undergo the assessments that show that they have heart failure, she said.
However, “uncertainty” often lands a patient “in the emergency room or with an unscheduled office visit, where NT-proBNP might get ordered and there’s a long lineup for an echo.”
There are several strengths of the current study, Dr. Piña said, including the fact that 50% of the study population were women, and they were older than a typical trial population. Nevertheless, the results were “eye-opening but not surprising” and, in the end, “disappointing.”
“I agree, we need a revolution, Dr. Anderson,” Dr. Piña said. “The revolution of paying attention to the NT-proBNP when you get it and it’s elevated” and then following through with echocardiography and starting “guideline-directed medical therapy early.”
The diagnosis of heart failure “relies on the presentation of patients with nonspecific signs and symptoms,” such as dyspnea and peripheral edema, “but initiation of guideline-directed medical therapy — life-saving treatment — has to wait until we have a formal echocardiography and specialist clinician assessment,” Dr. Anderson said.
The latest clinical consensus statement from the Heart Failure Association “proposes both rule-in and rule-out NT-proBNP levels for heart failure diagnosis, and obviously we all recognize that it’s important to treat patients as soon as they’re diagnosed,” she explained.
REVOLUTION-HF
To examine the risk profile for patients presenting to outpatient care with suspected heart failure, the researchers conducted REVOLUTION-HF, which leveraged nationwide Swedish linked data from general practices, specialists, pharmacies, hospitals, and cause of death registers.
“Really impressively, most of these NT-proBNP tests were coming back within a day,” Dr. Anderson said, “so a really, really good turnaround.”
Individuals were excluded if they had an inpatient admission, echocardiography, or heart failure diagnosis between presentation and the NT-proBNP measurement.
These people were then compared with those presenting to primary or secondary outpatient care for any reason and matched for age, sex, care level, and index year. Both groups were followed up for 1 year.
“Despite this really impressive, almost immediate NT-proBNP testing,” the waiting times to undergo echocardiography were “really disappointing,” Dr. Anderson said.
The median time to first registered echocardiography was 40 days, and only 29% of patients with suspected heart failure received a diagnosis within a year of the index presentation date, which she described as “inadequately slow.”
“And how does this translate to medical therapy?” she asked.
Heart Failure Drugs
After the index presentation, the rate of loop diuretic use quadrupled among individuals suspected of having heart failure, but there was a “muted response” when it came to the prescribing of beta-blockers and the other pillars of heart failure therapy, which Dr. Anderson called “very disappointing.”
For outcomes after the index presentation, the rate of hospitalization was much higher in the group with suspected heart failure than in the control group (16.1 vs 2.2 events per 100 person-years). And all-cause mortality occurred more often in the group with suspected heart failure than in the control group (10.3 vs 6.5 events per 100 person-years).
Among patients with NT-proBNP levels of 2000 ng/L, there was a “rapid” onset of hospitalization “within the first few days” of the index presentation, which was tracked by a more linear rise in all-cause deaths, Dr. Anderson reported.
In the United Kingdom, “we are very proud of our 2- and 6-week pathways,” which stipulate that suspected heart failure patients with NT-proBNP levels between 400 and 2000 ng/L are to have a specialist assessment and transthoracic echocardiography within 6 weeks; for those with levels > 2000 ng/L, that interval is accelerated to 2 weeks, she said.
The current results show that “2 weeks is too slow.” And looking at the rest of the cohort with lower NT-proBNP levels, “patients have already been admitted and died” by 6 weeks, she said.
When patients are stratified by age, “you get exactly what you would expect,” Dr. Anderson said. “The older patients are the most at risk” for both hospitalization and all-cause mortality.
A version of this article appeared on Medscape.com.
LISBON, PORTUGAL — Few people with suspected heart failure and elevated N-terminal prohormone of brain natriuretic peptide (NT-proBNP) levels are receiving a diagnosis after a year, reported investigators, who say high rates of hospitalization are common.
Presenting here at the Heart Failure Association of the European Society of Cardiology (HFA-ESC) 2024, researchers shared results from the REVOLUTION-HF study involving almost 8000 people who consulted outpatient primary and secondary care over a 5-year period.
The outcomes were even worse in patients with high NT-proBNP levels.
Patients with suspected heart failure are “waiting far too long to see a specialist, and that results in a delay to guideline-directed medical therapy, despite the fact that we’re perfectly happy to slap them all on diuretics,” said study presenter Lisa Anderson, MD, PhD, Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St George’s Hospital, University of London, England.
“We need to rethink our management of heart failure patients presenting in the community,” she said.
A big gap exists internationally between presentation with heart failure, an elevated NT-proBNP, and confirmatory specialist assessment, she explained.
“It’s a scandal that patients are coming to the GP with signs and symptoms of heart failure, they get tested for natriuretic peptides, and nothing happens,” said co-author Antoni Bayés-Genís, MD, PhD, Heart Institute director, Hospital Universitari Germans Trias i Pujol Catedràtic, Barcelona, Spain.
“These patients may receive an echo, or not, in the coming 12 months,” and “during these 12 months, there is a huge number of heart failure hospitalizations and deaths that could probably be prevented.”
Why the Reluctance to Diagnose?
Many issues get in the way of early diagnosis, Dr. Bayés-Genís said. “Inertia, comorbidities, ageism.”
A lot of patients with heart failure are elderly women with some degree of weight gain, he said. “And they come to the clinic with fatigue, so we tell them, ‘Well, that’s normal.”
But “it may not be normal,” he added. “This is a very important topic that we, as a society, need to address.”
There are several “misconceptions” about heart failure, said Ileana L. Piña, MD, MPH, the Robert Stein Chair for Quality and Safety, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, who was not involved in the study.
For example, “we’re all convinced that guideline-directed medical therapy works,” but the evidence is only for patients “with a diagnosis.” In addition, “millions of patients get tested” for heart failure, but they already have a “known diagnosis.”
“When we study these drugs, we’re studying them on patients with manifest disease,” who are only then randomized, Dr. Piña said. “But we seldom see them while they’re developing heart failure. And it’s a process; it doesn’t happen overnight.”
Patients initially often think they may have asthma, and so what follows is an extended period of “uncertainty” and “important time lost” before they finally undergo the assessments that show that they have heart failure, she said.
However, “uncertainty” often lands a patient “in the emergency room or with an unscheduled office visit, where NT-proBNP might get ordered and there’s a long lineup for an echo.”
There are several strengths of the current study, Dr. Piña said, including the fact that 50% of the study population were women, and they were older than a typical trial population. Nevertheless, the results were “eye-opening but not surprising” and, in the end, “disappointing.”
“I agree, we need a revolution, Dr. Anderson,” Dr. Piña said. “The revolution of paying attention to the NT-proBNP when you get it and it’s elevated” and then following through with echocardiography and starting “guideline-directed medical therapy early.”
The diagnosis of heart failure “relies on the presentation of patients with nonspecific signs and symptoms,” such as dyspnea and peripheral edema, “but initiation of guideline-directed medical therapy — life-saving treatment — has to wait until we have a formal echocardiography and specialist clinician assessment,” Dr. Anderson said.
The latest clinical consensus statement from the Heart Failure Association “proposes both rule-in and rule-out NT-proBNP levels for heart failure diagnosis, and obviously we all recognize that it’s important to treat patients as soon as they’re diagnosed,” she explained.
REVOLUTION-HF
To examine the risk profile for patients presenting to outpatient care with suspected heart failure, the researchers conducted REVOLUTION-HF, which leveraged nationwide Swedish linked data from general practices, specialists, pharmacies, hospitals, and cause of death registers.
“Really impressively, most of these NT-proBNP tests were coming back within a day,” Dr. Anderson said, “so a really, really good turnaround.”
Individuals were excluded if they had an inpatient admission, echocardiography, or heart failure diagnosis between presentation and the NT-proBNP measurement.
These people were then compared with those presenting to primary or secondary outpatient care for any reason and matched for age, sex, care level, and index year. Both groups were followed up for 1 year.
“Despite this really impressive, almost immediate NT-proBNP testing,” the waiting times to undergo echocardiography were “really disappointing,” Dr. Anderson said.
The median time to first registered echocardiography was 40 days, and only 29% of patients with suspected heart failure received a diagnosis within a year of the index presentation date, which she described as “inadequately slow.”
“And how does this translate to medical therapy?” she asked.
Heart Failure Drugs
After the index presentation, the rate of loop diuretic use quadrupled among individuals suspected of having heart failure, but there was a “muted response” when it came to the prescribing of beta-blockers and the other pillars of heart failure therapy, which Dr. Anderson called “very disappointing.”
For outcomes after the index presentation, the rate of hospitalization was much higher in the group with suspected heart failure than in the control group (16.1 vs 2.2 events per 100 person-years). And all-cause mortality occurred more often in the group with suspected heart failure than in the control group (10.3 vs 6.5 events per 100 person-years).
Among patients with NT-proBNP levels of 2000 ng/L, there was a “rapid” onset of hospitalization “within the first few days” of the index presentation, which was tracked by a more linear rise in all-cause deaths, Dr. Anderson reported.
In the United Kingdom, “we are very proud of our 2- and 6-week pathways,” which stipulate that suspected heart failure patients with NT-proBNP levels between 400 and 2000 ng/L are to have a specialist assessment and transthoracic echocardiography within 6 weeks; for those with levels > 2000 ng/L, that interval is accelerated to 2 weeks, she said.
The current results show that “2 weeks is too slow.” And looking at the rest of the cohort with lower NT-proBNP levels, “patients have already been admitted and died” by 6 weeks, she said.
When patients are stratified by age, “you get exactly what you would expect,” Dr. Anderson said. “The older patients are the most at risk” for both hospitalization and all-cause mortality.
A version of this article appeared on Medscape.com.
LISBON, PORTUGAL — Few people with suspected heart failure and elevated N-terminal prohormone of brain natriuretic peptide (NT-proBNP) levels are receiving a diagnosis after a year, reported investigators, who say high rates of hospitalization are common.
Presenting here at the Heart Failure Association of the European Society of Cardiology (HFA-ESC) 2024, researchers shared results from the REVOLUTION-HF study involving almost 8000 people who consulted outpatient primary and secondary care over a 5-year period.
The outcomes were even worse in patients with high NT-proBNP levels.
Patients with suspected heart failure are “waiting far too long to see a specialist, and that results in a delay to guideline-directed medical therapy, despite the fact that we’re perfectly happy to slap them all on diuretics,” said study presenter Lisa Anderson, MD, PhD, Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St George’s Hospital, University of London, England.
“We need to rethink our management of heart failure patients presenting in the community,” she said.
A big gap exists internationally between presentation with heart failure, an elevated NT-proBNP, and confirmatory specialist assessment, she explained.
“It’s a scandal that patients are coming to the GP with signs and symptoms of heart failure, they get tested for natriuretic peptides, and nothing happens,” said co-author Antoni Bayés-Genís, MD, PhD, Heart Institute director, Hospital Universitari Germans Trias i Pujol Catedràtic, Barcelona, Spain.
“These patients may receive an echo, or not, in the coming 12 months,” and “during these 12 months, there is a huge number of heart failure hospitalizations and deaths that could probably be prevented.”
Why the Reluctance to Diagnose?
Many issues get in the way of early diagnosis, Dr. Bayés-Genís said. “Inertia, comorbidities, ageism.”
A lot of patients with heart failure are elderly women with some degree of weight gain, he said. “And they come to the clinic with fatigue, so we tell them, ‘Well, that’s normal.”
But “it may not be normal,” he added. “This is a very important topic that we, as a society, need to address.”
There are several “misconceptions” about heart failure, said Ileana L. Piña, MD, MPH, the Robert Stein Chair for Quality and Safety, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, who was not involved in the study.
For example, “we’re all convinced that guideline-directed medical therapy works,” but the evidence is only for patients “with a diagnosis.” In addition, “millions of patients get tested” for heart failure, but they already have a “known diagnosis.”
“When we study these drugs, we’re studying them on patients with manifest disease,” who are only then randomized, Dr. Piña said. “But we seldom see them while they’re developing heart failure. And it’s a process; it doesn’t happen overnight.”
Patients initially often think they may have asthma, and so what follows is an extended period of “uncertainty” and “important time lost” before they finally undergo the assessments that show that they have heart failure, she said.
However, “uncertainty” often lands a patient “in the emergency room or with an unscheduled office visit, where NT-proBNP might get ordered and there’s a long lineup for an echo.”
There are several strengths of the current study, Dr. Piña said, including the fact that 50% of the study population were women, and they were older than a typical trial population. Nevertheless, the results were “eye-opening but not surprising” and, in the end, “disappointing.”
“I agree, we need a revolution, Dr. Anderson,” Dr. Piña said. “The revolution of paying attention to the NT-proBNP when you get it and it’s elevated” and then following through with echocardiography and starting “guideline-directed medical therapy early.”
The diagnosis of heart failure “relies on the presentation of patients with nonspecific signs and symptoms,” such as dyspnea and peripheral edema, “but initiation of guideline-directed medical therapy — life-saving treatment — has to wait until we have a formal echocardiography and specialist clinician assessment,” Dr. Anderson said.
The latest clinical consensus statement from the Heart Failure Association “proposes both rule-in and rule-out NT-proBNP levels for heart failure diagnosis, and obviously we all recognize that it’s important to treat patients as soon as they’re diagnosed,” she explained.
REVOLUTION-HF
To examine the risk profile for patients presenting to outpatient care with suspected heart failure, the researchers conducted REVOLUTION-HF, which leveraged nationwide Swedish linked data from general practices, specialists, pharmacies, hospitals, and cause of death registers.
“Really impressively, most of these NT-proBNP tests were coming back within a day,” Dr. Anderson said, “so a really, really good turnaround.”
Individuals were excluded if they had an inpatient admission, echocardiography, or heart failure diagnosis between presentation and the NT-proBNP measurement.
These people were then compared with those presenting to primary or secondary outpatient care for any reason and matched for age, sex, care level, and index year. Both groups were followed up for 1 year.
“Despite this really impressive, almost immediate NT-proBNP testing,” the waiting times to undergo echocardiography were “really disappointing,” Dr. Anderson said.
The median time to first registered echocardiography was 40 days, and only 29% of patients with suspected heart failure received a diagnosis within a year of the index presentation date, which she described as “inadequately slow.”
“And how does this translate to medical therapy?” she asked.
Heart Failure Drugs
After the index presentation, the rate of loop diuretic use quadrupled among individuals suspected of having heart failure, but there was a “muted response” when it came to the prescribing of beta-blockers and the other pillars of heart failure therapy, which Dr. Anderson called “very disappointing.”
For outcomes after the index presentation, the rate of hospitalization was much higher in the group with suspected heart failure than in the control group (16.1 vs 2.2 events per 100 person-years). And all-cause mortality occurred more often in the group with suspected heart failure than in the control group (10.3 vs 6.5 events per 100 person-years).
Among patients with NT-proBNP levels of 2000 ng/L, there was a “rapid” onset of hospitalization “within the first few days” of the index presentation, which was tracked by a more linear rise in all-cause deaths, Dr. Anderson reported.
In the United Kingdom, “we are very proud of our 2- and 6-week pathways,” which stipulate that suspected heart failure patients with NT-proBNP levels between 400 and 2000 ng/L are to have a specialist assessment and transthoracic echocardiography within 6 weeks; for those with levels > 2000 ng/L, that interval is accelerated to 2 weeks, she said.
The current results show that “2 weeks is too slow.” And looking at the rest of the cohort with lower NT-proBNP levels, “patients have already been admitted and died” by 6 weeks, she said.
When patients are stratified by age, “you get exactly what you would expect,” Dr. Anderson said. “The older patients are the most at risk” for both hospitalization and all-cause mortality.
A version of this article appeared on Medscape.com.
FROM HFA-ESC 2024
FDA Expands Durvalumab Label to Endometrial Cancer
Originally approved in 2017, the programmed death ligand 1 inhibitor caries previously approved indications for non–small cell lung cancer, biliary tract cancer, and hepatocellular carcinoma.
Approval of the new indication was based on the phase 3 DUO-E trial, which included 95 women with newly diagnosed advanced or recurrent dMMR endometrial cancer. Patients were randomized to durvalumab 1120 mg or placebo with carboplatin plus paclitaxel every 3 weeks for a maximum of six cycles followed by durvalumab 1500 mg every 4 weeks until disease progression.
Median progression-free survival (PFS) was 7 months in the placebo arm but not reached in the durvalumab group. Overall survival outcomes were immature at the PFS analysis.
A quarter or more of durvalumab patients experienced peripheral neuropathy, musculoskeletal pain, nausea, alopecia, fatigue, abdominal pain, constipation, rash, diarrhea, vomiting, and cough.
The recommended treatment regimen for dMMR endometrial cancer in women who weigh ≥ 30 kg is 1120 mg with carboplatin plus paclitaxel every 3 weeks for six cycles, followed by single-agent durvalumab 1500 mg every 4 weeks.
The price of 2.4 mL of durvalumab at a concentration of 50 mg/mL is $1027, according to drugs.com.
A version of this article appeared on Medscape.com.
Originally approved in 2017, the programmed death ligand 1 inhibitor caries previously approved indications for non–small cell lung cancer, biliary tract cancer, and hepatocellular carcinoma.
Approval of the new indication was based on the phase 3 DUO-E trial, which included 95 women with newly diagnosed advanced or recurrent dMMR endometrial cancer. Patients were randomized to durvalumab 1120 mg or placebo with carboplatin plus paclitaxel every 3 weeks for a maximum of six cycles followed by durvalumab 1500 mg every 4 weeks until disease progression.
Median progression-free survival (PFS) was 7 months in the placebo arm but not reached in the durvalumab group. Overall survival outcomes were immature at the PFS analysis.
A quarter or more of durvalumab patients experienced peripheral neuropathy, musculoskeletal pain, nausea, alopecia, fatigue, abdominal pain, constipation, rash, diarrhea, vomiting, and cough.
The recommended treatment regimen for dMMR endometrial cancer in women who weigh ≥ 30 kg is 1120 mg with carboplatin plus paclitaxel every 3 weeks for six cycles, followed by single-agent durvalumab 1500 mg every 4 weeks.
The price of 2.4 mL of durvalumab at a concentration of 50 mg/mL is $1027, according to drugs.com.
A version of this article appeared on Medscape.com.
Originally approved in 2017, the programmed death ligand 1 inhibitor caries previously approved indications for non–small cell lung cancer, biliary tract cancer, and hepatocellular carcinoma.
Approval of the new indication was based on the phase 3 DUO-E trial, which included 95 women with newly diagnosed advanced or recurrent dMMR endometrial cancer. Patients were randomized to durvalumab 1120 mg or placebo with carboplatin plus paclitaxel every 3 weeks for a maximum of six cycles followed by durvalumab 1500 mg every 4 weeks until disease progression.
Median progression-free survival (PFS) was 7 months in the placebo arm but not reached in the durvalumab group. Overall survival outcomes were immature at the PFS analysis.
A quarter or more of durvalumab patients experienced peripheral neuropathy, musculoskeletal pain, nausea, alopecia, fatigue, abdominal pain, constipation, rash, diarrhea, vomiting, and cough.
The recommended treatment regimen for dMMR endometrial cancer in women who weigh ≥ 30 kg is 1120 mg with carboplatin plus paclitaxel every 3 weeks for six cycles, followed by single-agent durvalumab 1500 mg every 4 weeks.
The price of 2.4 mL of durvalumab at a concentration of 50 mg/mL is $1027, according to drugs.com.
A version of this article appeared on Medscape.com.
Surgeons Most Likely to Behave Unprofessionally: Study
Most doctors mind their manners. But surgeons are the most likely to be reported for unprofessional behavior, while physicians practicing in pediatric settings are the least likely, according to a recent study of more than 35,000 physicians.
The research, published on June 6 in JAMA Network Open, found that fewer than 10% of physicians were reported by their coworkers for at least one instance of unprofessional behavior, and only 1% showed a pattern of such reports.
Data were gathered from the Center for Patient and Professional Advocacy’s (CPPA’s) Coworker Observation Reporting System (CORS) program, a national collaborative in which 193 participating hospitals and practice sites file safety-event reports involving medical workers’ unprofessional behaviors. An algorithm that weights CORS reports based on recency and severity was used to analyze the data. The study was spearheaded by William O. Cooper, MD, MPH, director of the CPPA at Vanderbilt University Medical Center, Nashville, Tennessee.
The retrospective cohort study included deidentified data on credentialed physicians, not including residents or fellows, who practiced at a CORS site between 2018 and 2022.
Why Surgeons?
The authors speculated that the reason surgeons were reported for unprofessional behavior more often than their colleagues in nonsurgical specialties was because surgery is a more stressful environment than other specialties and requires more teamwork, resulting in more interactions during high-stakes events.
Daniel Katz, MD, professor and vice chair of education for the Department of Anesthesiology, Perioperative and Pain Medicine at the Icahn School of Medicine at Mount Sinai, New York City, added that part of the problem is that surgeons are expected to perform at very high levels all the time.
“When things that are outside the control of the surgeon don’t go well,” Dr. Katz said, “that can lead to increased frustration and negative emotions, which will then bring out these kinds of behaviors.”
Types of Unprofessional Behaviors
The most common out-of-bounds behaviors reported involved disrespectful communication or lack of professional responsibility. In one example, a physician called a coworker a “bossy cow” when the coworker reminded the physician of the need to do a timeout before beginning a bronchoscopy.
In another case involving professional responsibility, a coworker asked a physician if the team should wait for a disoriented patient’s spouse to arrive. The doctor’s response: “We’ll be here all night if we do that. If you won’t sign as a witness, I’ll get someone else who will.”
The least common reports involved unprofessionalism related to medical care or professional integrity. One cited a physician removing a Foley catheter without wearing gloves and having visible urine on his hands and not washing them before touching other things in the room. In a reported lapse of professional integrity, a physician billed at level five after spending only 4 minutes with a patient.
Impact of Unprofessional Behavior
Unprofessional behavior among physicians is more than just unpleasant. It can threaten the functioning of teams and increase patient complications. In addition, individuals who model unprofessional behaviors are associated with increased malpractice claims, the study’s authors wrote.
Dr. Katz agreed that unprofessional behavior is damaging to both patients and the profession as a whole.
However, this doesn’t happen because some doctors are bad, he said. Physicians today are working in a pressure cooker. The current healthcare environment, with its increased administrative burdens, lack of staffing, and other problems, has increased the overall level of stress and led to burnout among healthcare personnel.
“You have to fix the system to create a working environment that doesn’t cause somebody to explode,” Dr. Katz said.
The goal of the CORS program and this study, Dr. Cooper said, is to help physicians better weather these stresses.
Study Limitations
The authors noted some weaknesses in the study. Some unprofessional behavior may go unreported because of fear of retaliation or for other reasons victims or witnesses did not feel safe to report their colleagues. Also, reports were not evaluated to ensure the truth of the accusations. The records reviewed did not include the gender of the physician, though the researchers pointed out that previous studies have shown that women are less likely than men to receive CORS reports.
A version of this article appeared on Medscape.com.
Most doctors mind their manners. But surgeons are the most likely to be reported for unprofessional behavior, while physicians practicing in pediatric settings are the least likely, according to a recent study of more than 35,000 physicians.
The research, published on June 6 in JAMA Network Open, found that fewer than 10% of physicians were reported by their coworkers for at least one instance of unprofessional behavior, and only 1% showed a pattern of such reports.
Data were gathered from the Center for Patient and Professional Advocacy’s (CPPA’s) Coworker Observation Reporting System (CORS) program, a national collaborative in which 193 participating hospitals and practice sites file safety-event reports involving medical workers’ unprofessional behaviors. An algorithm that weights CORS reports based on recency and severity was used to analyze the data. The study was spearheaded by William O. Cooper, MD, MPH, director of the CPPA at Vanderbilt University Medical Center, Nashville, Tennessee.
The retrospective cohort study included deidentified data on credentialed physicians, not including residents or fellows, who practiced at a CORS site between 2018 and 2022.
Why Surgeons?
The authors speculated that the reason surgeons were reported for unprofessional behavior more often than their colleagues in nonsurgical specialties was because surgery is a more stressful environment than other specialties and requires more teamwork, resulting in more interactions during high-stakes events.
Daniel Katz, MD, professor and vice chair of education for the Department of Anesthesiology, Perioperative and Pain Medicine at the Icahn School of Medicine at Mount Sinai, New York City, added that part of the problem is that surgeons are expected to perform at very high levels all the time.
“When things that are outside the control of the surgeon don’t go well,” Dr. Katz said, “that can lead to increased frustration and negative emotions, which will then bring out these kinds of behaviors.”
Types of Unprofessional Behaviors
The most common out-of-bounds behaviors reported involved disrespectful communication or lack of professional responsibility. In one example, a physician called a coworker a “bossy cow” when the coworker reminded the physician of the need to do a timeout before beginning a bronchoscopy.
In another case involving professional responsibility, a coworker asked a physician if the team should wait for a disoriented patient’s spouse to arrive. The doctor’s response: “We’ll be here all night if we do that. If you won’t sign as a witness, I’ll get someone else who will.”
The least common reports involved unprofessionalism related to medical care or professional integrity. One cited a physician removing a Foley catheter without wearing gloves and having visible urine on his hands and not washing them before touching other things in the room. In a reported lapse of professional integrity, a physician billed at level five after spending only 4 minutes with a patient.
Impact of Unprofessional Behavior
Unprofessional behavior among physicians is more than just unpleasant. It can threaten the functioning of teams and increase patient complications. In addition, individuals who model unprofessional behaviors are associated with increased malpractice claims, the study’s authors wrote.
Dr. Katz agreed that unprofessional behavior is damaging to both patients and the profession as a whole.
However, this doesn’t happen because some doctors are bad, he said. Physicians today are working in a pressure cooker. The current healthcare environment, with its increased administrative burdens, lack of staffing, and other problems, has increased the overall level of stress and led to burnout among healthcare personnel.
“You have to fix the system to create a working environment that doesn’t cause somebody to explode,” Dr. Katz said.
The goal of the CORS program and this study, Dr. Cooper said, is to help physicians better weather these stresses.
Study Limitations
The authors noted some weaknesses in the study. Some unprofessional behavior may go unreported because of fear of retaliation or for other reasons victims or witnesses did not feel safe to report their colleagues. Also, reports were not evaluated to ensure the truth of the accusations. The records reviewed did not include the gender of the physician, though the researchers pointed out that previous studies have shown that women are less likely than men to receive CORS reports.
A version of this article appeared on Medscape.com.
Most doctors mind their manners. But surgeons are the most likely to be reported for unprofessional behavior, while physicians practicing in pediatric settings are the least likely, according to a recent study of more than 35,000 physicians.
The research, published on June 6 in JAMA Network Open, found that fewer than 10% of physicians were reported by their coworkers for at least one instance of unprofessional behavior, and only 1% showed a pattern of such reports.
Data were gathered from the Center for Patient and Professional Advocacy’s (CPPA’s) Coworker Observation Reporting System (CORS) program, a national collaborative in which 193 participating hospitals and practice sites file safety-event reports involving medical workers’ unprofessional behaviors. An algorithm that weights CORS reports based on recency and severity was used to analyze the data. The study was spearheaded by William O. Cooper, MD, MPH, director of the CPPA at Vanderbilt University Medical Center, Nashville, Tennessee.
The retrospective cohort study included deidentified data on credentialed physicians, not including residents or fellows, who practiced at a CORS site between 2018 and 2022.
Why Surgeons?
The authors speculated that the reason surgeons were reported for unprofessional behavior more often than their colleagues in nonsurgical specialties was because surgery is a more stressful environment than other specialties and requires more teamwork, resulting in more interactions during high-stakes events.
Daniel Katz, MD, professor and vice chair of education for the Department of Anesthesiology, Perioperative and Pain Medicine at the Icahn School of Medicine at Mount Sinai, New York City, added that part of the problem is that surgeons are expected to perform at very high levels all the time.
“When things that are outside the control of the surgeon don’t go well,” Dr. Katz said, “that can lead to increased frustration and negative emotions, which will then bring out these kinds of behaviors.”
Types of Unprofessional Behaviors
The most common out-of-bounds behaviors reported involved disrespectful communication or lack of professional responsibility. In one example, a physician called a coworker a “bossy cow” when the coworker reminded the physician of the need to do a timeout before beginning a bronchoscopy.
In another case involving professional responsibility, a coworker asked a physician if the team should wait for a disoriented patient’s spouse to arrive. The doctor’s response: “We’ll be here all night if we do that. If you won’t sign as a witness, I’ll get someone else who will.”
The least common reports involved unprofessionalism related to medical care or professional integrity. One cited a physician removing a Foley catheter without wearing gloves and having visible urine on his hands and not washing them before touching other things in the room. In a reported lapse of professional integrity, a physician billed at level five after spending only 4 minutes with a patient.
Impact of Unprofessional Behavior
Unprofessional behavior among physicians is more than just unpleasant. It can threaten the functioning of teams and increase patient complications. In addition, individuals who model unprofessional behaviors are associated with increased malpractice claims, the study’s authors wrote.
Dr. Katz agreed that unprofessional behavior is damaging to both patients and the profession as a whole.
However, this doesn’t happen because some doctors are bad, he said. Physicians today are working in a pressure cooker. The current healthcare environment, with its increased administrative burdens, lack of staffing, and other problems, has increased the overall level of stress and led to burnout among healthcare personnel.
“You have to fix the system to create a working environment that doesn’t cause somebody to explode,” Dr. Katz said.
The goal of the CORS program and this study, Dr. Cooper said, is to help physicians better weather these stresses.
Study Limitations
The authors noted some weaknesses in the study. Some unprofessional behavior may go unreported because of fear of retaliation or for other reasons victims or witnesses did not feel safe to report their colleagues. Also, reports were not evaluated to ensure the truth of the accusations. The records reviewed did not include the gender of the physician, though the researchers pointed out that previous studies have shown that women are less likely than men to receive CORS reports.
A version of this article appeared on Medscape.com.
Fructose and Fructan Malabsorption Strongly Linked in IBS
TOPLINE:
A clinically significant association exists between fructose and fructan malabsorption in certain patients with irritable bowel syndrome (IBS), indicating that some may benefit from eliminating both carbohydrates.
METHODOLOGY:
- Previous research has focused on fructose or fructan malabsorption separately in patients with IBS, rather than together in the same cohort.
- Researchers conducted a retrospective review of electronic medical records obtained from January 2017 to June 2022 at a single US medical clinic from patients with IBS who had undergone fructose and fructan hydrogen breath tests (HBTs).
- Patients were advised to have a low-carbohydrate dinner the day before, and fast for at least 12 hours prior to the HBT.
- Separate fructose and fructan HBTs were performed at baseline and again on separate days (minimum 1 day between HBTs) by administering a 25-g fructose or 10-g insulin solution and noting the breath hydrogen readings every 30 minutes for 3 hours. Breath hydrogen levels ≥ 20 ppm indicated a positive malabsorption result for either of the carbohydrates.
- The HBT results were compared to study the association between fructose and fructan malabsorption.
TAKEAWAY:
- Among 186 patients (median age, 36.7 years; 37.6% men), 38.2% tested positive for fructose malabsorption, 48.9% for fructan malabsorption, and 22.6% for both.
- There was a significant association between positive fructose and positive fructan HBT readings (P = .0283).
- Patients who tested positive for fructose or fructan malabsorption had a 1.951 times higher likelihood of testing positive for the other carbohydrate (95% CI, 1.072-3.476).
IN PRACTICE:
“The positive association between fructose and fructan malabsorption in patients with IBS suggests that fructan malabsorption should be suspected in a patient who tests positive for fructose malabsorption, and vice versa,” the authors wrote.
SOURCE:
The study, led by Twan Sia, MD, Boston Specialists, Boston, was published online in BMC Gastroenterology.
LIMITATIONS:
The findings may have limited generalizability, as it included patients primarily from the northeastern region of the United States. The study limited HBT to 3 hours, beyond which rises in hydrogen gas might have been missed. Moreover, the use of an absolute hydrogen threshold of 20 ppm differs from that used in most other studies.
DISCLOSURES:
This study did not receive any specific grant from any funding agencies. One of the authors declared being a consultant for various pharmaceutical companies.
A version of this article appeared on Medscape.com.
TOPLINE:
A clinically significant association exists between fructose and fructan malabsorption in certain patients with irritable bowel syndrome (IBS), indicating that some may benefit from eliminating both carbohydrates.
METHODOLOGY:
- Previous research has focused on fructose or fructan malabsorption separately in patients with IBS, rather than together in the same cohort.
- Researchers conducted a retrospective review of electronic medical records obtained from January 2017 to June 2022 at a single US medical clinic from patients with IBS who had undergone fructose and fructan hydrogen breath tests (HBTs).
- Patients were advised to have a low-carbohydrate dinner the day before, and fast for at least 12 hours prior to the HBT.
- Separate fructose and fructan HBTs were performed at baseline and again on separate days (minimum 1 day between HBTs) by administering a 25-g fructose or 10-g insulin solution and noting the breath hydrogen readings every 30 minutes for 3 hours. Breath hydrogen levels ≥ 20 ppm indicated a positive malabsorption result for either of the carbohydrates.
- The HBT results were compared to study the association between fructose and fructan malabsorption.
TAKEAWAY:
- Among 186 patients (median age, 36.7 years; 37.6% men), 38.2% tested positive for fructose malabsorption, 48.9% for fructan malabsorption, and 22.6% for both.
- There was a significant association between positive fructose and positive fructan HBT readings (P = .0283).
- Patients who tested positive for fructose or fructan malabsorption had a 1.951 times higher likelihood of testing positive for the other carbohydrate (95% CI, 1.072-3.476).
IN PRACTICE:
“The positive association between fructose and fructan malabsorption in patients with IBS suggests that fructan malabsorption should be suspected in a patient who tests positive for fructose malabsorption, and vice versa,” the authors wrote.
SOURCE:
The study, led by Twan Sia, MD, Boston Specialists, Boston, was published online in BMC Gastroenterology.
LIMITATIONS:
The findings may have limited generalizability, as it included patients primarily from the northeastern region of the United States. The study limited HBT to 3 hours, beyond which rises in hydrogen gas might have been missed. Moreover, the use of an absolute hydrogen threshold of 20 ppm differs from that used in most other studies.
DISCLOSURES:
This study did not receive any specific grant from any funding agencies. One of the authors declared being a consultant for various pharmaceutical companies.
A version of this article appeared on Medscape.com.
TOPLINE:
A clinically significant association exists between fructose and fructan malabsorption in certain patients with irritable bowel syndrome (IBS), indicating that some may benefit from eliminating both carbohydrates.
METHODOLOGY:
- Previous research has focused on fructose or fructan malabsorption separately in patients with IBS, rather than together in the same cohort.
- Researchers conducted a retrospective review of electronic medical records obtained from January 2017 to June 2022 at a single US medical clinic from patients with IBS who had undergone fructose and fructan hydrogen breath tests (HBTs).
- Patients were advised to have a low-carbohydrate dinner the day before, and fast for at least 12 hours prior to the HBT.
- Separate fructose and fructan HBTs were performed at baseline and again on separate days (minimum 1 day between HBTs) by administering a 25-g fructose or 10-g insulin solution and noting the breath hydrogen readings every 30 minutes for 3 hours. Breath hydrogen levels ≥ 20 ppm indicated a positive malabsorption result for either of the carbohydrates.
- The HBT results were compared to study the association between fructose and fructan malabsorption.
TAKEAWAY:
- Among 186 patients (median age, 36.7 years; 37.6% men), 38.2% tested positive for fructose malabsorption, 48.9% for fructan malabsorption, and 22.6% for both.
- There was a significant association between positive fructose and positive fructan HBT readings (P = .0283).
- Patients who tested positive for fructose or fructan malabsorption had a 1.951 times higher likelihood of testing positive for the other carbohydrate (95% CI, 1.072-3.476).
IN PRACTICE:
“The positive association between fructose and fructan malabsorption in patients with IBS suggests that fructan malabsorption should be suspected in a patient who tests positive for fructose malabsorption, and vice versa,” the authors wrote.
SOURCE:
The study, led by Twan Sia, MD, Boston Specialists, Boston, was published online in BMC Gastroenterology.
LIMITATIONS:
The findings may have limited generalizability, as it included patients primarily from the northeastern region of the United States. The study limited HBT to 3 hours, beyond which rises in hydrogen gas might have been missed. Moreover, the use of an absolute hydrogen threshold of 20 ppm differs from that used in most other studies.
DISCLOSURES:
This study did not receive any specific grant from any funding agencies. One of the authors declared being a consultant for various pharmaceutical companies.
A version of this article appeared on Medscape.com.
Help! More Clinicians Are Needed to Manage Care for Children With Autism. How About You?
Almost all primary care providers (PCPs) have taken on diagnosing and managing ADHD. With about 12% of school aged children affected, typical PCPs can expect about 240 children with ADHD under their care. Adopting this primary care function has been helped by having clear diagnostic criteria for the three DMS 5 “presentations” of ADHD, open source tools (e.g. Vanderbilts), expectation of collaboration by educators, American Academy of Pediatrics (AAP) guidelines for diagnosis and management, Society for Developmental–Behavioral Pediatrics guidelines for “complex ADHD,” and access to effective medication treatments PCPs can provide (although less so for behavioral ones), cultural acceptance of individuals with ADHD, and especially reliable payment by insurers.
Screening
But what about PCP management of autism spectrum disorder (ASD), now affecting 2.8%, for an expected 60 children under care for each of us?
It is more essential because very early detection and entry into evidence-based intervention has long-term benefits for the child and family that are not as crucial for ADHD. While ADHD symptoms may not impact functioning until age 7 or even 12 years of age, signs of ASD usually emerge earlier (by 18 months) but gradually and about 30% after apparently normal development even to age 2 years.Screening is crucial, but unfortunately not perfect. Recent AAP surveys show that most PCPs screen for autism at the recommended 18 and 24 months. But what happens after that? How many offices are tracking referrals for positive screens for needed evaluations and early intervention? Our data shows that tracking is rarely done and children do not start to get the benefit of early intervention until 4.5 years of age, on average.
Diagnostic Testing
And screening is the easiest part of addressing ASD. Wait times for diagnostic testing can be agonizing months to years. Multiple programs are training PCPs to perform hands-on 10- to 30-minute secondary screening with considerable success. You can become proficient on tools such as STAT (Screening Tool for Autism in Two-Year-Olds), RITA-T (Rapid Interactive Screening Test for Autism in Toddlers), BISCUIT (Baby and Infant Screen for Children with Autism Traits), SORF (Systematic Observation of Red Flags), ADEC (Autism Detection in Early Childhood) or CARS (Childhood Autism Rating Scale) with a few hours of training. Even secondary assessments done virtually by PCPs such as TELE-ASD-PEDS quite accurately predict a verifiable ASD diagnosis for those referred by concerns. Some problems of the reported accuracy of these secondary screening processes have to do with validation in samples of children for whom parents or clinicians already had concern and generally not including many younger children in whom it is so important to detect. Level of confidence of developmental and behavioral pediatricians of the presence of ASD is highly related to ultimate diagnosis. But success with PCPs’ mastering secondary screening has not yet been reported to convince insurers to approve payment for intervention services such as Applied Behavior Analysis (ABA).
Comorbidity
Co-existing conditions affect the majority of patients with ASD (70%), compared with ADHD, but with a broader range and more debilitating and difficult to manage conditions. More medical co-existing issues such as intellectual disability (25%-75%), seizures (12%-26%), motor incoordination (51%), GI conditions (9%-91%), sleep difficulty (50%-80%), sleep apnea, congenital heart disease, avoidant-restrictive food intake disorder, autoimmune disorders, and genetic syndromes (e.g. Fragile X, tuberous sclerosis, Down, Angelman’s, untreated PKU, neurofibromatosis, Klinefelter syndrome) reflect the range of underpinnings of ASD. The need to detect and manage these co-existing issues, besides assessing hearing and vision, makes our skilled involvement and vigilance in ASD care essential. Referring for help from OTs, PTs, speech pathologists, neurologists, psychologists, and special educators as issues in their domains are prioritized is also our responsibility. We must also help families balance utilizing these resources so as to avoid overwhelm.
Anxiety (50%), ADHD (37%-85%), depression (54%), bipolar (7.3%), suicidal ideation (40% starting < 8 years), and emotion dysregulation, familiar to us from our management of ADHD, may develop but are often less well defined and more intractable in ASD, making use of screening tools essential. Using a system like CHADIS that has online pre-visit and monitoring screens delivered based on algorithms for the numerous co-existing conditions, automated handouts, and functions to make and track referral success can facilitate care for this complex chronic condition. Identifying mental health providers with ASD expertise is more difficult, so more management is on us. While medications for these conditions can be beneficial, we need to learn to use lower doses, slower dose increases, and employ problem-solving of side effects with more parent collaboration than for ADHD as children with ASD often cannot self-report effectively. We need to ask about the common ad hoc use of complementary medications and substances (32%-87%) that may be complicating. Of course, these conditions and the caveats of management require more of our time with the patient and family as well as communication with the many other professionals involved. It is important to set our own and our families’ expectations (and schedules) for much more frequent contact and also to bill appropriately with chronic care (99487,89,90) and collaborative care CPT codes (99492,3,4 or G2214).
Behavioral Manifestations
During our care, the often extreme behavioral manifestations of ASD may be the most pressing issues. We need new understanding and skills to sort out and counsel on inflexible, explosive, and sensory triggered behaviors. Just as for ADHD, using the approach of Functional Behavioral Assessment and plans for home as well as school behavior can be key. More difficult in ASD is looking for physical causes, since the child may not provide clear cues because of communication and sensory differences. Conditions common in children with ASD such as constipation, dental caries, otitis, dietary intolerances, allergies, migraine, sleep deficits, menstrual cramps, or fears and changes from puberty manifesting behaviorally are often tricky to sort out.
While the diagnosis of ASD, as for ADHD, does not require any laboratory testing, looking for possible causes is important information for the family and someday may also lead to genetic or other therapies. We need to know that recommendations include screening for Ferritin, Pb, chromosomal microarray and FMR I testing as well as checking that PKU was normal; MECP 2 is indicated in females and symptomatic males; and PTENS testing for children with head circumference greater than 2.5-3 SD. Metabolic and mitochondrial assays are indicated only when symptoms suggest. We need to develop confidence to reserve MRIs or EEGs for cases with abnormal neuro. exams, regression, or history of seizures. It is demanding to keep up with AAP recommendations in this very active area of research.
Interventions
The interventions for ADHD are generally school accommodations and therapies for comorbidities. In contrast, since core social communication skills are the main deficit in ASD, all children screened positive for ASD should be referred for early intervention while awaiting, as well as after, diagnosis. While all states have no or low-cost early intervention, quality and quantity (of hours offered) varies. We should also recommend and try to determine if evidence-based intervention is being provided, such as pivotal response training, UCLA discrete trial therapy, Carbone’s verbal behavior, applied behavior analysis (ABA), Early Start Denver Model, and sometimes music and social skills trainings (effect size 0.42-0.76). Such professional interventions have best evidence with more than 25 hours/week but 15 hours has benefit for higher functioning children. CBT can help anxiety even in younger children. One way for families to provide more hours and more generalizable intervention is coaching by the PLAY Project or DIRFloortime, parent mediated interventions with evidence, some with training both in person or online. Alternative communication training and other condition specific assistance are often needed (e.g. Picture Exchange Communication System for nonverbal children).
While we should already be familiar with writing 504 plan and IEP requests to schools, which also apply to children with ASD, in addition we need to be ready to advise about other legal rights including autism waivers, wraparound services, guardianship, and trust accounts. We can share quality educational materials available online (e.g. from Autism Speaks, SPARK, and Autism Navigator). Social media groups may be supportive, but also may contain disinformation we need to dispel.
Unfortunately, templates, questionnaires, and lack of interdisciplinary referral and communication functions of EHRs don’t support the complexities of care for ASD. While the AAP has guidelines for diagnosis and management and an online toolkit, consider adding a system with an autism-specific module like CHADIS and joining the Autism Care Network or ECHO Autism sessions to get both information and support to take on the evolving critical role of autism care.
Dr. Howard is assistant professor of pediatrics at Johns Hopkins University, Baltimore, and creator of CHADIS. She had no other relevant disclosures. Dr. Howard’s contribution to this publication was as a paid expert to MDedge News. E-mail her at pdnews@mdedge.com.
Almost all primary care providers (PCPs) have taken on diagnosing and managing ADHD. With about 12% of school aged children affected, typical PCPs can expect about 240 children with ADHD under their care. Adopting this primary care function has been helped by having clear diagnostic criteria for the three DMS 5 “presentations” of ADHD, open source tools (e.g. Vanderbilts), expectation of collaboration by educators, American Academy of Pediatrics (AAP) guidelines for diagnosis and management, Society for Developmental–Behavioral Pediatrics guidelines for “complex ADHD,” and access to effective medication treatments PCPs can provide (although less so for behavioral ones), cultural acceptance of individuals with ADHD, and especially reliable payment by insurers.
Screening
But what about PCP management of autism spectrum disorder (ASD), now affecting 2.8%, for an expected 60 children under care for each of us?
It is more essential because very early detection and entry into evidence-based intervention has long-term benefits for the child and family that are not as crucial for ADHD. While ADHD symptoms may not impact functioning until age 7 or even 12 years of age, signs of ASD usually emerge earlier (by 18 months) but gradually and about 30% after apparently normal development even to age 2 years.Screening is crucial, but unfortunately not perfect. Recent AAP surveys show that most PCPs screen for autism at the recommended 18 and 24 months. But what happens after that? How many offices are tracking referrals for positive screens for needed evaluations and early intervention? Our data shows that tracking is rarely done and children do not start to get the benefit of early intervention until 4.5 years of age, on average.
Diagnostic Testing
And screening is the easiest part of addressing ASD. Wait times for diagnostic testing can be agonizing months to years. Multiple programs are training PCPs to perform hands-on 10- to 30-minute secondary screening with considerable success. You can become proficient on tools such as STAT (Screening Tool for Autism in Two-Year-Olds), RITA-T (Rapid Interactive Screening Test for Autism in Toddlers), BISCUIT (Baby and Infant Screen for Children with Autism Traits), SORF (Systematic Observation of Red Flags), ADEC (Autism Detection in Early Childhood) or CARS (Childhood Autism Rating Scale) with a few hours of training. Even secondary assessments done virtually by PCPs such as TELE-ASD-PEDS quite accurately predict a verifiable ASD diagnosis for those referred by concerns. Some problems of the reported accuracy of these secondary screening processes have to do with validation in samples of children for whom parents or clinicians already had concern and generally not including many younger children in whom it is so important to detect. Level of confidence of developmental and behavioral pediatricians of the presence of ASD is highly related to ultimate diagnosis. But success with PCPs’ mastering secondary screening has not yet been reported to convince insurers to approve payment for intervention services such as Applied Behavior Analysis (ABA).
Comorbidity
Co-existing conditions affect the majority of patients with ASD (70%), compared with ADHD, but with a broader range and more debilitating and difficult to manage conditions. More medical co-existing issues such as intellectual disability (25%-75%), seizures (12%-26%), motor incoordination (51%), GI conditions (9%-91%), sleep difficulty (50%-80%), sleep apnea, congenital heart disease, avoidant-restrictive food intake disorder, autoimmune disorders, and genetic syndromes (e.g. Fragile X, tuberous sclerosis, Down, Angelman’s, untreated PKU, neurofibromatosis, Klinefelter syndrome) reflect the range of underpinnings of ASD. The need to detect and manage these co-existing issues, besides assessing hearing and vision, makes our skilled involvement and vigilance in ASD care essential. Referring for help from OTs, PTs, speech pathologists, neurologists, psychologists, and special educators as issues in their domains are prioritized is also our responsibility. We must also help families balance utilizing these resources so as to avoid overwhelm.
Anxiety (50%), ADHD (37%-85%), depression (54%), bipolar (7.3%), suicidal ideation (40% starting < 8 years), and emotion dysregulation, familiar to us from our management of ADHD, may develop but are often less well defined and more intractable in ASD, making use of screening tools essential. Using a system like CHADIS that has online pre-visit and monitoring screens delivered based on algorithms for the numerous co-existing conditions, automated handouts, and functions to make and track referral success can facilitate care for this complex chronic condition. Identifying mental health providers with ASD expertise is more difficult, so more management is on us. While medications for these conditions can be beneficial, we need to learn to use lower doses, slower dose increases, and employ problem-solving of side effects with more parent collaboration than for ADHD as children with ASD often cannot self-report effectively. We need to ask about the common ad hoc use of complementary medications and substances (32%-87%) that may be complicating. Of course, these conditions and the caveats of management require more of our time with the patient and family as well as communication with the many other professionals involved. It is important to set our own and our families’ expectations (and schedules) for much more frequent contact and also to bill appropriately with chronic care (99487,89,90) and collaborative care CPT codes (99492,3,4 or G2214).
Behavioral Manifestations
During our care, the often extreme behavioral manifestations of ASD may be the most pressing issues. We need new understanding and skills to sort out and counsel on inflexible, explosive, and sensory triggered behaviors. Just as for ADHD, using the approach of Functional Behavioral Assessment and plans for home as well as school behavior can be key. More difficult in ASD is looking for physical causes, since the child may not provide clear cues because of communication and sensory differences. Conditions common in children with ASD such as constipation, dental caries, otitis, dietary intolerances, allergies, migraine, sleep deficits, menstrual cramps, or fears and changes from puberty manifesting behaviorally are often tricky to sort out.
While the diagnosis of ASD, as for ADHD, does not require any laboratory testing, looking for possible causes is important information for the family and someday may also lead to genetic or other therapies. We need to know that recommendations include screening for Ferritin, Pb, chromosomal microarray and FMR I testing as well as checking that PKU was normal; MECP 2 is indicated in females and symptomatic males; and PTENS testing for children with head circumference greater than 2.5-3 SD. Metabolic and mitochondrial assays are indicated only when symptoms suggest. We need to develop confidence to reserve MRIs or EEGs for cases with abnormal neuro. exams, regression, or history of seizures. It is demanding to keep up with AAP recommendations in this very active area of research.
Interventions
The interventions for ADHD are generally school accommodations and therapies for comorbidities. In contrast, since core social communication skills are the main deficit in ASD, all children screened positive for ASD should be referred for early intervention while awaiting, as well as after, diagnosis. While all states have no or low-cost early intervention, quality and quantity (of hours offered) varies. We should also recommend and try to determine if evidence-based intervention is being provided, such as pivotal response training, UCLA discrete trial therapy, Carbone’s verbal behavior, applied behavior analysis (ABA), Early Start Denver Model, and sometimes music and social skills trainings (effect size 0.42-0.76). Such professional interventions have best evidence with more than 25 hours/week but 15 hours has benefit for higher functioning children. CBT can help anxiety even in younger children. One way for families to provide more hours and more generalizable intervention is coaching by the PLAY Project or DIRFloortime, parent mediated interventions with evidence, some with training both in person or online. Alternative communication training and other condition specific assistance are often needed (e.g. Picture Exchange Communication System for nonverbal children).
While we should already be familiar with writing 504 plan and IEP requests to schools, which also apply to children with ASD, in addition we need to be ready to advise about other legal rights including autism waivers, wraparound services, guardianship, and trust accounts. We can share quality educational materials available online (e.g. from Autism Speaks, SPARK, and Autism Navigator). Social media groups may be supportive, but also may contain disinformation we need to dispel.
Unfortunately, templates, questionnaires, and lack of interdisciplinary referral and communication functions of EHRs don’t support the complexities of care for ASD. While the AAP has guidelines for diagnosis and management and an online toolkit, consider adding a system with an autism-specific module like CHADIS and joining the Autism Care Network or ECHO Autism sessions to get both information and support to take on the evolving critical role of autism care.
Dr. Howard is assistant professor of pediatrics at Johns Hopkins University, Baltimore, and creator of CHADIS. She had no other relevant disclosures. Dr. Howard’s contribution to this publication was as a paid expert to MDedge News. E-mail her at pdnews@mdedge.com.
Almost all primary care providers (PCPs) have taken on diagnosing and managing ADHD. With about 12% of school aged children affected, typical PCPs can expect about 240 children with ADHD under their care. Adopting this primary care function has been helped by having clear diagnostic criteria for the three DMS 5 “presentations” of ADHD, open source tools (e.g. Vanderbilts), expectation of collaboration by educators, American Academy of Pediatrics (AAP) guidelines for diagnosis and management, Society for Developmental–Behavioral Pediatrics guidelines for “complex ADHD,” and access to effective medication treatments PCPs can provide (although less so for behavioral ones), cultural acceptance of individuals with ADHD, and especially reliable payment by insurers.
Screening
But what about PCP management of autism spectrum disorder (ASD), now affecting 2.8%, for an expected 60 children under care for each of us?
It is more essential because very early detection and entry into evidence-based intervention has long-term benefits for the child and family that are not as crucial for ADHD. While ADHD symptoms may not impact functioning until age 7 or even 12 years of age, signs of ASD usually emerge earlier (by 18 months) but gradually and about 30% after apparently normal development even to age 2 years.Screening is crucial, but unfortunately not perfect. Recent AAP surveys show that most PCPs screen for autism at the recommended 18 and 24 months. But what happens after that? How many offices are tracking referrals for positive screens for needed evaluations and early intervention? Our data shows that tracking is rarely done and children do not start to get the benefit of early intervention until 4.5 years of age, on average.
Diagnostic Testing
And screening is the easiest part of addressing ASD. Wait times for diagnostic testing can be agonizing months to years. Multiple programs are training PCPs to perform hands-on 10- to 30-minute secondary screening with considerable success. You can become proficient on tools such as STAT (Screening Tool for Autism in Two-Year-Olds), RITA-T (Rapid Interactive Screening Test for Autism in Toddlers), BISCUIT (Baby and Infant Screen for Children with Autism Traits), SORF (Systematic Observation of Red Flags), ADEC (Autism Detection in Early Childhood) or CARS (Childhood Autism Rating Scale) with a few hours of training. Even secondary assessments done virtually by PCPs such as TELE-ASD-PEDS quite accurately predict a verifiable ASD diagnosis for those referred by concerns. Some problems of the reported accuracy of these secondary screening processes have to do with validation in samples of children for whom parents or clinicians already had concern and generally not including many younger children in whom it is so important to detect. Level of confidence of developmental and behavioral pediatricians of the presence of ASD is highly related to ultimate diagnosis. But success with PCPs’ mastering secondary screening has not yet been reported to convince insurers to approve payment for intervention services such as Applied Behavior Analysis (ABA).
Comorbidity
Co-existing conditions affect the majority of patients with ASD (70%), compared with ADHD, but with a broader range and more debilitating and difficult to manage conditions. More medical co-existing issues such as intellectual disability (25%-75%), seizures (12%-26%), motor incoordination (51%), GI conditions (9%-91%), sleep difficulty (50%-80%), sleep apnea, congenital heart disease, avoidant-restrictive food intake disorder, autoimmune disorders, and genetic syndromes (e.g. Fragile X, tuberous sclerosis, Down, Angelman’s, untreated PKU, neurofibromatosis, Klinefelter syndrome) reflect the range of underpinnings of ASD. The need to detect and manage these co-existing issues, besides assessing hearing and vision, makes our skilled involvement and vigilance in ASD care essential. Referring for help from OTs, PTs, speech pathologists, neurologists, psychologists, and special educators as issues in their domains are prioritized is also our responsibility. We must also help families balance utilizing these resources so as to avoid overwhelm.
Anxiety (50%), ADHD (37%-85%), depression (54%), bipolar (7.3%), suicidal ideation (40% starting < 8 years), and emotion dysregulation, familiar to us from our management of ADHD, may develop but are often less well defined and more intractable in ASD, making use of screening tools essential. Using a system like CHADIS that has online pre-visit and monitoring screens delivered based on algorithms for the numerous co-existing conditions, automated handouts, and functions to make and track referral success can facilitate care for this complex chronic condition. Identifying mental health providers with ASD expertise is more difficult, so more management is on us. While medications for these conditions can be beneficial, we need to learn to use lower doses, slower dose increases, and employ problem-solving of side effects with more parent collaboration than for ADHD as children with ASD often cannot self-report effectively. We need to ask about the common ad hoc use of complementary medications and substances (32%-87%) that may be complicating. Of course, these conditions and the caveats of management require more of our time with the patient and family as well as communication with the many other professionals involved. It is important to set our own and our families’ expectations (and schedules) for much more frequent contact and also to bill appropriately with chronic care (99487,89,90) and collaborative care CPT codes (99492,3,4 or G2214).
Behavioral Manifestations
During our care, the often extreme behavioral manifestations of ASD may be the most pressing issues. We need new understanding and skills to sort out and counsel on inflexible, explosive, and sensory triggered behaviors. Just as for ADHD, using the approach of Functional Behavioral Assessment and plans for home as well as school behavior can be key. More difficult in ASD is looking for physical causes, since the child may not provide clear cues because of communication and sensory differences. Conditions common in children with ASD such as constipation, dental caries, otitis, dietary intolerances, allergies, migraine, sleep deficits, menstrual cramps, or fears and changes from puberty manifesting behaviorally are often tricky to sort out.
While the diagnosis of ASD, as for ADHD, does not require any laboratory testing, looking for possible causes is important information for the family and someday may also lead to genetic or other therapies. We need to know that recommendations include screening for Ferritin, Pb, chromosomal microarray and FMR I testing as well as checking that PKU was normal; MECP 2 is indicated in females and symptomatic males; and PTENS testing for children with head circumference greater than 2.5-3 SD. Metabolic and mitochondrial assays are indicated only when symptoms suggest. We need to develop confidence to reserve MRIs or EEGs for cases with abnormal neuro. exams, regression, or history of seizures. It is demanding to keep up with AAP recommendations in this very active area of research.
Interventions
The interventions for ADHD are generally school accommodations and therapies for comorbidities. In contrast, since core social communication skills are the main deficit in ASD, all children screened positive for ASD should be referred for early intervention while awaiting, as well as after, diagnosis. While all states have no or low-cost early intervention, quality and quantity (of hours offered) varies. We should also recommend and try to determine if evidence-based intervention is being provided, such as pivotal response training, UCLA discrete trial therapy, Carbone’s verbal behavior, applied behavior analysis (ABA), Early Start Denver Model, and sometimes music and social skills trainings (effect size 0.42-0.76). Such professional interventions have best evidence with more than 25 hours/week but 15 hours has benefit for higher functioning children. CBT can help anxiety even in younger children. One way for families to provide more hours and more generalizable intervention is coaching by the PLAY Project or DIRFloortime, parent mediated interventions with evidence, some with training both in person or online. Alternative communication training and other condition specific assistance are often needed (e.g. Picture Exchange Communication System for nonverbal children).
While we should already be familiar with writing 504 plan and IEP requests to schools, which also apply to children with ASD, in addition we need to be ready to advise about other legal rights including autism waivers, wraparound services, guardianship, and trust accounts. We can share quality educational materials available online (e.g. from Autism Speaks, SPARK, and Autism Navigator). Social media groups may be supportive, but also may contain disinformation we need to dispel.
Unfortunately, templates, questionnaires, and lack of interdisciplinary referral and communication functions of EHRs don’t support the complexities of care for ASD. While the AAP has guidelines for diagnosis and management and an online toolkit, consider adding a system with an autism-specific module like CHADIS and joining the Autism Care Network or ECHO Autism sessions to get both information and support to take on the evolving critical role of autism care.
Dr. Howard is assistant professor of pediatrics at Johns Hopkins University, Baltimore, and creator of CHADIS. She had no other relevant disclosures. Dr. Howard’s contribution to this publication was as a paid expert to MDedge News. E-mail her at pdnews@mdedge.com.
Potential Genes Identified for Post-Traumatic Headache
SAN DIEGO — , according to results from a preliminary study.
Post-traumatic headache is a common symptom of traumatic brain injury (TBI).
There is evidence that genetic mutations could play a role in both TBI development and response. In particular, the S213L mutation for familial hemiplegic migraine-1 (FHM1), found in the CACNA1A gene, can cause individuals carrying it to be highly sensitive to otherwise trivial head impacts, according to Lyn Griffiths, PhD.
The consequences can be post-traumatic headache, but also seizures, cerebral edema, coma, or worse. Another form of FHM is associated with mutations in ATP1A2.
“This stimulated our interest in looking at genes that relate to TBI with a particular focus on ion channel genes,” said Dr. Griffiths, during a presentation of the study at the annual meeting of the American Headache Society.
The researchers analyzed data from 117 participants who had at least one concussion with a post-traumatic headache, and recruited family members when possible. There were 15 participants who developed severe reactions to trivial head trauma, 13 who had been diagnosed with concussion and underwent imaging related to TBI-associated symptoms, 54 who had been recruited through local sporting groups campuses, and 35 recruited through a medical research foundation. Blood or saliva samples were used to perform whole exome sequencing.
The researchers looked for gene candidates within different tiers. Tier 1 included genes that had already been implicated in severe migraine. The second tier included 353 ion channel and iron transporter genes. Tier 3 comprised neurotransmission-related genes.
After sequencing, the researchers filtered genetic mutations to include only those that affected amino acid composition of the protein, were predicted by two or more in silico analysis tools to be damaging, and were identified in multiple, unrelated patients.
In tier 2, the greatest number of potential damaging variants were found in the SCN9A gene, which is involved in pain perception and processing. There were six variants found in eight cases. Of these eight individuals, three had suffered severe reactions to relatively minor head trauma.
In tier 3, the researchers identified mutations in eight neurotransmitter-related genes.
Through comparison with a general population control group, the researchers identified 43 different rare, amino acid–changing variants that occurred within 16 ion channel and ion channel transporter genes. These mutations were found in 53 individuals, at an approximately fivefold higher frequency than the control group (odds ratio, 5.6; P < .0001).
“We identified a number of rare genetic variants implicated in migraine — ion channel and other neurologically associated genes — in those suffering from post-traumatic headache,” said Dr. Griffiths. She also noted that the whole genomes they collected will allow for further analysis of other gene candidates in the future.
During the Q&A period, Dr. Griffiths was asked if the research group tracked the severity of the TBIs suffered by participants. She responded that they had not, and this was a limitation of the study.
Another questioner asked if parents should consider genetic testing for susceptibility mutations when considering whether to allow a child to participate in sports or activities with elevated risk of TBI. “I don’t necessarily think this is a bad thing,” she said, though she conceded that the work is still immature. “It’s probably a bit early because we haven’t identified all the genes that are involved or all the specific mutations ... but I think down the track, that makes perfect sense. Why would you not do some sensible preventive screening to aid with things like maybe you wear more headgear or you consider what’s the appropriate sport for that person?”
Laine Green, MD, assistant professor of neurology at Mayo Clinic Arizona, Phoenix, who moderated the session, was asked for comment. “I think the idea of potentially identifying people that have more genetic susceptibility to injuries is very intriguing, because post-traumatic headache and symptoms is always a difficult area to treat, potentially identifying those that with more genetic susceptibility might be helpful. It may also potentially allow us to target specific treatments, especially in this case, looking at different ion channels. There are medications that may work better at ion channel targets than other targets,” said Dr. Green.
He also endorsed the potential value of screening. “Speaking as a parent, I might like to know my child is at higher risk if they’re going to participate in contact sports or other high risk activities,” he said.
Dr. Griffiths and Dr. Green have no relevant financial disclosures.
SAN DIEGO — , according to results from a preliminary study.
Post-traumatic headache is a common symptom of traumatic brain injury (TBI).
There is evidence that genetic mutations could play a role in both TBI development and response. In particular, the S213L mutation for familial hemiplegic migraine-1 (FHM1), found in the CACNA1A gene, can cause individuals carrying it to be highly sensitive to otherwise trivial head impacts, according to Lyn Griffiths, PhD.
The consequences can be post-traumatic headache, but also seizures, cerebral edema, coma, or worse. Another form of FHM is associated with mutations in ATP1A2.
“This stimulated our interest in looking at genes that relate to TBI with a particular focus on ion channel genes,” said Dr. Griffiths, during a presentation of the study at the annual meeting of the American Headache Society.
The researchers analyzed data from 117 participants who had at least one concussion with a post-traumatic headache, and recruited family members when possible. There were 15 participants who developed severe reactions to trivial head trauma, 13 who had been diagnosed with concussion and underwent imaging related to TBI-associated symptoms, 54 who had been recruited through local sporting groups campuses, and 35 recruited through a medical research foundation. Blood or saliva samples were used to perform whole exome sequencing.
The researchers looked for gene candidates within different tiers. Tier 1 included genes that had already been implicated in severe migraine. The second tier included 353 ion channel and iron transporter genes. Tier 3 comprised neurotransmission-related genes.
After sequencing, the researchers filtered genetic mutations to include only those that affected amino acid composition of the protein, were predicted by two or more in silico analysis tools to be damaging, and were identified in multiple, unrelated patients.
In tier 2, the greatest number of potential damaging variants were found in the SCN9A gene, which is involved in pain perception and processing. There were six variants found in eight cases. Of these eight individuals, three had suffered severe reactions to relatively minor head trauma.
In tier 3, the researchers identified mutations in eight neurotransmitter-related genes.
Through comparison with a general population control group, the researchers identified 43 different rare, amino acid–changing variants that occurred within 16 ion channel and ion channel transporter genes. These mutations were found in 53 individuals, at an approximately fivefold higher frequency than the control group (odds ratio, 5.6; P < .0001).
“We identified a number of rare genetic variants implicated in migraine — ion channel and other neurologically associated genes — in those suffering from post-traumatic headache,” said Dr. Griffiths. She also noted that the whole genomes they collected will allow for further analysis of other gene candidates in the future.
During the Q&A period, Dr. Griffiths was asked if the research group tracked the severity of the TBIs suffered by participants. She responded that they had not, and this was a limitation of the study.
Another questioner asked if parents should consider genetic testing for susceptibility mutations when considering whether to allow a child to participate in sports or activities with elevated risk of TBI. “I don’t necessarily think this is a bad thing,” she said, though she conceded that the work is still immature. “It’s probably a bit early because we haven’t identified all the genes that are involved or all the specific mutations ... but I think down the track, that makes perfect sense. Why would you not do some sensible preventive screening to aid with things like maybe you wear more headgear or you consider what’s the appropriate sport for that person?”
Laine Green, MD, assistant professor of neurology at Mayo Clinic Arizona, Phoenix, who moderated the session, was asked for comment. “I think the idea of potentially identifying people that have more genetic susceptibility to injuries is very intriguing, because post-traumatic headache and symptoms is always a difficult area to treat, potentially identifying those that with more genetic susceptibility might be helpful. It may also potentially allow us to target specific treatments, especially in this case, looking at different ion channels. There are medications that may work better at ion channel targets than other targets,” said Dr. Green.
He also endorsed the potential value of screening. “Speaking as a parent, I might like to know my child is at higher risk if they’re going to participate in contact sports or other high risk activities,” he said.
Dr. Griffiths and Dr. Green have no relevant financial disclosures.
SAN DIEGO — , according to results from a preliminary study.
Post-traumatic headache is a common symptom of traumatic brain injury (TBI).
There is evidence that genetic mutations could play a role in both TBI development and response. In particular, the S213L mutation for familial hemiplegic migraine-1 (FHM1), found in the CACNA1A gene, can cause individuals carrying it to be highly sensitive to otherwise trivial head impacts, according to Lyn Griffiths, PhD.
The consequences can be post-traumatic headache, but also seizures, cerebral edema, coma, or worse. Another form of FHM is associated with mutations in ATP1A2.
“This stimulated our interest in looking at genes that relate to TBI with a particular focus on ion channel genes,” said Dr. Griffiths, during a presentation of the study at the annual meeting of the American Headache Society.
The researchers analyzed data from 117 participants who had at least one concussion with a post-traumatic headache, and recruited family members when possible. There were 15 participants who developed severe reactions to trivial head trauma, 13 who had been diagnosed with concussion and underwent imaging related to TBI-associated symptoms, 54 who had been recruited through local sporting groups campuses, and 35 recruited through a medical research foundation. Blood or saliva samples were used to perform whole exome sequencing.
The researchers looked for gene candidates within different tiers. Tier 1 included genes that had already been implicated in severe migraine. The second tier included 353 ion channel and iron transporter genes. Tier 3 comprised neurotransmission-related genes.
After sequencing, the researchers filtered genetic mutations to include only those that affected amino acid composition of the protein, were predicted by two or more in silico analysis tools to be damaging, and were identified in multiple, unrelated patients.
In tier 2, the greatest number of potential damaging variants were found in the SCN9A gene, which is involved in pain perception and processing. There were six variants found in eight cases. Of these eight individuals, three had suffered severe reactions to relatively minor head trauma.
In tier 3, the researchers identified mutations in eight neurotransmitter-related genes.
Through comparison with a general population control group, the researchers identified 43 different rare, amino acid–changing variants that occurred within 16 ion channel and ion channel transporter genes. These mutations were found in 53 individuals, at an approximately fivefold higher frequency than the control group (odds ratio, 5.6; P < .0001).
“We identified a number of rare genetic variants implicated in migraine — ion channel and other neurologically associated genes — in those suffering from post-traumatic headache,” said Dr. Griffiths. She also noted that the whole genomes they collected will allow for further analysis of other gene candidates in the future.
During the Q&A period, Dr. Griffiths was asked if the research group tracked the severity of the TBIs suffered by participants. She responded that they had not, and this was a limitation of the study.
Another questioner asked if parents should consider genetic testing for susceptibility mutations when considering whether to allow a child to participate in sports or activities with elevated risk of TBI. “I don’t necessarily think this is a bad thing,” she said, though she conceded that the work is still immature. “It’s probably a bit early because we haven’t identified all the genes that are involved or all the specific mutations ... but I think down the track, that makes perfect sense. Why would you not do some sensible preventive screening to aid with things like maybe you wear more headgear or you consider what’s the appropriate sport for that person?”
Laine Green, MD, assistant professor of neurology at Mayo Clinic Arizona, Phoenix, who moderated the session, was asked for comment. “I think the idea of potentially identifying people that have more genetic susceptibility to injuries is very intriguing, because post-traumatic headache and symptoms is always a difficult area to treat, potentially identifying those that with more genetic susceptibility might be helpful. It may also potentially allow us to target specific treatments, especially in this case, looking at different ion channels. There are medications that may work better at ion channel targets than other targets,” said Dr. Green.
He also endorsed the potential value of screening. “Speaking as a parent, I might like to know my child is at higher risk if they’re going to participate in contact sports or other high risk activities,” he said.
Dr. Griffiths and Dr. Green have no relevant financial disclosures.
FROM AHS 2024
Surviving to Thriving: Enhancing Quality of Life in Breast Cancer
Advances in breast cancer detection and treatment over the past decades have led to an increase in the number of women diagnosed at earlier stages and successfully treated, ushering in a new era of survivorship.
According to the American Cancer Society, there are currently roughly four million breast cancer survivors in the United States, including those still receiving treatment. The mortality rates for women with breast cancer have been decreasing since 1989, with an overall decline of 42% through 2021.
As the population of breast cancer survivors continues to grow, developing and delivering comprehensive survivorship care is crucial, Thelma Brown told attendees at the American Society of Clinical Oncology (ASCO) 2024 annual meeting. Ms. Brown’s talk was part of an educational session focused on addressing issues among early breast cancer survivors, evolving practices in breast cancer surveillance, and mitigating recurrence risk.
The challenges following breast cancer diagnosis and treatment can be both visible and invisible, said Ms. Brown, a patient advocate and member of the Breast Cancer Working Group at the University of Alabama at Birmingham.
Up to 90% of early breast cancer survivors experience long-term effects from treatment, which often include fatigue, loss of mobility, chronic pain, peripheral neuropathy, lymphedema, and infertility.
Survivors face an elevated risk for depression, anxiety, and fear of recurrence. “Fear of recurrence is a big issue, and it’s almost universal,” she noted.
Cancer treatment is also costly, leading to financial toxicity for many patients, which also “affects adherence to treatment and overall family well-being,” Ms. Brown explained. Survivors may struggle to access financial assistance due to complex eligibility requirements and a lack of awareness about available resources.
There is a need for holistic and coordinated survivorship care that includes management of long-term effects and surveillance for recurrence to help breast cancer survivors to transition from merely surviving to thriving, said Ms. Brown.
Surveilling and Mitigating Recurrence
Surveillance in patients with breast cancer post treatment remains a debated area, particularly when it comes to detecting distant recurrences, David Cescon, MD, PhD, with Princess Margaret Cancer Center, University Health Network, Toronto, said in his talk.
While breast imaging standards are well established, systemic surveillance through imaging and laboratory tests for asymptomatic patients lacks consensus and uniform guidelines, he explained.
Several clinical trials conducted from the late 1980s to the early 2000s showed no survival benefit from intensive surveillance strategies, including imaging and laboratory tests, compared to routine clinical follow-up. Some studies even demonstrated a trend toward harm, given the number of false positives.
These studies formed the basis for guidelines that discourage surveillance among asymptomatic survivors. Currently, no major guideline organization — the National Comprehensive Cancer Network, ASCO, and the European Society for Medical Oncology — recommends routine (nonbreast) radiologic surveillance or laboratory tests for detecting asymptomatic distant breast cancer recurrence, Dr. Cescon said.
Yet, that may change in the coming years, he told attendees.
Ongoing prospective studies will hopefully generate high-quality evidence on the effectiveness of modern surveillance techniques, particularly detection of circulating tumor DNA (ctDNA) and its effect on survival and quality of life, said Dr. Cescon.
These liquid biopsy assays have shown promise in identifying minimal residual disease before radiographic recurrence, he explained. Retrospective studies suggest high prognostic value, with nearly all patients with detectable ctDNA post therapy experiencing recurrence.
He cautioned, however, that while sensitive ctDNA tests exist and have clinical validity in identifying minimal residual disease, “their clinical utility has not yet been demonstrated,” Dr. Cescon said, adding that any surveillance strategy must consider the psychological effect of frequent testing and the potential for false positives or negatives.
The ultimate goal is preventing disease recurrence, said Neil M. Iyengar, MD, with Memorial Sloan Kettering Cancer Center in New York, in his talk on mitigating recurrence risk.
Lifestyle modifications are an important targeted intervention for patients entering the survivorship phase, with a “robust level of evidence” supporting their use to mitigate adverse effects associated with cancer therapy and improve quality of life, he told attendees. Most notably, smoking cessation, healthy dietary patterns, physical activity, and reduced alcohol have been associated with improvements in breast cancer outcomes.
Going forward, it will be important to “understand the antitumor potential of lifestyle modification and how we can wield this type of intervention as a precision tool to potentially enhance the effects of cancer therapy and potentially cancer biology,” said Dr. Iyengar.
Ms. Brown disclosed relationships with AstraZeneca. Dr. Cescon disclosed relationships with AstraZeneca, Gilead Sciences, Daiichi Sankyo Europe GmbH, Eisai, GlaxoSmithKline, and other companies. Dr. Iyengar disclosed relationships with Curio Science, DAVA Oncology, Novartis, Pfizer, and others.
A version of this article first appeared on Medscape.com.
Advances in breast cancer detection and treatment over the past decades have led to an increase in the number of women diagnosed at earlier stages and successfully treated, ushering in a new era of survivorship.
According to the American Cancer Society, there are currently roughly four million breast cancer survivors in the United States, including those still receiving treatment. The mortality rates for women with breast cancer have been decreasing since 1989, with an overall decline of 42% through 2021.
As the population of breast cancer survivors continues to grow, developing and delivering comprehensive survivorship care is crucial, Thelma Brown told attendees at the American Society of Clinical Oncology (ASCO) 2024 annual meeting. Ms. Brown’s talk was part of an educational session focused on addressing issues among early breast cancer survivors, evolving practices in breast cancer surveillance, and mitigating recurrence risk.
The challenges following breast cancer diagnosis and treatment can be both visible and invisible, said Ms. Brown, a patient advocate and member of the Breast Cancer Working Group at the University of Alabama at Birmingham.
Up to 90% of early breast cancer survivors experience long-term effects from treatment, which often include fatigue, loss of mobility, chronic pain, peripheral neuropathy, lymphedema, and infertility.
Survivors face an elevated risk for depression, anxiety, and fear of recurrence. “Fear of recurrence is a big issue, and it’s almost universal,” she noted.
Cancer treatment is also costly, leading to financial toxicity for many patients, which also “affects adherence to treatment and overall family well-being,” Ms. Brown explained. Survivors may struggle to access financial assistance due to complex eligibility requirements and a lack of awareness about available resources.
There is a need for holistic and coordinated survivorship care that includes management of long-term effects and surveillance for recurrence to help breast cancer survivors to transition from merely surviving to thriving, said Ms. Brown.
Surveilling and Mitigating Recurrence
Surveillance in patients with breast cancer post treatment remains a debated area, particularly when it comes to detecting distant recurrences, David Cescon, MD, PhD, with Princess Margaret Cancer Center, University Health Network, Toronto, said in his talk.
While breast imaging standards are well established, systemic surveillance through imaging and laboratory tests for asymptomatic patients lacks consensus and uniform guidelines, he explained.
Several clinical trials conducted from the late 1980s to the early 2000s showed no survival benefit from intensive surveillance strategies, including imaging and laboratory tests, compared to routine clinical follow-up. Some studies even demonstrated a trend toward harm, given the number of false positives.
These studies formed the basis for guidelines that discourage surveillance among asymptomatic survivors. Currently, no major guideline organization — the National Comprehensive Cancer Network, ASCO, and the European Society for Medical Oncology — recommends routine (nonbreast) radiologic surveillance or laboratory tests for detecting asymptomatic distant breast cancer recurrence, Dr. Cescon said.
Yet, that may change in the coming years, he told attendees.
Ongoing prospective studies will hopefully generate high-quality evidence on the effectiveness of modern surveillance techniques, particularly detection of circulating tumor DNA (ctDNA) and its effect on survival and quality of life, said Dr. Cescon.
These liquid biopsy assays have shown promise in identifying minimal residual disease before radiographic recurrence, he explained. Retrospective studies suggest high prognostic value, with nearly all patients with detectable ctDNA post therapy experiencing recurrence.
He cautioned, however, that while sensitive ctDNA tests exist and have clinical validity in identifying minimal residual disease, “their clinical utility has not yet been demonstrated,” Dr. Cescon said, adding that any surveillance strategy must consider the psychological effect of frequent testing and the potential for false positives or negatives.
The ultimate goal is preventing disease recurrence, said Neil M. Iyengar, MD, with Memorial Sloan Kettering Cancer Center in New York, in his talk on mitigating recurrence risk.
Lifestyle modifications are an important targeted intervention for patients entering the survivorship phase, with a “robust level of evidence” supporting their use to mitigate adverse effects associated with cancer therapy and improve quality of life, he told attendees. Most notably, smoking cessation, healthy dietary patterns, physical activity, and reduced alcohol have been associated with improvements in breast cancer outcomes.
Going forward, it will be important to “understand the antitumor potential of lifestyle modification and how we can wield this type of intervention as a precision tool to potentially enhance the effects of cancer therapy and potentially cancer biology,” said Dr. Iyengar.
Ms. Brown disclosed relationships with AstraZeneca. Dr. Cescon disclosed relationships with AstraZeneca, Gilead Sciences, Daiichi Sankyo Europe GmbH, Eisai, GlaxoSmithKline, and other companies. Dr. Iyengar disclosed relationships with Curio Science, DAVA Oncology, Novartis, Pfizer, and others.
A version of this article first appeared on Medscape.com.
Advances in breast cancer detection and treatment over the past decades have led to an increase in the number of women diagnosed at earlier stages and successfully treated, ushering in a new era of survivorship.
According to the American Cancer Society, there are currently roughly four million breast cancer survivors in the United States, including those still receiving treatment. The mortality rates for women with breast cancer have been decreasing since 1989, with an overall decline of 42% through 2021.
As the population of breast cancer survivors continues to grow, developing and delivering comprehensive survivorship care is crucial, Thelma Brown told attendees at the American Society of Clinical Oncology (ASCO) 2024 annual meeting. Ms. Brown’s talk was part of an educational session focused on addressing issues among early breast cancer survivors, evolving practices in breast cancer surveillance, and mitigating recurrence risk.
The challenges following breast cancer diagnosis and treatment can be both visible and invisible, said Ms. Brown, a patient advocate and member of the Breast Cancer Working Group at the University of Alabama at Birmingham.
Up to 90% of early breast cancer survivors experience long-term effects from treatment, which often include fatigue, loss of mobility, chronic pain, peripheral neuropathy, lymphedema, and infertility.
Survivors face an elevated risk for depression, anxiety, and fear of recurrence. “Fear of recurrence is a big issue, and it’s almost universal,” she noted.
Cancer treatment is also costly, leading to financial toxicity for many patients, which also “affects adherence to treatment and overall family well-being,” Ms. Brown explained. Survivors may struggle to access financial assistance due to complex eligibility requirements and a lack of awareness about available resources.
There is a need for holistic and coordinated survivorship care that includes management of long-term effects and surveillance for recurrence to help breast cancer survivors to transition from merely surviving to thriving, said Ms. Brown.
Surveilling and Mitigating Recurrence
Surveillance in patients with breast cancer post treatment remains a debated area, particularly when it comes to detecting distant recurrences, David Cescon, MD, PhD, with Princess Margaret Cancer Center, University Health Network, Toronto, said in his talk.
While breast imaging standards are well established, systemic surveillance through imaging and laboratory tests for asymptomatic patients lacks consensus and uniform guidelines, he explained.
Several clinical trials conducted from the late 1980s to the early 2000s showed no survival benefit from intensive surveillance strategies, including imaging and laboratory tests, compared to routine clinical follow-up. Some studies even demonstrated a trend toward harm, given the number of false positives.
These studies formed the basis for guidelines that discourage surveillance among asymptomatic survivors. Currently, no major guideline organization — the National Comprehensive Cancer Network, ASCO, and the European Society for Medical Oncology — recommends routine (nonbreast) radiologic surveillance or laboratory tests for detecting asymptomatic distant breast cancer recurrence, Dr. Cescon said.
Yet, that may change in the coming years, he told attendees.
Ongoing prospective studies will hopefully generate high-quality evidence on the effectiveness of modern surveillance techniques, particularly detection of circulating tumor DNA (ctDNA) and its effect on survival and quality of life, said Dr. Cescon.
These liquid biopsy assays have shown promise in identifying minimal residual disease before radiographic recurrence, he explained. Retrospective studies suggest high prognostic value, with nearly all patients with detectable ctDNA post therapy experiencing recurrence.
He cautioned, however, that while sensitive ctDNA tests exist and have clinical validity in identifying minimal residual disease, “their clinical utility has not yet been demonstrated,” Dr. Cescon said, adding that any surveillance strategy must consider the psychological effect of frequent testing and the potential for false positives or negatives.
The ultimate goal is preventing disease recurrence, said Neil M. Iyengar, MD, with Memorial Sloan Kettering Cancer Center in New York, in his talk on mitigating recurrence risk.
Lifestyle modifications are an important targeted intervention for patients entering the survivorship phase, with a “robust level of evidence” supporting their use to mitigate adverse effects associated with cancer therapy and improve quality of life, he told attendees. Most notably, smoking cessation, healthy dietary patterns, physical activity, and reduced alcohol have been associated with improvements in breast cancer outcomes.
Going forward, it will be important to “understand the antitumor potential of lifestyle modification and how we can wield this type of intervention as a precision tool to potentially enhance the effects of cancer therapy and potentially cancer biology,” said Dr. Iyengar.
Ms. Brown disclosed relationships with AstraZeneca. Dr. Cescon disclosed relationships with AstraZeneca, Gilead Sciences, Daiichi Sankyo Europe GmbH, Eisai, GlaxoSmithKline, and other companies. Dr. Iyengar disclosed relationships with Curio Science, DAVA Oncology, Novartis, Pfizer, and others.
A version of this article first appeared on Medscape.com.
FROM ASCO 2024