LayerRx Mapping ID
970
Slot System
Featured Buckets
Featured Buckets Admin
Reverse Chronological Sort
Medscape Lead Concept
1166

AACR Cancer Progress Report: Big Strides and Big Gaps

Article Type
Changed
Thu, 09/26/2024 - 13:45

Despite the “remarkable progress” in cancer research and care, cancer remains “an ongoing public health challenge,” which requires significant attention and funding, according to the Cancer Progress Report 2024 from the American Association for Cancer Research (AACR).

The AACR’s 216-page report — an annual endeavor now in its 14th year — focused on the “tremendous” strides made in cancer care, prevention, and early detection and highlighted areas where more research and attention are warranted. 

One key area is funding. For the first time since 2016, federal funding for the National Institutes of Health (NIH) and National Cancer Institute (NCI) decreased in the past year. The cuts followed nearly a decade of funding increases that saw the NIH budget expand by nearly $15 billion, and that allowed for a “rapid pace and broad scope” of advances in cancer, AACR’s chief executive officer Margaret Foti, MD, PhD, said during a press briefing.

These recent cuts “threaten to curtail the medical progress seen in recent years and stymie future advancements,” said Dr. Foti, who called on Congress to commit to funding cancer research at significant and consistent levels to “maintain the momentum of progress against cancer.”
 

Inside the Report: Big Progress

Overall, advances in prevention, early detection, and treatment have helped catch more cancers earlier and save lives. 

According to the AACR report, the age-adjusted overall cancer death rate in the United States fell by 33% between 1991 and 2021, meaning about 4.1 million cancer deaths were averted. The overall cancer death rate for children and adolescents has declined by 24% in the past 2 decades. The 5-year relative survival rate for children diagnosed with cancer in the US has improved from 58% for those diagnosed in the mid-1970s to 85% for those diagnosed between 2013 and 2019.

The past fiscal year has seen many new approvals for cancer drugs, diagnostics, and screening tests. From July 1, 2023, to June 30, 2024, the Food and Drug Administration (FDA) approved 15 new anticancer therapeutics, as well as 15 new indications for previously approved agents, one new imaging agent, several artificial intelligence (AI) tools to improve early cancer detection and diagnosis, and two minimally invasive tests for assessing inherited cancer risk or early cancer detection, according to the report.

“Cancer diagnostics are becoming more sophisticated,” AACR president Patricia M. LoRusso, DO, PhD, said during the briefing. “New technologies, such as spatial transcriptomics, are helping us study tumors at a cellular level, and helping to unveil things that we did not initially even begin to understand or think of. AI-based approaches are beginning to transform cancer detection, diagnosis, clinical decision-making, and treatment response monitoring.” 

The report also highlights the significant progress in many childhood and adolescent/young adult cancers, Dr. LoRusso noted. These include FDA approvals for two new molecularly targeted therapeutics: tovorafenib for children with certain types of brain tumor and repotrectinib for children with a wide array of cancer types that have a specific genetic alteration known as NTRK gene fusion. It also includes an expanded approval for eflornithine to reduce the risk for relapse in children with high-risk neuroblastoma.

“Decades — decades — of basic research discoveries, have led to these clinical breakthroughs,” she stressed. “These gains against cancer are because of the rapid progress in our ability to decode the cancer genome, which has opened new and innovative avenues for drug development.”
 

 

 

The Gaps

Even with progress in cancer prevention, early detection, and treatment, cancer remains a significant issue.

“In 2024, it is estimated that more than 2 million new cases of cancer will be diagnosed in the United States. More than 611,000 people will die from the disease,” according to the report.

The 2024 report shows that incidence rates for some cancers are increasing in the United States, including vaccine-preventable cancers such as human papillomavirus (HPV)–associated oral cancers and, in young adults, cervical cancers. A recent analysis also found that overall cervical cancer incidence among women aged 30-34 years increased by 2.5% a year between 2012 and 2019.

Furthermore, despite clear evidence demonstrating that the HPV vaccine reduces cervical cancer incidence, uptake has remained poor, with only 38.6% of US children and adolescents aged 9-17 years receiving at least one dose of the vaccine in 2022.

Early-onset cancers are also increasing. Rates of breast, colorectal, and other cancers are on the rise in adults younger than 50 years, the report noted.

The report also pointed to data that 40% of all cancer cases in the United States can be attributed to preventable factors, such as smoking, excess body weight, and alcohol. However, our understanding of these risk factors has improved. Excessive levels of alcohol consumption have, for instance, been shown to increase the risk for six different types of cancer: certain types of head and neck cancer, esophageal squamous cell carcinoma, and breast, colorectal, liver, and stomach cancers.

Financial toxicity remains prevalent as well.

The report explains that financial hardship following a cancer diagnosis is widespread, and the effects can last for years. In fact, more than 40% of patients can spend their entire life savings within the first 2 years of cancer treatment. Among adult survivors of childhood cancers, 20.7% had trouble paying their medical bills, 29.9% said they had been sent to debt collection for unpaid bills, 14.1% had forgone medical care, and 26.8% could not afford nutritious meals.

For young cancer survivors, the lifetime costs associated with a diagnosis of cancer are substantial, reaching an average of $259,324 per person.

On a global level, it is estimated that from 2020 to 2050, the cumulative economic burden of cancer will be $25.2 trillion.
 

The Path Forward

Despite these challenges, Dr. LoRusso said, “it is unquestionable that we are in a time of unparalleled opportunities in cancer research.

“I am excited about what the future holds for cancer research, and especially for patient care,” she said. 

However, funding commitments are needed to avoid impeding this momentum and losing a “talented and creative young workforce” that has brought new ideas and new technologies to the table.

Continued robust funding will help “to markedly improve cancer care, increase cancer survivorship, spur economic growth, and maintain the United States’ position as the global leader in science and medical research,” she added.

The AACR report specifically calls on Congress to:

  • Appropriate at least $51.3 billion in fiscal year 2025 for the base budget of the NIH and at least $7.934 billion for the NCI.
  • Provide $3.6 billion in dedicated funding for Cancer Moonshot activities through fiscal year 2026 in addition to other funding, consistent with the President’s fiscal year 2025 budget.
  • Appropriate at least $472.4 million in fiscal year 2025 for the CDC’s Division of Cancer Prevention to support comprehensive cancer control, central cancer registries, and screening and awareness programs for specific cancers.
  • Allocate $55 million in funding for the Oncology Center of Excellence at FDA in fiscal year 2025 to provide regulators with the staff and tools necessary to conduct expedited review of cancer-related medical products.

By working together with Congress and other stakeholders, “we will be able to accelerate the pace of progress and make major strides toward the lifesaving goal of preventing and curing all cancers at the earliest possible time,” Dr. Foti said. “I believe if we do that ... one day we will win this war on cancer.”

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Despite the “remarkable progress” in cancer research and care, cancer remains “an ongoing public health challenge,” which requires significant attention and funding, according to the Cancer Progress Report 2024 from the American Association for Cancer Research (AACR).

The AACR’s 216-page report — an annual endeavor now in its 14th year — focused on the “tremendous” strides made in cancer care, prevention, and early detection and highlighted areas where more research and attention are warranted. 

One key area is funding. For the first time since 2016, federal funding for the National Institutes of Health (NIH) and National Cancer Institute (NCI) decreased in the past year. The cuts followed nearly a decade of funding increases that saw the NIH budget expand by nearly $15 billion, and that allowed for a “rapid pace and broad scope” of advances in cancer, AACR’s chief executive officer Margaret Foti, MD, PhD, said during a press briefing.

These recent cuts “threaten to curtail the medical progress seen in recent years and stymie future advancements,” said Dr. Foti, who called on Congress to commit to funding cancer research at significant and consistent levels to “maintain the momentum of progress against cancer.”
 

Inside the Report: Big Progress

Overall, advances in prevention, early detection, and treatment have helped catch more cancers earlier and save lives. 

According to the AACR report, the age-adjusted overall cancer death rate in the United States fell by 33% between 1991 and 2021, meaning about 4.1 million cancer deaths were averted. The overall cancer death rate for children and adolescents has declined by 24% in the past 2 decades. The 5-year relative survival rate for children diagnosed with cancer in the US has improved from 58% for those diagnosed in the mid-1970s to 85% for those diagnosed between 2013 and 2019.

The past fiscal year has seen many new approvals for cancer drugs, diagnostics, and screening tests. From July 1, 2023, to June 30, 2024, the Food and Drug Administration (FDA) approved 15 new anticancer therapeutics, as well as 15 new indications for previously approved agents, one new imaging agent, several artificial intelligence (AI) tools to improve early cancer detection and diagnosis, and two minimally invasive tests for assessing inherited cancer risk or early cancer detection, according to the report.

“Cancer diagnostics are becoming more sophisticated,” AACR president Patricia M. LoRusso, DO, PhD, said during the briefing. “New technologies, such as spatial transcriptomics, are helping us study tumors at a cellular level, and helping to unveil things that we did not initially even begin to understand or think of. AI-based approaches are beginning to transform cancer detection, diagnosis, clinical decision-making, and treatment response monitoring.” 

The report also highlights the significant progress in many childhood and adolescent/young adult cancers, Dr. LoRusso noted. These include FDA approvals for two new molecularly targeted therapeutics: tovorafenib for children with certain types of brain tumor and repotrectinib for children with a wide array of cancer types that have a specific genetic alteration known as NTRK gene fusion. It also includes an expanded approval for eflornithine to reduce the risk for relapse in children with high-risk neuroblastoma.

“Decades — decades — of basic research discoveries, have led to these clinical breakthroughs,” she stressed. “These gains against cancer are because of the rapid progress in our ability to decode the cancer genome, which has opened new and innovative avenues for drug development.”
 

 

 

The Gaps

Even with progress in cancer prevention, early detection, and treatment, cancer remains a significant issue.

“In 2024, it is estimated that more than 2 million new cases of cancer will be diagnosed in the United States. More than 611,000 people will die from the disease,” according to the report.

The 2024 report shows that incidence rates for some cancers are increasing in the United States, including vaccine-preventable cancers such as human papillomavirus (HPV)–associated oral cancers and, in young adults, cervical cancers. A recent analysis also found that overall cervical cancer incidence among women aged 30-34 years increased by 2.5% a year between 2012 and 2019.

Furthermore, despite clear evidence demonstrating that the HPV vaccine reduces cervical cancer incidence, uptake has remained poor, with only 38.6% of US children and adolescents aged 9-17 years receiving at least one dose of the vaccine in 2022.

Early-onset cancers are also increasing. Rates of breast, colorectal, and other cancers are on the rise in adults younger than 50 years, the report noted.

The report also pointed to data that 40% of all cancer cases in the United States can be attributed to preventable factors, such as smoking, excess body weight, and alcohol. However, our understanding of these risk factors has improved. Excessive levels of alcohol consumption have, for instance, been shown to increase the risk for six different types of cancer: certain types of head and neck cancer, esophageal squamous cell carcinoma, and breast, colorectal, liver, and stomach cancers.

Financial toxicity remains prevalent as well.

The report explains that financial hardship following a cancer diagnosis is widespread, and the effects can last for years. In fact, more than 40% of patients can spend their entire life savings within the first 2 years of cancer treatment. Among adult survivors of childhood cancers, 20.7% had trouble paying their medical bills, 29.9% said they had been sent to debt collection for unpaid bills, 14.1% had forgone medical care, and 26.8% could not afford nutritious meals.

For young cancer survivors, the lifetime costs associated with a diagnosis of cancer are substantial, reaching an average of $259,324 per person.

On a global level, it is estimated that from 2020 to 2050, the cumulative economic burden of cancer will be $25.2 trillion.
 

The Path Forward

Despite these challenges, Dr. LoRusso said, “it is unquestionable that we are in a time of unparalleled opportunities in cancer research.

“I am excited about what the future holds for cancer research, and especially for patient care,” she said. 

However, funding commitments are needed to avoid impeding this momentum and losing a “talented and creative young workforce” that has brought new ideas and new technologies to the table.

Continued robust funding will help “to markedly improve cancer care, increase cancer survivorship, spur economic growth, and maintain the United States’ position as the global leader in science and medical research,” she added.

The AACR report specifically calls on Congress to:

  • Appropriate at least $51.3 billion in fiscal year 2025 for the base budget of the NIH and at least $7.934 billion for the NCI.
  • Provide $3.6 billion in dedicated funding for Cancer Moonshot activities through fiscal year 2026 in addition to other funding, consistent with the President’s fiscal year 2025 budget.
  • Appropriate at least $472.4 million in fiscal year 2025 for the CDC’s Division of Cancer Prevention to support comprehensive cancer control, central cancer registries, and screening and awareness programs for specific cancers.
  • Allocate $55 million in funding for the Oncology Center of Excellence at FDA in fiscal year 2025 to provide regulators with the staff and tools necessary to conduct expedited review of cancer-related medical products.

By working together with Congress and other stakeholders, “we will be able to accelerate the pace of progress and make major strides toward the lifesaving goal of preventing and curing all cancers at the earliest possible time,” Dr. Foti said. “I believe if we do that ... one day we will win this war on cancer.”

A version of this article first appeared on Medscape.com.

Despite the “remarkable progress” in cancer research and care, cancer remains “an ongoing public health challenge,” which requires significant attention and funding, according to the Cancer Progress Report 2024 from the American Association for Cancer Research (AACR).

The AACR’s 216-page report — an annual endeavor now in its 14th year — focused on the “tremendous” strides made in cancer care, prevention, and early detection and highlighted areas where more research and attention are warranted. 

One key area is funding. For the first time since 2016, federal funding for the National Institutes of Health (NIH) and National Cancer Institute (NCI) decreased in the past year. The cuts followed nearly a decade of funding increases that saw the NIH budget expand by nearly $15 billion, and that allowed for a “rapid pace and broad scope” of advances in cancer, AACR’s chief executive officer Margaret Foti, MD, PhD, said during a press briefing.

These recent cuts “threaten to curtail the medical progress seen in recent years and stymie future advancements,” said Dr. Foti, who called on Congress to commit to funding cancer research at significant and consistent levels to “maintain the momentum of progress against cancer.”
 

Inside the Report: Big Progress

Overall, advances in prevention, early detection, and treatment have helped catch more cancers earlier and save lives. 

According to the AACR report, the age-adjusted overall cancer death rate in the United States fell by 33% between 1991 and 2021, meaning about 4.1 million cancer deaths were averted. The overall cancer death rate for children and adolescents has declined by 24% in the past 2 decades. The 5-year relative survival rate for children diagnosed with cancer in the US has improved from 58% for those diagnosed in the mid-1970s to 85% for those diagnosed between 2013 and 2019.

The past fiscal year has seen many new approvals for cancer drugs, diagnostics, and screening tests. From July 1, 2023, to June 30, 2024, the Food and Drug Administration (FDA) approved 15 new anticancer therapeutics, as well as 15 new indications for previously approved agents, one new imaging agent, several artificial intelligence (AI) tools to improve early cancer detection and diagnosis, and two minimally invasive tests for assessing inherited cancer risk or early cancer detection, according to the report.

“Cancer diagnostics are becoming more sophisticated,” AACR president Patricia M. LoRusso, DO, PhD, said during the briefing. “New technologies, such as spatial transcriptomics, are helping us study tumors at a cellular level, and helping to unveil things that we did not initially even begin to understand or think of. AI-based approaches are beginning to transform cancer detection, diagnosis, clinical decision-making, and treatment response monitoring.” 

The report also highlights the significant progress in many childhood and adolescent/young adult cancers, Dr. LoRusso noted. These include FDA approvals for two new molecularly targeted therapeutics: tovorafenib for children with certain types of brain tumor and repotrectinib for children with a wide array of cancer types that have a specific genetic alteration known as NTRK gene fusion. It also includes an expanded approval for eflornithine to reduce the risk for relapse in children with high-risk neuroblastoma.

“Decades — decades — of basic research discoveries, have led to these clinical breakthroughs,” she stressed. “These gains against cancer are because of the rapid progress in our ability to decode the cancer genome, which has opened new and innovative avenues for drug development.”
 

 

 

The Gaps

Even with progress in cancer prevention, early detection, and treatment, cancer remains a significant issue.

“In 2024, it is estimated that more than 2 million new cases of cancer will be diagnosed in the United States. More than 611,000 people will die from the disease,” according to the report.

The 2024 report shows that incidence rates for some cancers are increasing in the United States, including vaccine-preventable cancers such as human papillomavirus (HPV)–associated oral cancers and, in young adults, cervical cancers. A recent analysis also found that overall cervical cancer incidence among women aged 30-34 years increased by 2.5% a year between 2012 and 2019.

Furthermore, despite clear evidence demonstrating that the HPV vaccine reduces cervical cancer incidence, uptake has remained poor, with only 38.6% of US children and adolescents aged 9-17 years receiving at least one dose of the vaccine in 2022.

Early-onset cancers are also increasing. Rates of breast, colorectal, and other cancers are on the rise in adults younger than 50 years, the report noted.

The report also pointed to data that 40% of all cancer cases in the United States can be attributed to preventable factors, such as smoking, excess body weight, and alcohol. However, our understanding of these risk factors has improved. Excessive levels of alcohol consumption have, for instance, been shown to increase the risk for six different types of cancer: certain types of head and neck cancer, esophageal squamous cell carcinoma, and breast, colorectal, liver, and stomach cancers.

Financial toxicity remains prevalent as well.

The report explains that financial hardship following a cancer diagnosis is widespread, and the effects can last for years. In fact, more than 40% of patients can spend their entire life savings within the first 2 years of cancer treatment. Among adult survivors of childhood cancers, 20.7% had trouble paying their medical bills, 29.9% said they had been sent to debt collection for unpaid bills, 14.1% had forgone medical care, and 26.8% could not afford nutritious meals.

For young cancer survivors, the lifetime costs associated with a diagnosis of cancer are substantial, reaching an average of $259,324 per person.

On a global level, it is estimated that from 2020 to 2050, the cumulative economic burden of cancer will be $25.2 trillion.
 

The Path Forward

Despite these challenges, Dr. LoRusso said, “it is unquestionable that we are in a time of unparalleled opportunities in cancer research.

“I am excited about what the future holds for cancer research, and especially for patient care,” she said. 

However, funding commitments are needed to avoid impeding this momentum and losing a “talented and creative young workforce” that has brought new ideas and new technologies to the table.

Continued robust funding will help “to markedly improve cancer care, increase cancer survivorship, spur economic growth, and maintain the United States’ position as the global leader in science and medical research,” she added.

The AACR report specifically calls on Congress to:

  • Appropriate at least $51.3 billion in fiscal year 2025 for the base budget of the NIH and at least $7.934 billion for the NCI.
  • Provide $3.6 billion in dedicated funding for Cancer Moonshot activities through fiscal year 2026 in addition to other funding, consistent with the President’s fiscal year 2025 budget.
  • Appropriate at least $472.4 million in fiscal year 2025 for the CDC’s Division of Cancer Prevention to support comprehensive cancer control, central cancer registries, and screening and awareness programs for specific cancers.
  • Allocate $55 million in funding for the Oncology Center of Excellence at FDA in fiscal year 2025 to provide regulators with the staff and tools necessary to conduct expedited review of cancer-related medical products.

By working together with Congress and other stakeholders, “we will be able to accelerate the pace of progress and make major strides toward the lifesaving goal of preventing and curing all cancers at the earliest possible time,” Dr. Foti said. “I believe if we do that ... one day we will win this war on cancer.”

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Isatuximab Approved First-Line for Transplant-Ineligible MM

Article Type
Changed
Mon, 09/23/2024 - 11:39

 

The US Food and Drug Administration (FDA) expanded the label of isatuximab-irfc (Sarclisa — Sanofi-Aventis) on September 20 to include treatment with bortezomib, lenalidomide, and dexamethasone for newly diagnosed multiple myeloma (MM) ineligible for autologous stem cell transplant.

The new first-line indication joins two previous approvals of the CD38 antibody for later-line indications, one for relapsed disease with carfilzomib and dexamethasone, the other with pomalidomide and dexamethasone after at least two prior regimens that include lenalidomide and a proteasome inhibitor.

In addition to other MM indications, isatuximab’s anti-CD38 competitor on the US market, daratumumab (Darzalex — Johnson & Johnson), also carries a first-line indication for transplant-ineligible MM in combination with either lenalidomide and dexamethasone or bortezomib, melphalan, and prednisone.

Isatuximab’s new approval is based on the open-label IMROZ trial in 446 patients randomized 3:2 to either isatuximab or placebo on a background of bortezomib, lenalidomide, and dexamethasone.

At a median follow-up of 59.7 months, estimated progression-free survival (PFS) was 63.2% with isatuximab add-on vs 45.2% in the placebo arm. Median PFS was not reached in the isatuximab group but 54.3 months with placebo (hazard ratio, 0.60; 98.5% CI, 0.41-0.88; P < .001). 

In a press release announcing the results, Sanofi said “IMROZ is the first global phase 3 study of an anti-CD38 monoclonal antibody” to show benefit in combination with bortezomib, lenalidomide, and dexamethasone, the current standard of care for transplant-ineligible MM.

Upper respiratory tract infections, diarrhea, fatigue, peripheral sensory neuropathy, pneumonia, musculoskeletal pain, cataract, constipation, peripheral edema, rash, infusion-related reaction, insomnia, and COVID-19 were the most common adverse events in the isatuximab arm of IMROZ, occurring in 20% or more of subjects.

Eleven percent of isatuximab patients died during treatment vs 5.5% in the placebo group, driven primarily by infections.

The recommended dose of isatuximab is 10 mg/kg every week for 4 weeks followed by every 2 weeks until disease progression or unacceptable toxicity.

The cost is approximately $843 for 5 mL of the 20 mg/mL intravenous solution, according to Drugs.com.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

The US Food and Drug Administration (FDA) expanded the label of isatuximab-irfc (Sarclisa — Sanofi-Aventis) on September 20 to include treatment with bortezomib, lenalidomide, and dexamethasone for newly diagnosed multiple myeloma (MM) ineligible for autologous stem cell transplant.

The new first-line indication joins two previous approvals of the CD38 antibody for later-line indications, one for relapsed disease with carfilzomib and dexamethasone, the other with pomalidomide and dexamethasone after at least two prior regimens that include lenalidomide and a proteasome inhibitor.

In addition to other MM indications, isatuximab’s anti-CD38 competitor on the US market, daratumumab (Darzalex — Johnson & Johnson), also carries a first-line indication for transplant-ineligible MM in combination with either lenalidomide and dexamethasone or bortezomib, melphalan, and prednisone.

Isatuximab’s new approval is based on the open-label IMROZ trial in 446 patients randomized 3:2 to either isatuximab or placebo on a background of bortezomib, lenalidomide, and dexamethasone.

At a median follow-up of 59.7 months, estimated progression-free survival (PFS) was 63.2% with isatuximab add-on vs 45.2% in the placebo arm. Median PFS was not reached in the isatuximab group but 54.3 months with placebo (hazard ratio, 0.60; 98.5% CI, 0.41-0.88; P < .001). 

In a press release announcing the results, Sanofi said “IMROZ is the first global phase 3 study of an anti-CD38 monoclonal antibody” to show benefit in combination with bortezomib, lenalidomide, and dexamethasone, the current standard of care for transplant-ineligible MM.

Upper respiratory tract infections, diarrhea, fatigue, peripheral sensory neuropathy, pneumonia, musculoskeletal pain, cataract, constipation, peripheral edema, rash, infusion-related reaction, insomnia, and COVID-19 were the most common adverse events in the isatuximab arm of IMROZ, occurring in 20% or more of subjects.

Eleven percent of isatuximab patients died during treatment vs 5.5% in the placebo group, driven primarily by infections.

The recommended dose of isatuximab is 10 mg/kg every week for 4 weeks followed by every 2 weeks until disease progression or unacceptable toxicity.

The cost is approximately $843 for 5 mL of the 20 mg/mL intravenous solution, according to Drugs.com.
 

A version of this article appeared on Medscape.com.

 

The US Food and Drug Administration (FDA) expanded the label of isatuximab-irfc (Sarclisa — Sanofi-Aventis) on September 20 to include treatment with bortezomib, lenalidomide, and dexamethasone for newly diagnosed multiple myeloma (MM) ineligible for autologous stem cell transplant.

The new first-line indication joins two previous approvals of the CD38 antibody for later-line indications, one for relapsed disease with carfilzomib and dexamethasone, the other with pomalidomide and dexamethasone after at least two prior regimens that include lenalidomide and a proteasome inhibitor.

In addition to other MM indications, isatuximab’s anti-CD38 competitor on the US market, daratumumab (Darzalex — Johnson & Johnson), also carries a first-line indication for transplant-ineligible MM in combination with either lenalidomide and dexamethasone or bortezomib, melphalan, and prednisone.

Isatuximab’s new approval is based on the open-label IMROZ trial in 446 patients randomized 3:2 to either isatuximab or placebo on a background of bortezomib, lenalidomide, and dexamethasone.

At a median follow-up of 59.7 months, estimated progression-free survival (PFS) was 63.2% with isatuximab add-on vs 45.2% in the placebo arm. Median PFS was not reached in the isatuximab group but 54.3 months with placebo (hazard ratio, 0.60; 98.5% CI, 0.41-0.88; P < .001). 

In a press release announcing the results, Sanofi said “IMROZ is the first global phase 3 study of an anti-CD38 monoclonal antibody” to show benefit in combination with bortezomib, lenalidomide, and dexamethasone, the current standard of care for transplant-ineligible MM.

Upper respiratory tract infections, diarrhea, fatigue, peripheral sensory neuropathy, pneumonia, musculoskeletal pain, cataract, constipation, peripheral edema, rash, infusion-related reaction, insomnia, and COVID-19 were the most common adverse events in the isatuximab arm of IMROZ, occurring in 20% or more of subjects.

Eleven percent of isatuximab patients died during treatment vs 5.5% in the placebo group, driven primarily by infections.

The recommended dose of isatuximab is 10 mg/kg every week for 4 weeks followed by every 2 weeks until disease progression or unacceptable toxicity.

The cost is approximately $843 for 5 mL of the 20 mg/mL intravenous solution, according to Drugs.com.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Cancer Risk: Are Pesticides the New Smoking?

Article Type
Changed
Tue, 10/08/2024 - 09:19

Pesticides have transformed modern agriculture by boosting production yields and helping alleviate food insecurity amid rapid global population growth. However, from a public health perspective, exposure to pesticides has been linked to numerous harmful effects, including neurologic disorders like Parkinson’s disease, weakened immune function, and an increased risk for cancer.

Pesticide exposure has been associated with cancers such as colorectal cancer, lung cancer, leukemia (in children and adults), lymphoma, and pancreatic cancer. But these studies primarily have focused on specific groups of individuals with known exposure to certain pesticides or cancer types, thus offering a limited perspective.

A comprehensive assessment of how pesticide use affects cancer risk across a broader population has yet to be conducted.

A recent population-level study aimed to address this gap by evaluating cancer risks in the US population using a model that accounts for pesticide use and adjusts for various factors. The goal was to identify regional disparities in exposure and contribute to the development of public health policies that protect populations from potential harm.
 

Calculating Cancer Risk

Researchers developed a model using several data sources to estimate the additional cancer risk from agricultural pesticide use. Key data included:

  • Pesticide use data from the US Geological Survey in 2019, which covered 69 agricultural pesticides across 3143 counties
  • Cancer incidence rates per 100,000 people, which were collected between 2015 and 2019 by the National Institutes of Health and the Centers for Disease Control and Prevention; these data covered various cancers, including bladder, colorectal, leukemia, lung, non-Hodgkin lymphoma, and pancreatic cancers
  • Covariates, including smoking prevalence, the Social Vulnerability Index, agricultural land use, and total US population in 2019

Pesticide use profile patterns were developed using latent class analysis, a statistical method used to identify homogeneous subgroups within a heterogeneous population. A generalized linear model then estimated how these pesticide use patterns and the covariates affected cancer incidence.

The model highlighted regions with the highest and lowest “additional” cancer risks linked to pesticide exposure, calculating the estimated increase in cancer cases per year that resulted from variations in agricultural pesticide use.
 

Midwest Most Affected

While this model doesn’t establish causality or assess individual risk, it reveals regional trends in the association between pesticide use patterns and cancer incidence from a population-based perspective.

The Midwest, known for its high corn production, emerged as the region most affected by pesticide use. Compared with regions with the lowest risk, the Midwest faced an additional 154,541 cancer cases annually across all types. For colorectal and pancreatic cancers, the yearly increases were 20,927 and 3835 cases, respectively. Similar trends were observed for leukemia and non-Hodgkin lymphoma.
 

Pesticides vs Smoking

The researchers also estimated the additional cancer risk related to smoking, using the same model. They found that pesticides contributed to a higher risk for cancer than smoking in several cases.

The most significant difference was observed with non-Hodgkin lymphoma, where pesticides were linked to 154.1% more cases than smoking. For all cancers combined, as well as bladder cancer and leukemia, the increases were moderate: 18.7%, 19.3%, and 21.0%, respectively.

This result highlights the importance of considering pesticide exposure alongside smoking when studying cancer risks.
 

 

 

Expanding Scope of Research

Some limitations of this study should be noted. Certain counties lacked complete data, and there was heterogeneity in the size and population of the counties studied. The research also did not account for seasonal and migrant workers, who are likely to be heavily exposed. In addition, the data used in the study were not independently validated, and they could not be used to assess individual risk.

The effect of pesticides on human health is a vast and critical field of research, often focusing on a limited range of pesticides or specific cancers. This study stands out by taking a broader, more holistic approach, aiming to highlight regional inequalities and identify less-studied pesticides that could be future research priorities.

Given the significant public health impact, the authors encouraged the authorities to share these findings with the most vulnerable communities to raise awareness.
 

This story was translated from JIM using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Pesticides have transformed modern agriculture by boosting production yields and helping alleviate food insecurity amid rapid global population growth. However, from a public health perspective, exposure to pesticides has been linked to numerous harmful effects, including neurologic disorders like Parkinson’s disease, weakened immune function, and an increased risk for cancer.

Pesticide exposure has been associated with cancers such as colorectal cancer, lung cancer, leukemia (in children and adults), lymphoma, and pancreatic cancer. But these studies primarily have focused on specific groups of individuals with known exposure to certain pesticides or cancer types, thus offering a limited perspective.

A comprehensive assessment of how pesticide use affects cancer risk across a broader population has yet to be conducted.

A recent population-level study aimed to address this gap by evaluating cancer risks in the US population using a model that accounts for pesticide use and adjusts for various factors. The goal was to identify regional disparities in exposure and contribute to the development of public health policies that protect populations from potential harm.
 

Calculating Cancer Risk

Researchers developed a model using several data sources to estimate the additional cancer risk from agricultural pesticide use. Key data included:

  • Pesticide use data from the US Geological Survey in 2019, which covered 69 agricultural pesticides across 3143 counties
  • Cancer incidence rates per 100,000 people, which were collected between 2015 and 2019 by the National Institutes of Health and the Centers for Disease Control and Prevention; these data covered various cancers, including bladder, colorectal, leukemia, lung, non-Hodgkin lymphoma, and pancreatic cancers
  • Covariates, including smoking prevalence, the Social Vulnerability Index, agricultural land use, and total US population in 2019

Pesticide use profile patterns were developed using latent class analysis, a statistical method used to identify homogeneous subgroups within a heterogeneous population. A generalized linear model then estimated how these pesticide use patterns and the covariates affected cancer incidence.

The model highlighted regions with the highest and lowest “additional” cancer risks linked to pesticide exposure, calculating the estimated increase in cancer cases per year that resulted from variations in agricultural pesticide use.
 

Midwest Most Affected

While this model doesn’t establish causality or assess individual risk, it reveals regional trends in the association between pesticide use patterns and cancer incidence from a population-based perspective.

The Midwest, known for its high corn production, emerged as the region most affected by pesticide use. Compared with regions with the lowest risk, the Midwest faced an additional 154,541 cancer cases annually across all types. For colorectal and pancreatic cancers, the yearly increases were 20,927 and 3835 cases, respectively. Similar trends were observed for leukemia and non-Hodgkin lymphoma.
 

Pesticides vs Smoking

The researchers also estimated the additional cancer risk related to smoking, using the same model. They found that pesticides contributed to a higher risk for cancer than smoking in several cases.

The most significant difference was observed with non-Hodgkin lymphoma, where pesticides were linked to 154.1% more cases than smoking. For all cancers combined, as well as bladder cancer and leukemia, the increases were moderate: 18.7%, 19.3%, and 21.0%, respectively.

This result highlights the importance of considering pesticide exposure alongside smoking when studying cancer risks.
 

 

 

Expanding Scope of Research

Some limitations of this study should be noted. Certain counties lacked complete data, and there was heterogeneity in the size and population of the counties studied. The research also did not account for seasonal and migrant workers, who are likely to be heavily exposed. In addition, the data used in the study were not independently validated, and they could not be used to assess individual risk.

The effect of pesticides on human health is a vast and critical field of research, often focusing on a limited range of pesticides or specific cancers. This study stands out by taking a broader, more holistic approach, aiming to highlight regional inequalities and identify less-studied pesticides that could be future research priorities.

Given the significant public health impact, the authors encouraged the authorities to share these findings with the most vulnerable communities to raise awareness.
 

This story was translated from JIM using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Pesticides have transformed modern agriculture by boosting production yields and helping alleviate food insecurity amid rapid global population growth. However, from a public health perspective, exposure to pesticides has been linked to numerous harmful effects, including neurologic disorders like Parkinson’s disease, weakened immune function, and an increased risk for cancer.

Pesticide exposure has been associated with cancers such as colorectal cancer, lung cancer, leukemia (in children and adults), lymphoma, and pancreatic cancer. But these studies primarily have focused on specific groups of individuals with known exposure to certain pesticides or cancer types, thus offering a limited perspective.

A comprehensive assessment of how pesticide use affects cancer risk across a broader population has yet to be conducted.

A recent population-level study aimed to address this gap by evaluating cancer risks in the US population using a model that accounts for pesticide use and adjusts for various factors. The goal was to identify regional disparities in exposure and contribute to the development of public health policies that protect populations from potential harm.
 

Calculating Cancer Risk

Researchers developed a model using several data sources to estimate the additional cancer risk from agricultural pesticide use. Key data included:

  • Pesticide use data from the US Geological Survey in 2019, which covered 69 agricultural pesticides across 3143 counties
  • Cancer incidence rates per 100,000 people, which were collected between 2015 and 2019 by the National Institutes of Health and the Centers for Disease Control and Prevention; these data covered various cancers, including bladder, colorectal, leukemia, lung, non-Hodgkin lymphoma, and pancreatic cancers
  • Covariates, including smoking prevalence, the Social Vulnerability Index, agricultural land use, and total US population in 2019

Pesticide use profile patterns were developed using latent class analysis, a statistical method used to identify homogeneous subgroups within a heterogeneous population. A generalized linear model then estimated how these pesticide use patterns and the covariates affected cancer incidence.

The model highlighted regions with the highest and lowest “additional” cancer risks linked to pesticide exposure, calculating the estimated increase in cancer cases per year that resulted from variations in agricultural pesticide use.
 

Midwest Most Affected

While this model doesn’t establish causality or assess individual risk, it reveals regional trends in the association between pesticide use patterns and cancer incidence from a population-based perspective.

The Midwest, known for its high corn production, emerged as the region most affected by pesticide use. Compared with regions with the lowest risk, the Midwest faced an additional 154,541 cancer cases annually across all types. For colorectal and pancreatic cancers, the yearly increases were 20,927 and 3835 cases, respectively. Similar trends were observed for leukemia and non-Hodgkin lymphoma.
 

Pesticides vs Smoking

The researchers also estimated the additional cancer risk related to smoking, using the same model. They found that pesticides contributed to a higher risk for cancer than smoking in several cases.

The most significant difference was observed with non-Hodgkin lymphoma, where pesticides were linked to 154.1% more cases than smoking. For all cancers combined, as well as bladder cancer and leukemia, the increases were moderate: 18.7%, 19.3%, and 21.0%, respectively.

This result highlights the importance of considering pesticide exposure alongside smoking when studying cancer risks.
 

 

 

Expanding Scope of Research

Some limitations of this study should be noted. Certain counties lacked complete data, and there was heterogeneity in the size and population of the counties studied. The research also did not account for seasonal and migrant workers, who are likely to be heavily exposed. In addition, the data used in the study were not independently validated, and they could not be used to assess individual risk.

The effect of pesticides on human health is a vast and critical field of research, often focusing on a limited range of pesticides or specific cancers. This study stands out by taking a broader, more holistic approach, aiming to highlight regional inequalities and identify less-studied pesticides that could be future research priorities.

Given the significant public health impact, the authors encouraged the authorities to share these findings with the most vulnerable communities to raise awareness.
 

This story was translated from JIM using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Debate: Should CAR T Best Be Used in Early MM Relapse?

Article Type
Changed
Thu, 09/12/2024 - 15:40

 

Chimeric antigen receptor (CAR) T-cell therapy has emerged as a game changer for the treatment of multiple myeloma (MM), but questions remain as to how — and when — the immunotherapy will best be used for patients who experience disease relapse.

Will CAR T be best used in early relapse? Experts debated this question at the annual meeting of the Society of Hematologic Oncology. Based on attendees’ votes, at least one side of the debate emerged victorious.

Krina Patel, MD, an associate professor at the University of Texas MD Anderson Cancer Center, Houston, came out swinging with earnest support for using CAR T in early relapse. Saad Z. Usmani, of Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York City, and Cornell University, Ithaca, New York, argued in favor of being “a little more circumspect.”
 

Dr. Patel: Yes, Earlier Is Better

A pre-debate audience poll leaned Dr. Patel’s way, with about 59% of 73 votes favoring CAR T in early relapse, 33% favoring reserving CAR T for patients who relapse after three or more lines of therapy, and 8% undecided.

“CAR T is not just a drug — it’s an actual therapy that takes a lot of logistics, as well as bridging therapy and all these other things to take into account,” said Dr. Patel. “And again, when I can go earlier, I have control over some of this.”

Furthermore, randomized phase 3 data from the KarMMA-3 study and the CARTITUDE-4 study showed that multiple standard therapies were not as good as CAR T in the early relapse setting, she said, pointing to the respective hazard ratios for disease progression or death with CAR T vs standard therapies of 0.49 and 0.26.

CARTITUDE-4 also suggested that manufacturing failures are more likely in later relapse — when time is already of greater essence, she said, noting that it can take an additional 3 months when restarting the process.

When it comes to toxicity, yes, it is a concern, she said.

“But we know how to decrease toxicity,” she stressed. “And again, with our second- and third-line approaches, we actually have better therapies to give for bridging.”

Quality of life is another important consideration, Dr. Patel said, noting only CAR T offers a “one-and-done” therapy that helps patients “truly feel better.”

“They’re not having to come into hospitals as often, and this is not just for months; it’s for years,” she said. “To be able to give that to somebody is huge, and again, we have objective data that show that compared to our standard of care therapies, patients do better in almost every realm of quality of life metrics.”

Dr. Patel also pointed to recent data from a retrospective study showing that for bridging therapy, less is more when disease is controlled, and in the early-line setting, more and safer options are available for reducing tumor burden.

Early CAR T is better for older or frail patients as well, she argued, noting that these patients don’t have time to wait, and a new study demonstrates that they tend to do well with CAR T in the early relapse setting.

The choice for early CAR T is clear in patients with high-risk disease, but Dr. Patel stressed that it shouldn’t be reserved for those patients, asking, “When has anything worked well for patients with high-risk disease and not [also] better for standard-risk patients?”

“And why give only 20%-25% of your patients [who actually reach fifth-line treatment] access to something that we know has really revolutionized myeloma therapy?” she said.

Many patients don’t have access, and that’s an issue, she acknowledged, adding: “But for those who do, we really should be giving it to them as soon as possible.”
 

Dr. Usmani: Reserve CAR T for Later Relapse

Not so fast, said Dr. Usmani. “All of these therapies are doing wonders for our patients, and we believe in them, but we have to be a little circumspect in looking at this data more closely and not just with emotions,” he added, noting that many options exist for patients in a first or second relapse, and new options are emerging.

There is also a “harsh reality” in terms of CAR T availability, he noted, explaining that, in 2021, about 180,000 people were living with MM, and about two thirds of those had relapsed disease. Meanwhile, fewer than 1000 CAR T products have been delivered each year for patients with relapsed MM since they were approved in this setting in the United States.

“So, it’s a pipe dream, seriously, that we will be able to utilize CAR T for all patients in early relapsed disease,” he said, adding that capacity will remain an issue because of limited resources.

The existing data, including from KarMMa-3 and CARTITUDE-4, show little potential for long-term benefit with early vs later CAR T.

“There is no plateau,” he said of the survival curves in KarMMa-3, underscoring the lack of a difference in overall survival benefit based on CAR T timing.

The CARTITUDE-4 curves “look great,” and it may be that a “small plateau emerges,” but they don’t demonstrate a benefit of earlier vs later CAR T, he said.

As Dr. Patel noted, there are few treatment options for patients with anti-CD38 monoclonal antibody and immunomodulatory drug resistance at first relapse. However, that situation will soon change, Dr. Usmani stated.

“Guess what? Belamaf is coming to the rescue!” he said of the off-the-shelf and more accessible B-cell maturation antigen-targeted antibody-drug conjugate belantamab mafodotin, which has recently been evaluated in the DREAMM 7 and DREAMM 8 trials.

DREAMM 7 demonstrated improved survival vs daratumumab, bortezomib, and dexamethasone in the relapsed/refractory MM setting when used in combination with bortezomib and dexamethasone. DREAMM 8 shows similar benefit with belantamab mafodotin, pomalidomide, and dexamethasone vs pomalidomide, bortezomib, and dexamethasone in lenalidomide-exposed patients with relapsed or refractory MM.

“Belamaf combinations in the one to three lines [of prior therapy] setting look really good,” he said, noting a particular benefit for progression-free survival and a trend toward improved overall survival.

Considering these factors, as well as the risk for cytopenias and the subsequent risk for infection in most patients who undergo CAR T-cell therapy and the known potential risk for secondary malignancies, Dr. Usmani said that he will remain “in the camp of being really careful in selecting CAR T patients for early relapse” until more is known about the risks.

“CAR T for all is not the answer. I think we have to be careful in picking CAR T patients; it’s not a zero-sum game here,” he said, stressing that “there are too many unknowns with the use of early CAR T therapy.”

“It makes sense in some, but not for everyone,” he said, emphasizing the importance of including patients in the discussion.

“The great thing is we have all these options for our patients,” he said.

Dr. Usmani persuaded at least a few colleagues: The final vote showed 42% of 124 voters supported early CAR T, compared with 52% who supported CAR T after three or more lines of therapy and 6% who remained undecided.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

Chimeric antigen receptor (CAR) T-cell therapy has emerged as a game changer for the treatment of multiple myeloma (MM), but questions remain as to how — and when — the immunotherapy will best be used for patients who experience disease relapse.

Will CAR T be best used in early relapse? Experts debated this question at the annual meeting of the Society of Hematologic Oncology. Based on attendees’ votes, at least one side of the debate emerged victorious.

Krina Patel, MD, an associate professor at the University of Texas MD Anderson Cancer Center, Houston, came out swinging with earnest support for using CAR T in early relapse. Saad Z. Usmani, of Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York City, and Cornell University, Ithaca, New York, argued in favor of being “a little more circumspect.”
 

Dr. Patel: Yes, Earlier Is Better

A pre-debate audience poll leaned Dr. Patel’s way, with about 59% of 73 votes favoring CAR T in early relapse, 33% favoring reserving CAR T for patients who relapse after three or more lines of therapy, and 8% undecided.

“CAR T is not just a drug — it’s an actual therapy that takes a lot of logistics, as well as bridging therapy and all these other things to take into account,” said Dr. Patel. “And again, when I can go earlier, I have control over some of this.”

Furthermore, randomized phase 3 data from the KarMMA-3 study and the CARTITUDE-4 study showed that multiple standard therapies were not as good as CAR T in the early relapse setting, she said, pointing to the respective hazard ratios for disease progression or death with CAR T vs standard therapies of 0.49 and 0.26.

CARTITUDE-4 also suggested that manufacturing failures are more likely in later relapse — when time is already of greater essence, she said, noting that it can take an additional 3 months when restarting the process.

When it comes to toxicity, yes, it is a concern, she said.

“But we know how to decrease toxicity,” she stressed. “And again, with our second- and third-line approaches, we actually have better therapies to give for bridging.”

Quality of life is another important consideration, Dr. Patel said, noting only CAR T offers a “one-and-done” therapy that helps patients “truly feel better.”

“They’re not having to come into hospitals as often, and this is not just for months; it’s for years,” she said. “To be able to give that to somebody is huge, and again, we have objective data that show that compared to our standard of care therapies, patients do better in almost every realm of quality of life metrics.”

Dr. Patel also pointed to recent data from a retrospective study showing that for bridging therapy, less is more when disease is controlled, and in the early-line setting, more and safer options are available for reducing tumor burden.

Early CAR T is better for older or frail patients as well, she argued, noting that these patients don’t have time to wait, and a new study demonstrates that they tend to do well with CAR T in the early relapse setting.

The choice for early CAR T is clear in patients with high-risk disease, but Dr. Patel stressed that it shouldn’t be reserved for those patients, asking, “When has anything worked well for patients with high-risk disease and not [also] better for standard-risk patients?”

“And why give only 20%-25% of your patients [who actually reach fifth-line treatment] access to something that we know has really revolutionized myeloma therapy?” she said.

Many patients don’t have access, and that’s an issue, she acknowledged, adding: “But for those who do, we really should be giving it to them as soon as possible.”
 

Dr. Usmani: Reserve CAR T for Later Relapse

Not so fast, said Dr. Usmani. “All of these therapies are doing wonders for our patients, and we believe in them, but we have to be a little circumspect in looking at this data more closely and not just with emotions,” he added, noting that many options exist for patients in a first or second relapse, and new options are emerging.

There is also a “harsh reality” in terms of CAR T availability, he noted, explaining that, in 2021, about 180,000 people were living with MM, and about two thirds of those had relapsed disease. Meanwhile, fewer than 1000 CAR T products have been delivered each year for patients with relapsed MM since they were approved in this setting in the United States.

“So, it’s a pipe dream, seriously, that we will be able to utilize CAR T for all patients in early relapsed disease,” he said, adding that capacity will remain an issue because of limited resources.

The existing data, including from KarMMa-3 and CARTITUDE-4, show little potential for long-term benefit with early vs later CAR T.

“There is no plateau,” he said of the survival curves in KarMMa-3, underscoring the lack of a difference in overall survival benefit based on CAR T timing.

The CARTITUDE-4 curves “look great,” and it may be that a “small plateau emerges,” but they don’t demonstrate a benefit of earlier vs later CAR T, he said.

As Dr. Patel noted, there are few treatment options for patients with anti-CD38 monoclonal antibody and immunomodulatory drug resistance at first relapse. However, that situation will soon change, Dr. Usmani stated.

“Guess what? Belamaf is coming to the rescue!” he said of the off-the-shelf and more accessible B-cell maturation antigen-targeted antibody-drug conjugate belantamab mafodotin, which has recently been evaluated in the DREAMM 7 and DREAMM 8 trials.

DREAMM 7 demonstrated improved survival vs daratumumab, bortezomib, and dexamethasone in the relapsed/refractory MM setting when used in combination with bortezomib and dexamethasone. DREAMM 8 shows similar benefit with belantamab mafodotin, pomalidomide, and dexamethasone vs pomalidomide, bortezomib, and dexamethasone in lenalidomide-exposed patients with relapsed or refractory MM.

“Belamaf combinations in the one to three lines [of prior therapy] setting look really good,” he said, noting a particular benefit for progression-free survival and a trend toward improved overall survival.

Considering these factors, as well as the risk for cytopenias and the subsequent risk for infection in most patients who undergo CAR T-cell therapy and the known potential risk for secondary malignancies, Dr. Usmani said that he will remain “in the camp of being really careful in selecting CAR T patients for early relapse” until more is known about the risks.

“CAR T for all is not the answer. I think we have to be careful in picking CAR T patients; it’s not a zero-sum game here,” he said, stressing that “there are too many unknowns with the use of early CAR T therapy.”

“It makes sense in some, but not for everyone,” he said, emphasizing the importance of including patients in the discussion.

“The great thing is we have all these options for our patients,” he said.

Dr. Usmani persuaded at least a few colleagues: The final vote showed 42% of 124 voters supported early CAR T, compared with 52% who supported CAR T after three or more lines of therapy and 6% who remained undecided.

A version of this article first appeared on Medscape.com.

 

Chimeric antigen receptor (CAR) T-cell therapy has emerged as a game changer for the treatment of multiple myeloma (MM), but questions remain as to how — and when — the immunotherapy will best be used for patients who experience disease relapse.

Will CAR T be best used in early relapse? Experts debated this question at the annual meeting of the Society of Hematologic Oncology. Based on attendees’ votes, at least one side of the debate emerged victorious.

Krina Patel, MD, an associate professor at the University of Texas MD Anderson Cancer Center, Houston, came out swinging with earnest support for using CAR T in early relapse. Saad Z. Usmani, of Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York City, and Cornell University, Ithaca, New York, argued in favor of being “a little more circumspect.”
 

Dr. Patel: Yes, Earlier Is Better

A pre-debate audience poll leaned Dr. Patel’s way, with about 59% of 73 votes favoring CAR T in early relapse, 33% favoring reserving CAR T for patients who relapse after three or more lines of therapy, and 8% undecided.

“CAR T is not just a drug — it’s an actual therapy that takes a lot of logistics, as well as bridging therapy and all these other things to take into account,” said Dr. Patel. “And again, when I can go earlier, I have control over some of this.”

Furthermore, randomized phase 3 data from the KarMMA-3 study and the CARTITUDE-4 study showed that multiple standard therapies were not as good as CAR T in the early relapse setting, she said, pointing to the respective hazard ratios for disease progression or death with CAR T vs standard therapies of 0.49 and 0.26.

CARTITUDE-4 also suggested that manufacturing failures are more likely in later relapse — when time is already of greater essence, she said, noting that it can take an additional 3 months when restarting the process.

When it comes to toxicity, yes, it is a concern, she said.

“But we know how to decrease toxicity,” she stressed. “And again, with our second- and third-line approaches, we actually have better therapies to give for bridging.”

Quality of life is another important consideration, Dr. Patel said, noting only CAR T offers a “one-and-done” therapy that helps patients “truly feel better.”

“They’re not having to come into hospitals as often, and this is not just for months; it’s for years,” she said. “To be able to give that to somebody is huge, and again, we have objective data that show that compared to our standard of care therapies, patients do better in almost every realm of quality of life metrics.”

Dr. Patel also pointed to recent data from a retrospective study showing that for bridging therapy, less is more when disease is controlled, and in the early-line setting, more and safer options are available for reducing tumor burden.

Early CAR T is better for older or frail patients as well, she argued, noting that these patients don’t have time to wait, and a new study demonstrates that they tend to do well with CAR T in the early relapse setting.

The choice for early CAR T is clear in patients with high-risk disease, but Dr. Patel stressed that it shouldn’t be reserved for those patients, asking, “When has anything worked well for patients with high-risk disease and not [also] better for standard-risk patients?”

“And why give only 20%-25% of your patients [who actually reach fifth-line treatment] access to something that we know has really revolutionized myeloma therapy?” she said.

Many patients don’t have access, and that’s an issue, she acknowledged, adding: “But for those who do, we really should be giving it to them as soon as possible.”
 

Dr. Usmani: Reserve CAR T for Later Relapse

Not so fast, said Dr. Usmani. “All of these therapies are doing wonders for our patients, and we believe in them, but we have to be a little circumspect in looking at this data more closely and not just with emotions,” he added, noting that many options exist for patients in a first or second relapse, and new options are emerging.

There is also a “harsh reality” in terms of CAR T availability, he noted, explaining that, in 2021, about 180,000 people were living with MM, and about two thirds of those had relapsed disease. Meanwhile, fewer than 1000 CAR T products have been delivered each year for patients with relapsed MM since they were approved in this setting in the United States.

“So, it’s a pipe dream, seriously, that we will be able to utilize CAR T for all patients in early relapsed disease,” he said, adding that capacity will remain an issue because of limited resources.

The existing data, including from KarMMa-3 and CARTITUDE-4, show little potential for long-term benefit with early vs later CAR T.

“There is no plateau,” he said of the survival curves in KarMMa-3, underscoring the lack of a difference in overall survival benefit based on CAR T timing.

The CARTITUDE-4 curves “look great,” and it may be that a “small plateau emerges,” but they don’t demonstrate a benefit of earlier vs later CAR T, he said.

As Dr. Patel noted, there are few treatment options for patients with anti-CD38 monoclonal antibody and immunomodulatory drug resistance at first relapse. However, that situation will soon change, Dr. Usmani stated.

“Guess what? Belamaf is coming to the rescue!” he said of the off-the-shelf and more accessible B-cell maturation antigen-targeted antibody-drug conjugate belantamab mafodotin, which has recently been evaluated in the DREAMM 7 and DREAMM 8 trials.

DREAMM 7 demonstrated improved survival vs daratumumab, bortezomib, and dexamethasone in the relapsed/refractory MM setting when used in combination with bortezomib and dexamethasone. DREAMM 8 shows similar benefit with belantamab mafodotin, pomalidomide, and dexamethasone vs pomalidomide, bortezomib, and dexamethasone in lenalidomide-exposed patients with relapsed or refractory MM.

“Belamaf combinations in the one to three lines [of prior therapy] setting look really good,” he said, noting a particular benefit for progression-free survival and a trend toward improved overall survival.

Considering these factors, as well as the risk for cytopenias and the subsequent risk for infection in most patients who undergo CAR T-cell therapy and the known potential risk for secondary malignancies, Dr. Usmani said that he will remain “in the camp of being really careful in selecting CAR T patients for early relapse” until more is known about the risks.

“CAR T for all is not the answer. I think we have to be careful in picking CAR T patients; it’s not a zero-sum game here,” he said, stressing that “there are too many unknowns with the use of early CAR T therapy.”

“It makes sense in some, but not for everyone,” he said, emphasizing the importance of including patients in the discussion.

“The great thing is we have all these options for our patients,” he said.

Dr. Usmani persuaded at least a few colleagues: The final vote showed 42% of 124 voters supported early CAR T, compared with 52% who supported CAR T after three or more lines of therapy and 6% who remained undecided.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM SOHO 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

A Simple Blood Test May Predict Cancer Risk in T2D

Article Type
Changed
Wed, 09/11/2024 - 13:30

 

TOPLINE:

— Elevated interleukin (IL) 6 levels are associated with an increased risk for obesity-related cancers in patients newly diagnosed with type 2 diabetes (T2D), potentially enabling the identification of higher-risk individuals through a simple blood test.

METHODOLOGY:

  • T2D is associated with an increased risk for obesity-related cancers, including breast, renal, uterine, thyroid, ovarian, and gastrointestinal cancers, as well as multiple myeloma, possibly because of chronic low-grade inflammation.
  • Researchers explored whether the markers of inflammation IL-6, tumor necrosis factor alpha (TNF-alpha), and high-sensitivity C-reactive protein (hsCRP) can serve as predictive biomarkers for obesity-related cancers in patients recently diagnosed with T2D.
  • They identified patients with recent-onset T2D and no prior history of cancer participating in the ongoing Danish Centre for Strategic Research in Type 2 Diabetes cohort study.
  • At study initiation, plasma levels of IL-6 and TNF-alpha were measured using Meso Scale Discovery assays, and serum levels of hsCRP were measured using immunofluorometric assays.

TAKEAWAY:

  • Among 6,466 eligible patients (40.5% women; median age, 60.9 years), 327 developed obesity-related cancers over a median follow-up of 8.8 years.
  • Each SD increase in log-transformed IL-6 levels increased the risk for obesity-related cancers by 19%.
  • The researchers did not find a strong association between TNF-alpha or hsCRP and obesity-related cancers.
  • The addition of baseline IL-6 levels to other well-known risk factors for obesity-related cancers improved the performance of a cancer prediction model from 0.685 to 0.693, translating to a small but important increase in the ability to predict whether an individual would develop one of these cancers.

IN PRACTICE:

“In future, a simple blood test could identify those at higher risk of the cancers,” said the study’s lead author in an accompanying press release.

SOURCE:

The study was led by Mathilde D. Bennetsen, Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark, and published online on August 27 as an early release from the European Association for the Study of Diabetes (EASD) 2024 Annual Meeting.

LIMITATIONS:

No limitations were discussed in this abstract. However, the reliance on registry data may have introduced potential biases related to data accuracy and completeness.

DISCLOSURES:

The Danish Centre for Strategic Research in Type 2 Diabetes was supported by grants from the Danish Agency for Science and the Novo Nordisk Foundation. The authors declared no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

— Elevated interleukin (IL) 6 levels are associated with an increased risk for obesity-related cancers in patients newly diagnosed with type 2 diabetes (T2D), potentially enabling the identification of higher-risk individuals through a simple blood test.

METHODOLOGY:

  • T2D is associated with an increased risk for obesity-related cancers, including breast, renal, uterine, thyroid, ovarian, and gastrointestinal cancers, as well as multiple myeloma, possibly because of chronic low-grade inflammation.
  • Researchers explored whether the markers of inflammation IL-6, tumor necrosis factor alpha (TNF-alpha), and high-sensitivity C-reactive protein (hsCRP) can serve as predictive biomarkers for obesity-related cancers in patients recently diagnosed with T2D.
  • They identified patients with recent-onset T2D and no prior history of cancer participating in the ongoing Danish Centre for Strategic Research in Type 2 Diabetes cohort study.
  • At study initiation, plasma levels of IL-6 and TNF-alpha were measured using Meso Scale Discovery assays, and serum levels of hsCRP were measured using immunofluorometric assays.

TAKEAWAY:

  • Among 6,466 eligible patients (40.5% women; median age, 60.9 years), 327 developed obesity-related cancers over a median follow-up of 8.8 years.
  • Each SD increase in log-transformed IL-6 levels increased the risk for obesity-related cancers by 19%.
  • The researchers did not find a strong association between TNF-alpha or hsCRP and obesity-related cancers.
  • The addition of baseline IL-6 levels to other well-known risk factors for obesity-related cancers improved the performance of a cancer prediction model from 0.685 to 0.693, translating to a small but important increase in the ability to predict whether an individual would develop one of these cancers.

IN PRACTICE:

“In future, a simple blood test could identify those at higher risk of the cancers,” said the study’s lead author in an accompanying press release.

SOURCE:

The study was led by Mathilde D. Bennetsen, Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark, and published online on August 27 as an early release from the European Association for the Study of Diabetes (EASD) 2024 Annual Meeting.

LIMITATIONS:

No limitations were discussed in this abstract. However, the reliance on registry data may have introduced potential biases related to data accuracy and completeness.

DISCLOSURES:

The Danish Centre for Strategic Research in Type 2 Diabetes was supported by grants from the Danish Agency for Science and the Novo Nordisk Foundation. The authors declared no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE:

— Elevated interleukin (IL) 6 levels are associated with an increased risk for obesity-related cancers in patients newly diagnosed with type 2 diabetes (T2D), potentially enabling the identification of higher-risk individuals through a simple blood test.

METHODOLOGY:

  • T2D is associated with an increased risk for obesity-related cancers, including breast, renal, uterine, thyroid, ovarian, and gastrointestinal cancers, as well as multiple myeloma, possibly because of chronic low-grade inflammation.
  • Researchers explored whether the markers of inflammation IL-6, tumor necrosis factor alpha (TNF-alpha), and high-sensitivity C-reactive protein (hsCRP) can serve as predictive biomarkers for obesity-related cancers in patients recently diagnosed with T2D.
  • They identified patients with recent-onset T2D and no prior history of cancer participating in the ongoing Danish Centre for Strategic Research in Type 2 Diabetes cohort study.
  • At study initiation, plasma levels of IL-6 and TNF-alpha were measured using Meso Scale Discovery assays, and serum levels of hsCRP were measured using immunofluorometric assays.

TAKEAWAY:

  • Among 6,466 eligible patients (40.5% women; median age, 60.9 years), 327 developed obesity-related cancers over a median follow-up of 8.8 years.
  • Each SD increase in log-transformed IL-6 levels increased the risk for obesity-related cancers by 19%.
  • The researchers did not find a strong association between TNF-alpha or hsCRP and obesity-related cancers.
  • The addition of baseline IL-6 levels to other well-known risk factors for obesity-related cancers improved the performance of a cancer prediction model from 0.685 to 0.693, translating to a small but important increase in the ability to predict whether an individual would develop one of these cancers.

IN PRACTICE:

“In future, a simple blood test could identify those at higher risk of the cancers,” said the study’s lead author in an accompanying press release.

SOURCE:

The study was led by Mathilde D. Bennetsen, Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark, and published online on August 27 as an early release from the European Association for the Study of Diabetes (EASD) 2024 Annual Meeting.

LIMITATIONS:

No limitations were discussed in this abstract. However, the reliance on registry data may have introduced potential biases related to data accuracy and completeness.

DISCLOSURES:

The Danish Centre for Strategic Research in Type 2 Diabetes was supported by grants from the Danish Agency for Science and the Novo Nordisk Foundation. The authors declared no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

RVD With Weekly Bortezomib Has a Favorable Toxicity and Effectiveness Profile in a Large Cohort of US Veterans With Multiple Myeloma

Article Type
Changed
Wed, 09/18/2024 - 13:45

Background

Lenalidomide, bortezomib, and dexamethasone (RVD) is standard triplet induction for fit newly-diagnosed myeloma (NDMM) patients, with response rate (RR)>90%. A 21-day cycle with bortezomib given days 1, 4, 8, and 11 (2x/w) is standard. However, up to 80% of patients develop neuropathy. Weekly bortezomib dosing (1x/w), subcutaneous route, and 28- to 35-day cycle length may optimize tolerance. We present an effectiveness and toxicity analysis of Veterans who received RVD with 1x/w and 2x/w bortezomib for NDMM.

Methods

The VA Corporate Data Warehouse identified 1499 Veterans with NDMM given RVD ≤42 days of treatment start. 840 Veterans were grouped for initial analysis based on criteria: 1) lenalidomide and ≥ 3 bortezomib doses during cycle 1; 2) ≥6 mean days between bortezomib treatments=1x/w); and 3) number of lenalidomide days informed cycle length (21d, 28d, or 35d; default 7-day rest). Investigators reviewed algorithm results to finalize group assignments. Endpoints included depth of response, time to next treatment (TTNT), overall survival (OS), and neuropathy. Neuropathy was defined as use of neuropathy medications and neuropathy ICD-10 codes.

Results

Our algorithm correctly assigned 82% of 840 cycle 1 RVD schedules. The largest groups were 21d 1x/w (n=291), 21d 2x/w (n=193), 28d 1x/w (n=188), and 28d 2x/w (n=82). Median age was 68.3; 53% were non-Hispanic White. Demographics and ISS stage of groups were similar. 30% underwent autologous transplant. Tolerability. Median number of bortezomib doses ranged from 22.5-25.5 (p=0.57). Neuropathy favored 1x/w, 17.7 vs 30.2% (p=0.0001) and was highest (34.7%) in 21d 2x/w. Effectiveness. Response was assessable for 28% of patients. RR (72%, p=0.68) and median TTNT (19.3 months, p=0.20) were similar, including 1x/w vs 2x/w comparison (p=0.79). 21d regimens optimized TTNT (21.4 vs 13.9 months, p=0.045) and trended to better OS (73 vs 65 months, p=0.06).

Conclusions

1x/w RVD preserved effectiveness compared to “standard” RVD in a large Veteran cohort. 1x/w reduced neuropathy incidence. 28d regimens demonstrated inferior longer-term outcomes. Certain endpoints, such as RR and neuropathy, appear underestimated due to data source limitations. 21d 1x/w RVD optimizes effectiveness, tolerability, and administration and should be considered for broader utilization in Veterans with NDMM.

Issue
Federal Practitioner - 41(9)s
Publications
Topics
Page Number
S33
Sections

Background

Lenalidomide, bortezomib, and dexamethasone (RVD) is standard triplet induction for fit newly-diagnosed myeloma (NDMM) patients, with response rate (RR)>90%. A 21-day cycle with bortezomib given days 1, 4, 8, and 11 (2x/w) is standard. However, up to 80% of patients develop neuropathy. Weekly bortezomib dosing (1x/w), subcutaneous route, and 28- to 35-day cycle length may optimize tolerance. We present an effectiveness and toxicity analysis of Veterans who received RVD with 1x/w and 2x/w bortezomib for NDMM.

Methods

The VA Corporate Data Warehouse identified 1499 Veterans with NDMM given RVD ≤42 days of treatment start. 840 Veterans were grouped for initial analysis based on criteria: 1) lenalidomide and ≥ 3 bortezomib doses during cycle 1; 2) ≥6 mean days between bortezomib treatments=1x/w); and 3) number of lenalidomide days informed cycle length (21d, 28d, or 35d; default 7-day rest). Investigators reviewed algorithm results to finalize group assignments. Endpoints included depth of response, time to next treatment (TTNT), overall survival (OS), and neuropathy. Neuropathy was defined as use of neuropathy medications and neuropathy ICD-10 codes.

Results

Our algorithm correctly assigned 82% of 840 cycle 1 RVD schedules. The largest groups were 21d 1x/w (n=291), 21d 2x/w (n=193), 28d 1x/w (n=188), and 28d 2x/w (n=82). Median age was 68.3; 53% were non-Hispanic White. Demographics and ISS stage of groups were similar. 30% underwent autologous transplant. Tolerability. Median number of bortezomib doses ranged from 22.5-25.5 (p=0.57). Neuropathy favored 1x/w, 17.7 vs 30.2% (p=0.0001) and was highest (34.7%) in 21d 2x/w. Effectiveness. Response was assessable for 28% of patients. RR (72%, p=0.68) and median TTNT (19.3 months, p=0.20) were similar, including 1x/w vs 2x/w comparison (p=0.79). 21d regimens optimized TTNT (21.4 vs 13.9 months, p=0.045) and trended to better OS (73 vs 65 months, p=0.06).

Conclusions

1x/w RVD preserved effectiveness compared to “standard” RVD in a large Veteran cohort. 1x/w reduced neuropathy incidence. 28d regimens demonstrated inferior longer-term outcomes. Certain endpoints, such as RR and neuropathy, appear underestimated due to data source limitations. 21d 1x/w RVD optimizes effectiveness, tolerability, and administration and should be considered for broader utilization in Veterans with NDMM.

Background

Lenalidomide, bortezomib, and dexamethasone (RVD) is standard triplet induction for fit newly-diagnosed myeloma (NDMM) patients, with response rate (RR)>90%. A 21-day cycle with bortezomib given days 1, 4, 8, and 11 (2x/w) is standard. However, up to 80% of patients develop neuropathy. Weekly bortezomib dosing (1x/w), subcutaneous route, and 28- to 35-day cycle length may optimize tolerance. We present an effectiveness and toxicity analysis of Veterans who received RVD with 1x/w and 2x/w bortezomib for NDMM.

Methods

The VA Corporate Data Warehouse identified 1499 Veterans with NDMM given RVD ≤42 days of treatment start. 840 Veterans were grouped for initial analysis based on criteria: 1) lenalidomide and ≥ 3 bortezomib doses during cycle 1; 2) ≥6 mean days between bortezomib treatments=1x/w); and 3) number of lenalidomide days informed cycle length (21d, 28d, or 35d; default 7-day rest). Investigators reviewed algorithm results to finalize group assignments. Endpoints included depth of response, time to next treatment (TTNT), overall survival (OS), and neuropathy. Neuropathy was defined as use of neuropathy medications and neuropathy ICD-10 codes.

Results

Our algorithm correctly assigned 82% of 840 cycle 1 RVD schedules. The largest groups were 21d 1x/w (n=291), 21d 2x/w (n=193), 28d 1x/w (n=188), and 28d 2x/w (n=82). Median age was 68.3; 53% were non-Hispanic White. Demographics and ISS stage of groups were similar. 30% underwent autologous transplant. Tolerability. Median number of bortezomib doses ranged from 22.5-25.5 (p=0.57). Neuropathy favored 1x/w, 17.7 vs 30.2% (p=0.0001) and was highest (34.7%) in 21d 2x/w. Effectiveness. Response was assessable for 28% of patients. RR (72%, p=0.68) and median TTNT (19.3 months, p=0.20) were similar, including 1x/w vs 2x/w comparison (p=0.79). 21d regimens optimized TTNT (21.4 vs 13.9 months, p=0.045) and trended to better OS (73 vs 65 months, p=0.06).

Conclusions

1x/w RVD preserved effectiveness compared to “standard” RVD in a large Veteran cohort. 1x/w reduced neuropathy incidence. 28d regimens demonstrated inferior longer-term outcomes. Certain endpoints, such as RR and neuropathy, appear underestimated due to data source limitations. 21d 1x/w RVD optimizes effectiveness, tolerability, and administration and should be considered for broader utilization in Veterans with NDMM.

Issue
Federal Practitioner - 41(9)s
Issue
Federal Practitioner - 41(9)s
Page Number
S33
Page Number
S33
Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Eyebrow Default
Research
Gate On Date
Tue, 09/10/2024 - 11:30
Un-Gate On Date
Tue, 09/10/2024 - 11:30
Use ProPublica
CFC Schedule Remove Status
Tue, 09/10/2024 - 11:30
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

The First Patient in the Veteran Affairs System to Receive Chimeric Antigen Receptors T-cell Therapy for Refractory Multiple Myeloma and the Role of Intravenous Immunoglobulin in the Prevention of Therapy-associated Infections

Article Type
Changed
Wed, 09/18/2024 - 16:08

Background

In 3/2021, chimeric antigen receptor (CAR) T-cell therapy was approved for the treatment of multiple myeloma in adult patients with refractory disease. Currently, only the Veterans Affair (VA) center at the Tennessee Valley Healthcare System (TVHS) offers this treatment. Herein, we report a significant healthcare milestone in 2024 when the first patient received CAR T-cell therapy for multiple myeloma in the VA system. Additionally, the rate of hypogammaglobulinemia is the highest for CAR T-cell therapy using idecabtagene vicleucel compared to therapies using other antineoplastic agents (Wat et al, 2021). The complications of hypogammaglobulinemia can be mitigated by intravenous immunoglobulin (IVIG) treatment.

Case Presentation

A 75-year-old male veteran was diagnosed with IgA Kappa multiple myeloma and received induction therapy with bortezomib, lenalidomide, and dexamethasone in 2014. The patient underwent autologous stem cell transplant (SCT) in the same year. His disease recurred in 3/2019, and the patient was started on daratumumab and pomalidomide. He received another autologous SCT in 2/2021, to which he was refractory. The veteran then received treatment with daratumumab and ixazomib, followed by carfilzomib and cyclophosphamide. Starting in 9/2022, the patient also required regular IVIG treatment for hypogammaglobulinemia. He eventually received CAR T-cell therapy with idecabtagene vicleucel at THVS on 4/18/2024. The patient tolerated the treatment well and is undergoing routine disease monitoring. Following CAR T-cell therapy, his hypogammaglobulinemia persists with immunoglobulins level less than 500 mg/dL, and the veteran is still receiving supportive care IVIG.

Discussion

A population estimate of 1.3 million veterans are uninsured and can only access healthcare through the VA (Nelson et al, 2007). This case highlights the first patient to receive CAR T-cell therapy for multiple myeloma in the VA system, indicating that veterans now have access to this life-saving treatment. The rate of hypogammaglobulinemia following CAR T-cell therapy for multiple myeloma is as high as 41%, with an associated infection risk of 70%. Following CAR T-cell therapy with idecabtagene vicleucel, around 61% of patients will require IVIG treatment (Wat el al, 2021). Our case adds to this growing literature on the prevalence of IVIG treatment following CAR T-cell therapy in this patient population.

 

Issue
Federal Practitioner - 41(9)s
Publications
Topics
Page Number
S20-S21
Sections

Background

In 3/2021, chimeric antigen receptor (CAR) T-cell therapy was approved for the treatment of multiple myeloma in adult patients with refractory disease. Currently, only the Veterans Affair (VA) center at the Tennessee Valley Healthcare System (TVHS) offers this treatment. Herein, we report a significant healthcare milestone in 2024 when the first patient received CAR T-cell therapy for multiple myeloma in the VA system. Additionally, the rate of hypogammaglobulinemia is the highest for CAR T-cell therapy using idecabtagene vicleucel compared to therapies using other antineoplastic agents (Wat et al, 2021). The complications of hypogammaglobulinemia can be mitigated by intravenous immunoglobulin (IVIG) treatment.

Case Presentation

A 75-year-old male veteran was diagnosed with IgA Kappa multiple myeloma and received induction therapy with bortezomib, lenalidomide, and dexamethasone in 2014. The patient underwent autologous stem cell transplant (SCT) in the same year. His disease recurred in 3/2019, and the patient was started on daratumumab and pomalidomide. He received another autologous SCT in 2/2021, to which he was refractory. The veteran then received treatment with daratumumab and ixazomib, followed by carfilzomib and cyclophosphamide. Starting in 9/2022, the patient also required regular IVIG treatment for hypogammaglobulinemia. He eventually received CAR T-cell therapy with idecabtagene vicleucel at THVS on 4/18/2024. The patient tolerated the treatment well and is undergoing routine disease monitoring. Following CAR T-cell therapy, his hypogammaglobulinemia persists with immunoglobulins level less than 500 mg/dL, and the veteran is still receiving supportive care IVIG.

Discussion

A population estimate of 1.3 million veterans are uninsured and can only access healthcare through the VA (Nelson et al, 2007). This case highlights the first patient to receive CAR T-cell therapy for multiple myeloma in the VA system, indicating that veterans now have access to this life-saving treatment. The rate of hypogammaglobulinemia following CAR T-cell therapy for multiple myeloma is as high as 41%, with an associated infection risk of 70%. Following CAR T-cell therapy with idecabtagene vicleucel, around 61% of patients will require IVIG treatment (Wat el al, 2021). Our case adds to this growing literature on the prevalence of IVIG treatment following CAR T-cell therapy in this patient population.

 

Background

In 3/2021, chimeric antigen receptor (CAR) T-cell therapy was approved for the treatment of multiple myeloma in adult patients with refractory disease. Currently, only the Veterans Affair (VA) center at the Tennessee Valley Healthcare System (TVHS) offers this treatment. Herein, we report a significant healthcare milestone in 2024 when the first patient received CAR T-cell therapy for multiple myeloma in the VA system. Additionally, the rate of hypogammaglobulinemia is the highest for CAR T-cell therapy using idecabtagene vicleucel compared to therapies using other antineoplastic agents (Wat et al, 2021). The complications of hypogammaglobulinemia can be mitigated by intravenous immunoglobulin (IVIG) treatment.

Case Presentation

A 75-year-old male veteran was diagnosed with IgA Kappa multiple myeloma and received induction therapy with bortezomib, lenalidomide, and dexamethasone in 2014. The patient underwent autologous stem cell transplant (SCT) in the same year. His disease recurred in 3/2019, and the patient was started on daratumumab and pomalidomide. He received another autologous SCT in 2/2021, to which he was refractory. The veteran then received treatment with daratumumab and ixazomib, followed by carfilzomib and cyclophosphamide. Starting in 9/2022, the patient also required regular IVIG treatment for hypogammaglobulinemia. He eventually received CAR T-cell therapy with idecabtagene vicleucel at THVS on 4/18/2024. The patient tolerated the treatment well and is undergoing routine disease monitoring. Following CAR T-cell therapy, his hypogammaglobulinemia persists with immunoglobulins level less than 500 mg/dL, and the veteran is still receiving supportive care IVIG.

Discussion

A population estimate of 1.3 million veterans are uninsured and can only access healthcare through the VA (Nelson et al, 2007). This case highlights the first patient to receive CAR T-cell therapy for multiple myeloma in the VA system, indicating that veterans now have access to this life-saving treatment. The rate of hypogammaglobulinemia following CAR T-cell therapy for multiple myeloma is as high as 41%, with an associated infection risk of 70%. Following CAR T-cell therapy with idecabtagene vicleucel, around 61% of patients will require IVIG treatment (Wat el al, 2021). Our case adds to this growing literature on the prevalence of IVIG treatment following CAR T-cell therapy in this patient population.

 

Issue
Federal Practitioner - 41(9)s
Issue
Federal Practitioner - 41(9)s
Page Number
S20-S21
Page Number
S20-S21
Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Eyebrow Default
Clinical Practice
Gate On Date
Mon, 09/09/2024 - 13:00
Un-Gate On Date
Mon, 09/09/2024 - 13:00
Use ProPublica
CFC Schedule Remove Status
Mon, 09/09/2024 - 13:00
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

The First Female Patient in the Veteran Affairs System to Receive Chimeric Antigen Receptors (CAR) T-cell Therapy for Refractory Multiple Myeloma and the Role of CAR T-cell Therapy in Penta-refractory Disease

Article Type
Changed
Wed, 09/18/2024 - 16:08

Background

In 2024, the first two veterans, both from the Michael E. DeBakey Veteran Affairs (VA) Medical Center, received chimeric antigen receptors (CAR) T-cell therapy for refractory multiple myeloma through the Tennessee Valley Healthcare System (TVHS). Currently, TVHS is the only VA where this treatment is available. One of these patients also had penta-refractory multiple myeloma (P-RMM), which is associated with significantly worse progression-free survival and overall survival (OS) (Gill et al, 2021). P-RMM is defined as resistance to at least two immunomodulatory drugs, two different proteasome inhibitors, and one CD38 monoclonal antibody.

Case Presentation

A 71-year-old female veteran was diagnosed with high-risk multiple myeloma and received induction therapy with carfilzomib, lenalidomide, and dexamethasone in 2017. She underwent autologous stem cell transplant (SCT) in 4/2018. The veteran subsequently received maintenance therapy with lenalidomide, bortezomib, and dexamethasone. Her disease recurred in 1/2022. The patient then received two more lines of treatments with daratumumab and pomalidomide followed by selinexor. She had another autologous SCT in 5/2023, to which she was refractory. Her fifth line therapy included addition of bortezomib to her selinexor regimen. She eventually underwent CAR T-cell therapy at THVS on 5/1/2024 with good tolerance of therapy. At her follow-up visit, the patient had significant response to CAR T-cell treatment, based on her symptoms and improvement in free light chains and serum protein electrophoresis.

Discussion

CAR T-cell therapy is one of the newest and most cutting-edge therapies for patients with refractory multiple myeloma. Access to this therapy has been limited throughout the country. However, as shown by our case, this life-saving treatment is now available to patients within the VA. According to a retrospective study on P-RMM patients, the OS in patients who received B-cell maturation antigen (BCMA) targeted therapy was significantly higher than in those who did not (17 vs. 6 months, p < 0.0001). Among the BCMA-targeted therapies, CAR T-cell therapy is associated with the highest OS (29 months) compared to antibody-drug conjugates and bispecific T-cell engagers (Atrash et al, 2023). Thus, accessibility to CAR T-cell therapy was essential in our patient with P-RMM in ensuring her best survival outcomes.

Issue
Federal Practitioner - 41(9)s
Publications
Topics
Page Number
S20
Sections

Background

In 2024, the first two veterans, both from the Michael E. DeBakey Veteran Affairs (VA) Medical Center, received chimeric antigen receptors (CAR) T-cell therapy for refractory multiple myeloma through the Tennessee Valley Healthcare System (TVHS). Currently, TVHS is the only VA where this treatment is available. One of these patients also had penta-refractory multiple myeloma (P-RMM), which is associated with significantly worse progression-free survival and overall survival (OS) (Gill et al, 2021). P-RMM is defined as resistance to at least two immunomodulatory drugs, two different proteasome inhibitors, and one CD38 monoclonal antibody.

Case Presentation

A 71-year-old female veteran was diagnosed with high-risk multiple myeloma and received induction therapy with carfilzomib, lenalidomide, and dexamethasone in 2017. She underwent autologous stem cell transplant (SCT) in 4/2018. The veteran subsequently received maintenance therapy with lenalidomide, bortezomib, and dexamethasone. Her disease recurred in 1/2022. The patient then received two more lines of treatments with daratumumab and pomalidomide followed by selinexor. She had another autologous SCT in 5/2023, to which she was refractory. Her fifth line therapy included addition of bortezomib to her selinexor regimen. She eventually underwent CAR T-cell therapy at THVS on 5/1/2024 with good tolerance of therapy. At her follow-up visit, the patient had significant response to CAR T-cell treatment, based on her symptoms and improvement in free light chains and serum protein electrophoresis.

Discussion

CAR T-cell therapy is one of the newest and most cutting-edge therapies for patients with refractory multiple myeloma. Access to this therapy has been limited throughout the country. However, as shown by our case, this life-saving treatment is now available to patients within the VA. According to a retrospective study on P-RMM patients, the OS in patients who received B-cell maturation antigen (BCMA) targeted therapy was significantly higher than in those who did not (17 vs. 6 months, p < 0.0001). Among the BCMA-targeted therapies, CAR T-cell therapy is associated with the highest OS (29 months) compared to antibody-drug conjugates and bispecific T-cell engagers (Atrash et al, 2023). Thus, accessibility to CAR T-cell therapy was essential in our patient with P-RMM in ensuring her best survival outcomes.

Background

In 2024, the first two veterans, both from the Michael E. DeBakey Veteran Affairs (VA) Medical Center, received chimeric antigen receptors (CAR) T-cell therapy for refractory multiple myeloma through the Tennessee Valley Healthcare System (TVHS). Currently, TVHS is the only VA where this treatment is available. One of these patients also had penta-refractory multiple myeloma (P-RMM), which is associated with significantly worse progression-free survival and overall survival (OS) (Gill et al, 2021). P-RMM is defined as resistance to at least two immunomodulatory drugs, two different proteasome inhibitors, and one CD38 monoclonal antibody.

Case Presentation

A 71-year-old female veteran was diagnosed with high-risk multiple myeloma and received induction therapy with carfilzomib, lenalidomide, and dexamethasone in 2017. She underwent autologous stem cell transplant (SCT) in 4/2018. The veteran subsequently received maintenance therapy with lenalidomide, bortezomib, and dexamethasone. Her disease recurred in 1/2022. The patient then received two more lines of treatments with daratumumab and pomalidomide followed by selinexor. She had another autologous SCT in 5/2023, to which she was refractory. Her fifth line therapy included addition of bortezomib to her selinexor regimen. She eventually underwent CAR T-cell therapy at THVS on 5/1/2024 with good tolerance of therapy. At her follow-up visit, the patient had significant response to CAR T-cell treatment, based on her symptoms and improvement in free light chains and serum protein electrophoresis.

Discussion

CAR T-cell therapy is one of the newest and most cutting-edge therapies for patients with refractory multiple myeloma. Access to this therapy has been limited throughout the country. However, as shown by our case, this life-saving treatment is now available to patients within the VA. According to a retrospective study on P-RMM patients, the OS in patients who received B-cell maturation antigen (BCMA) targeted therapy was significantly higher than in those who did not (17 vs. 6 months, p < 0.0001). Among the BCMA-targeted therapies, CAR T-cell therapy is associated with the highest OS (29 months) compared to antibody-drug conjugates and bispecific T-cell engagers (Atrash et al, 2023). Thus, accessibility to CAR T-cell therapy was essential in our patient with P-RMM in ensuring her best survival outcomes.

Issue
Federal Practitioner - 41(9)s
Issue
Federal Practitioner - 41(9)s
Page Number
S20
Page Number
S20
Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Eyebrow Default
Clinical Practice
Gate On Date
Mon, 09/09/2024 - 13:00
Un-Gate On Date
Mon, 09/09/2024 - 13:00
Use ProPublica
CFC Schedule Remove Status
Mon, 09/09/2024 - 13:00
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Do Clonal Hematopoiesis and Mosaic Chromosomal Alterations Increase Solid Tumor Risk?

Article Type
Changed
Wed, 09/25/2024 - 06:41

Clonal hematopoiesis of indeterminate potential (CHIP) and mosaic chromosomal alterations (mCAs) are associated with an increased risk for breast cancer, and CHIP is associated with increased mortality in patients with colon cancer, according to the authors of new research.

These findings, drawn from almost 11,000 patients in the Women’s Health Initiative (WHI) study, add further evidence that CHIP and mCA drive solid tumor risk, alongside known associations with hematologic malignancies, reported lead author Pinkal Desai, MD, associate professor of medicine and clinical director of molecular aging at Englander Institute for Precision Medicine, Weill Cornell Medical College, New York City, and colleagues.
 

How This Study Differs From Others of Breast Cancer Risk Factors

“The independent effect of CHIP and mCA on risk and mortality from solid tumors has not been elucidated due to lack of detailed data on mortality outcomes and risk factors,” the investigators wrote in Cancer, although some previous studies have suggested a link.

In particular, the investigators highlighted a 2022 UK Biobank study, which reported an association between CHIP and lung cancer and a borderline association with breast cancer that did not quite reach statistical significance.

But the UK Biobank study was confined to a UK population, Dr. Desai noted in an interview, and the data were less detailed than those in the present investigation.

“In terms of risk, the part that was lacking in previous studies was a comprehensive assessment of risk factors that increase risk for all these cancers,” Dr. Desai said. “For example, for breast cancer, we had very detailed data on [participants’] Gail risk score, which is known to impact breast cancer risk. We also had mammogram data and colonoscopy data.”

In an accompanying editorial, Koichi Takahashi, MD, PhD , and Nehali Shah, BS, of The University of Texas MD Anderson Cancer Center, Houston, Texas, pointed out the same UK Biobank findings, then noted that CHIP has also been linked with worse overall survival in unselected cancer patients. Still, they wrote, “the impact of CH on cancer risk and mortality remains controversial due to conflicting data and context‐dependent effects,” necessitating studies like this one by Dr. Desai and colleagues.
 

How Was the Relationship Between CHIP, MCA, and Solid Tumor Risk Assessed?

To explore possible associations between CHIP, mCA, and solid tumors, the investigators analyzed whole genome sequencing data from 10,866 women in the WHI, a multi-study program that began in 1992 and involved 161,808 women in both observational and clinical trial cohorts.

In 2002, the first big data release from the WHI suggested that hormone replacement therapy (HRT) increased breast cancer risk, leading to widespread reduction in HRT use.

More recent reports continue to shape our understanding of these risks, suggesting differences across cancer types. For breast cancer, the WHI data suggested that HRT-associated risk was largely driven by formulations involving progesterone and estrogen, whereas estrogen-only formulations, now more common, are generally considered to present an acceptable risk profile for suitable patients.

The new study accounted for this potential HRT-associated risk, including by adjusting for patients who received HRT, type of HRT received, and duration of HRT received. According to Desai, this approach is commonly used when analyzing data from the WHI, nullifying concerns about the potentially deleterious effects of the hormones used in the study.

“Our question was not ‘does HRT cause cancer?’ ” Dr. Desai said in an interview. “But HRT can be linked to breast cancer risk and has a potential to be a confounder, and hence the above methodology.

“So I can say that the confounding/effect modification that HRT would have contributed to in the relationship between exposure (CH and mCA) and outcome (cancer) is well adjusted for as described above. This is standard in WHI analyses,” she continued.

“Every Women’s Health Initiative analysis that comes out — not just for our study — uses a standard method ... where you account for hormonal therapy,” Dr. Desai added, again noting that many other potential risk factors were considered, enabling a “detailed, robust” analysis.

Dr. Takahashi and Ms. Shah agreed. “A notable strength of this study is its adjustment for many confounding factors,” they wrote. “The cohort’s well‐annotated data on other known cancer risk factors allowed for a robust assessment of CH’s independent risk.”
 

 

 

How Do Findings Compare With Those of the UK Biobank Study?

CHIP was associated with a 30% increased risk for breast cancer (hazard ratio [HR], 1.30; 95% CI, 1.03-1.64; P = .02), strengthening the borderline association reported by the UK Biobank study.

In contrast with the UK Biobank study, CHIP was not associated with lung cancer risk, although this may have been caused by fewer cases of lung cancer and a lack of male patients, Dr. Desai suggested.

“The discrepancy between the studies lies in the risk of lung cancer, although the point estimate in the current study suggested a positive association,” wrote Dr. Takahashi and Ms. Shah.

As in the UK Biobank study, CHIP was not associated with increased risk of developing colorectal cancer.

Mortality analysis, however, which was not conducted in the UK Biobank study, offered a new insight: Patients with existing colorectal cancer and CHIP had a significantly higher mortality risk than those without CHIP. Before stage adjustment, risk for mortality among those with colorectal cancer and CHIP was fourfold higher than those without CHIP (HR, 3.99; 95% CI, 2.41-6.62; P < .001). After stage adjustment, CHIP was still associated with a twofold higher mortality risk (HR, 2.50; 95% CI, 1.32-4.72; P = .004).

The investigators’ first mCA analyses, which employed a cell fraction cutoff greater than 3%, were unfruitful. But raising the cell fraction threshold to 5% in an exploratory analysis showed that autosomal mCA was associated with a 39% increased risk for breast cancer (HR, 1.39; 95% CI, 1.06-1.83; P = .01). No such associations were found between mCA and colorectal or lung cancer, regardless of cell fraction threshold.

The original 3% cell fraction threshold was selected on the basis of previous studies reporting a link between mCA and hematologic malignancies at this cutoff, Dr. Desai said.

She and her colleagues said a higher 5% cutoff might be needed, as they suspected that the link between mCA and solid tumors may not be causal, requiring a higher mutation rate.
 

Why Do Results Differ Between These Types of Studies?

Dr. Takahashi and Ms. Shah suggested that one possible limitation of the new study, and an obstacle to comparing results with the UK Biobank study and others like it, goes beyond population heterogeneity; incongruent findings could also be explained by differences in whole genome sequencing (WGS) technique.

“Although WGS allows sensitive detection of mCA through broad genomic coverage, it is less effective at detecting CHIP with low variant allele frequency (VAF) due to its relatively shallow depth (30x),” they wrote. “Consequently, the prevalence of mCA (18.8%) was much higher than that of CHIP (8.3%) in this cohort, contrasting with other studies using deeper sequencing.” As a result, the present study may have underestimated CHIP prevalence because of shallow sequencing depth.

“This inconsistency is a common challenge in CH population studies due to the lack of standardized methodologies and the frequent reliance on preexisting data not originally intended for CH detection,” Dr. Takahashi and Ms. Shah said.

Even so, despite the “heavily context-dependent” nature of these reported risks, the body of evidence to date now offers a convincing biological rationale linking CH with cancer development and outcomes, they added.
 

 

 

How Do the CHIP- and mCA-associated Risks Differ Between Solid Tumors and Blood Cancers?

“[These solid tumor risks are] not causal in the way CHIP mutations are causal for blood cancers,” Dr. Desai said. “Here we are talking about solid tumor risk, and it’s kind of scattered. It’s not just breast cancer ... there’s also increased colon cancer mortality. So I feel these mutations are doing something different ... they are sort of an added factor.”

Specific mechanisms remain unclear, Dr. Desai said, although she speculated about possible impacts on the inflammatory state or alterations to the tumor microenvironment.

“These are blood cells, right?” Dr. Desai asked. “They’re everywhere, and they’re changing something inherently in these tumors.”
 

Future research and therapeutic development

Siddhartha Jaiswal, MD, PhD, assistant professor in the Department of Pathology at Stanford University in California, whose lab focuses on clonal hematopoiesis, said the causality question is central to future research.

“The key question is, are these mutations acting because they alter the function of blood cells in some way to promote cancer risk, or is it reflective of some sort of shared etiology that’s not causal?” Dr. Jaiswal said in an interview.

Available data support both possibilities.

On one side, “reasonable evidence” supports the noncausal view, Dr. Jaiswal noted, because telomere length is one of the most common genetic risk factors for clonal hematopoiesis and also for solid tumors, suggesting a shared genetic factor. On the other hand, CHIP and mCA could be directly protumorigenic via conferred disturbances of immune cell function.

When asked if both causal and noncausal factors could be at play, Dr. Jaiswal said, “yeah, absolutely.”

The presence of a causal association could be promising from a therapeutic standpoint.

“If it turns out that this association is driven by a direct causal effect of the mutations, perhaps related to immune cell function or dysfunction, then targeting that dysfunction could be a therapeutic path to improve outcomes in people, and there’s a lot of interest in this,” Dr. Jaiswal said. He went on to explain how a trial exploring this approach via interleukin-8 inhibition in lung cancer fell short.

Yet earlier intervention may still hold promise, according to experts.

“[This study] provokes the hypothesis that CH‐targeted interventions could potentially reduce cancer risk in the future,” Dr. Takahashi and Ms. Shah said in their editorial.

The WHI program is funded by the National Heart, Lung, and Blood Institute; National Institutes of Health; and the Department of Health & Human Services. The investigators disclosed relationships with Eli Lilly, AbbVie, Celgene, and others. Dr. Jaiswal reported stock equity in a company that has an interest in clonal hematopoiesis.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Clonal hematopoiesis of indeterminate potential (CHIP) and mosaic chromosomal alterations (mCAs) are associated with an increased risk for breast cancer, and CHIP is associated with increased mortality in patients with colon cancer, according to the authors of new research.

These findings, drawn from almost 11,000 patients in the Women’s Health Initiative (WHI) study, add further evidence that CHIP and mCA drive solid tumor risk, alongside known associations with hematologic malignancies, reported lead author Pinkal Desai, MD, associate professor of medicine and clinical director of molecular aging at Englander Institute for Precision Medicine, Weill Cornell Medical College, New York City, and colleagues.
 

How This Study Differs From Others of Breast Cancer Risk Factors

“The independent effect of CHIP and mCA on risk and mortality from solid tumors has not been elucidated due to lack of detailed data on mortality outcomes and risk factors,” the investigators wrote in Cancer, although some previous studies have suggested a link.

In particular, the investigators highlighted a 2022 UK Biobank study, which reported an association between CHIP and lung cancer and a borderline association with breast cancer that did not quite reach statistical significance.

But the UK Biobank study was confined to a UK population, Dr. Desai noted in an interview, and the data were less detailed than those in the present investigation.

“In terms of risk, the part that was lacking in previous studies was a comprehensive assessment of risk factors that increase risk for all these cancers,” Dr. Desai said. “For example, for breast cancer, we had very detailed data on [participants’] Gail risk score, which is known to impact breast cancer risk. We also had mammogram data and colonoscopy data.”

In an accompanying editorial, Koichi Takahashi, MD, PhD , and Nehali Shah, BS, of The University of Texas MD Anderson Cancer Center, Houston, Texas, pointed out the same UK Biobank findings, then noted that CHIP has also been linked with worse overall survival in unselected cancer patients. Still, they wrote, “the impact of CH on cancer risk and mortality remains controversial due to conflicting data and context‐dependent effects,” necessitating studies like this one by Dr. Desai and colleagues.
 

How Was the Relationship Between CHIP, MCA, and Solid Tumor Risk Assessed?

To explore possible associations between CHIP, mCA, and solid tumors, the investigators analyzed whole genome sequencing data from 10,866 women in the WHI, a multi-study program that began in 1992 and involved 161,808 women in both observational and clinical trial cohorts.

In 2002, the first big data release from the WHI suggested that hormone replacement therapy (HRT) increased breast cancer risk, leading to widespread reduction in HRT use.

More recent reports continue to shape our understanding of these risks, suggesting differences across cancer types. For breast cancer, the WHI data suggested that HRT-associated risk was largely driven by formulations involving progesterone and estrogen, whereas estrogen-only formulations, now more common, are generally considered to present an acceptable risk profile for suitable patients.

The new study accounted for this potential HRT-associated risk, including by adjusting for patients who received HRT, type of HRT received, and duration of HRT received. According to Desai, this approach is commonly used when analyzing data from the WHI, nullifying concerns about the potentially deleterious effects of the hormones used in the study.

“Our question was not ‘does HRT cause cancer?’ ” Dr. Desai said in an interview. “But HRT can be linked to breast cancer risk and has a potential to be a confounder, and hence the above methodology.

“So I can say that the confounding/effect modification that HRT would have contributed to in the relationship between exposure (CH and mCA) and outcome (cancer) is well adjusted for as described above. This is standard in WHI analyses,” she continued.

“Every Women’s Health Initiative analysis that comes out — not just for our study — uses a standard method ... where you account for hormonal therapy,” Dr. Desai added, again noting that many other potential risk factors were considered, enabling a “detailed, robust” analysis.

Dr. Takahashi and Ms. Shah agreed. “A notable strength of this study is its adjustment for many confounding factors,” they wrote. “The cohort’s well‐annotated data on other known cancer risk factors allowed for a robust assessment of CH’s independent risk.”
 

 

 

How Do Findings Compare With Those of the UK Biobank Study?

CHIP was associated with a 30% increased risk for breast cancer (hazard ratio [HR], 1.30; 95% CI, 1.03-1.64; P = .02), strengthening the borderline association reported by the UK Biobank study.

In contrast with the UK Biobank study, CHIP was not associated with lung cancer risk, although this may have been caused by fewer cases of lung cancer and a lack of male patients, Dr. Desai suggested.

“The discrepancy between the studies lies in the risk of lung cancer, although the point estimate in the current study suggested a positive association,” wrote Dr. Takahashi and Ms. Shah.

As in the UK Biobank study, CHIP was not associated with increased risk of developing colorectal cancer.

Mortality analysis, however, which was not conducted in the UK Biobank study, offered a new insight: Patients with existing colorectal cancer and CHIP had a significantly higher mortality risk than those without CHIP. Before stage adjustment, risk for mortality among those with colorectal cancer and CHIP was fourfold higher than those without CHIP (HR, 3.99; 95% CI, 2.41-6.62; P < .001). After stage adjustment, CHIP was still associated with a twofold higher mortality risk (HR, 2.50; 95% CI, 1.32-4.72; P = .004).

The investigators’ first mCA analyses, which employed a cell fraction cutoff greater than 3%, were unfruitful. But raising the cell fraction threshold to 5% in an exploratory analysis showed that autosomal mCA was associated with a 39% increased risk for breast cancer (HR, 1.39; 95% CI, 1.06-1.83; P = .01). No such associations were found between mCA and colorectal or lung cancer, regardless of cell fraction threshold.

The original 3% cell fraction threshold was selected on the basis of previous studies reporting a link between mCA and hematologic malignancies at this cutoff, Dr. Desai said.

She and her colleagues said a higher 5% cutoff might be needed, as they suspected that the link between mCA and solid tumors may not be causal, requiring a higher mutation rate.
 

Why Do Results Differ Between These Types of Studies?

Dr. Takahashi and Ms. Shah suggested that one possible limitation of the new study, and an obstacle to comparing results with the UK Biobank study and others like it, goes beyond population heterogeneity; incongruent findings could also be explained by differences in whole genome sequencing (WGS) technique.

“Although WGS allows sensitive detection of mCA through broad genomic coverage, it is less effective at detecting CHIP with low variant allele frequency (VAF) due to its relatively shallow depth (30x),” they wrote. “Consequently, the prevalence of mCA (18.8%) was much higher than that of CHIP (8.3%) in this cohort, contrasting with other studies using deeper sequencing.” As a result, the present study may have underestimated CHIP prevalence because of shallow sequencing depth.

“This inconsistency is a common challenge in CH population studies due to the lack of standardized methodologies and the frequent reliance on preexisting data not originally intended for CH detection,” Dr. Takahashi and Ms. Shah said.

Even so, despite the “heavily context-dependent” nature of these reported risks, the body of evidence to date now offers a convincing biological rationale linking CH with cancer development and outcomes, they added.
 

 

 

How Do the CHIP- and mCA-associated Risks Differ Between Solid Tumors and Blood Cancers?

“[These solid tumor risks are] not causal in the way CHIP mutations are causal for blood cancers,” Dr. Desai said. “Here we are talking about solid tumor risk, and it’s kind of scattered. It’s not just breast cancer ... there’s also increased colon cancer mortality. So I feel these mutations are doing something different ... they are sort of an added factor.”

Specific mechanisms remain unclear, Dr. Desai said, although she speculated about possible impacts on the inflammatory state or alterations to the tumor microenvironment.

“These are blood cells, right?” Dr. Desai asked. “They’re everywhere, and they’re changing something inherently in these tumors.”
 

Future research and therapeutic development

Siddhartha Jaiswal, MD, PhD, assistant professor in the Department of Pathology at Stanford University in California, whose lab focuses on clonal hematopoiesis, said the causality question is central to future research.

“The key question is, are these mutations acting because they alter the function of blood cells in some way to promote cancer risk, or is it reflective of some sort of shared etiology that’s not causal?” Dr. Jaiswal said in an interview.

Available data support both possibilities.

On one side, “reasonable evidence” supports the noncausal view, Dr. Jaiswal noted, because telomere length is one of the most common genetic risk factors for clonal hematopoiesis and also for solid tumors, suggesting a shared genetic factor. On the other hand, CHIP and mCA could be directly protumorigenic via conferred disturbances of immune cell function.

When asked if both causal and noncausal factors could be at play, Dr. Jaiswal said, “yeah, absolutely.”

The presence of a causal association could be promising from a therapeutic standpoint.

“If it turns out that this association is driven by a direct causal effect of the mutations, perhaps related to immune cell function or dysfunction, then targeting that dysfunction could be a therapeutic path to improve outcomes in people, and there’s a lot of interest in this,” Dr. Jaiswal said. He went on to explain how a trial exploring this approach via interleukin-8 inhibition in lung cancer fell short.

Yet earlier intervention may still hold promise, according to experts.

“[This study] provokes the hypothesis that CH‐targeted interventions could potentially reduce cancer risk in the future,” Dr. Takahashi and Ms. Shah said in their editorial.

The WHI program is funded by the National Heart, Lung, and Blood Institute; National Institutes of Health; and the Department of Health & Human Services. The investigators disclosed relationships with Eli Lilly, AbbVie, Celgene, and others. Dr. Jaiswal reported stock equity in a company that has an interest in clonal hematopoiesis.

A version of this article first appeared on Medscape.com.

Clonal hematopoiesis of indeterminate potential (CHIP) and mosaic chromosomal alterations (mCAs) are associated with an increased risk for breast cancer, and CHIP is associated with increased mortality in patients with colon cancer, according to the authors of new research.

These findings, drawn from almost 11,000 patients in the Women’s Health Initiative (WHI) study, add further evidence that CHIP and mCA drive solid tumor risk, alongside known associations with hematologic malignancies, reported lead author Pinkal Desai, MD, associate professor of medicine and clinical director of molecular aging at Englander Institute for Precision Medicine, Weill Cornell Medical College, New York City, and colleagues.
 

How This Study Differs From Others of Breast Cancer Risk Factors

“The independent effect of CHIP and mCA on risk and mortality from solid tumors has not been elucidated due to lack of detailed data on mortality outcomes and risk factors,” the investigators wrote in Cancer, although some previous studies have suggested a link.

In particular, the investigators highlighted a 2022 UK Biobank study, which reported an association between CHIP and lung cancer and a borderline association with breast cancer that did not quite reach statistical significance.

But the UK Biobank study was confined to a UK population, Dr. Desai noted in an interview, and the data were less detailed than those in the present investigation.

“In terms of risk, the part that was lacking in previous studies was a comprehensive assessment of risk factors that increase risk for all these cancers,” Dr. Desai said. “For example, for breast cancer, we had very detailed data on [participants’] Gail risk score, which is known to impact breast cancer risk. We also had mammogram data and colonoscopy data.”

In an accompanying editorial, Koichi Takahashi, MD, PhD , and Nehali Shah, BS, of The University of Texas MD Anderson Cancer Center, Houston, Texas, pointed out the same UK Biobank findings, then noted that CHIP has also been linked with worse overall survival in unselected cancer patients. Still, they wrote, “the impact of CH on cancer risk and mortality remains controversial due to conflicting data and context‐dependent effects,” necessitating studies like this one by Dr. Desai and colleagues.
 

How Was the Relationship Between CHIP, MCA, and Solid Tumor Risk Assessed?

To explore possible associations between CHIP, mCA, and solid tumors, the investigators analyzed whole genome sequencing data from 10,866 women in the WHI, a multi-study program that began in 1992 and involved 161,808 women in both observational and clinical trial cohorts.

In 2002, the first big data release from the WHI suggested that hormone replacement therapy (HRT) increased breast cancer risk, leading to widespread reduction in HRT use.

More recent reports continue to shape our understanding of these risks, suggesting differences across cancer types. For breast cancer, the WHI data suggested that HRT-associated risk was largely driven by formulations involving progesterone and estrogen, whereas estrogen-only formulations, now more common, are generally considered to present an acceptable risk profile for suitable patients.

The new study accounted for this potential HRT-associated risk, including by adjusting for patients who received HRT, type of HRT received, and duration of HRT received. According to Desai, this approach is commonly used when analyzing data from the WHI, nullifying concerns about the potentially deleterious effects of the hormones used in the study.

“Our question was not ‘does HRT cause cancer?’ ” Dr. Desai said in an interview. “But HRT can be linked to breast cancer risk and has a potential to be a confounder, and hence the above methodology.

“So I can say that the confounding/effect modification that HRT would have contributed to in the relationship between exposure (CH and mCA) and outcome (cancer) is well adjusted for as described above. This is standard in WHI analyses,” she continued.

“Every Women’s Health Initiative analysis that comes out — not just for our study — uses a standard method ... where you account for hormonal therapy,” Dr. Desai added, again noting that many other potential risk factors were considered, enabling a “detailed, robust” analysis.

Dr. Takahashi and Ms. Shah agreed. “A notable strength of this study is its adjustment for many confounding factors,” they wrote. “The cohort’s well‐annotated data on other known cancer risk factors allowed for a robust assessment of CH’s independent risk.”
 

 

 

How Do Findings Compare With Those of the UK Biobank Study?

CHIP was associated with a 30% increased risk for breast cancer (hazard ratio [HR], 1.30; 95% CI, 1.03-1.64; P = .02), strengthening the borderline association reported by the UK Biobank study.

In contrast with the UK Biobank study, CHIP was not associated with lung cancer risk, although this may have been caused by fewer cases of lung cancer and a lack of male patients, Dr. Desai suggested.

“The discrepancy between the studies lies in the risk of lung cancer, although the point estimate in the current study suggested a positive association,” wrote Dr. Takahashi and Ms. Shah.

As in the UK Biobank study, CHIP was not associated with increased risk of developing colorectal cancer.

Mortality analysis, however, which was not conducted in the UK Biobank study, offered a new insight: Patients with existing colorectal cancer and CHIP had a significantly higher mortality risk than those without CHIP. Before stage adjustment, risk for mortality among those with colorectal cancer and CHIP was fourfold higher than those without CHIP (HR, 3.99; 95% CI, 2.41-6.62; P < .001). After stage adjustment, CHIP was still associated with a twofold higher mortality risk (HR, 2.50; 95% CI, 1.32-4.72; P = .004).

The investigators’ first mCA analyses, which employed a cell fraction cutoff greater than 3%, were unfruitful. But raising the cell fraction threshold to 5% in an exploratory analysis showed that autosomal mCA was associated with a 39% increased risk for breast cancer (HR, 1.39; 95% CI, 1.06-1.83; P = .01). No such associations were found between mCA and colorectal or lung cancer, regardless of cell fraction threshold.

The original 3% cell fraction threshold was selected on the basis of previous studies reporting a link between mCA and hematologic malignancies at this cutoff, Dr. Desai said.

She and her colleagues said a higher 5% cutoff might be needed, as they suspected that the link between mCA and solid tumors may not be causal, requiring a higher mutation rate.
 

Why Do Results Differ Between These Types of Studies?

Dr. Takahashi and Ms. Shah suggested that one possible limitation of the new study, and an obstacle to comparing results with the UK Biobank study and others like it, goes beyond population heterogeneity; incongruent findings could also be explained by differences in whole genome sequencing (WGS) technique.

“Although WGS allows sensitive detection of mCA through broad genomic coverage, it is less effective at detecting CHIP with low variant allele frequency (VAF) due to its relatively shallow depth (30x),” they wrote. “Consequently, the prevalence of mCA (18.8%) was much higher than that of CHIP (8.3%) in this cohort, contrasting with other studies using deeper sequencing.” As a result, the present study may have underestimated CHIP prevalence because of shallow sequencing depth.

“This inconsistency is a common challenge in CH population studies due to the lack of standardized methodologies and the frequent reliance on preexisting data not originally intended for CH detection,” Dr. Takahashi and Ms. Shah said.

Even so, despite the “heavily context-dependent” nature of these reported risks, the body of evidence to date now offers a convincing biological rationale linking CH with cancer development and outcomes, they added.
 

 

 

How Do the CHIP- and mCA-associated Risks Differ Between Solid Tumors and Blood Cancers?

“[These solid tumor risks are] not causal in the way CHIP mutations are causal for blood cancers,” Dr. Desai said. “Here we are talking about solid tumor risk, and it’s kind of scattered. It’s not just breast cancer ... there’s also increased colon cancer mortality. So I feel these mutations are doing something different ... they are sort of an added factor.”

Specific mechanisms remain unclear, Dr. Desai said, although she speculated about possible impacts on the inflammatory state or alterations to the tumor microenvironment.

“These are blood cells, right?” Dr. Desai asked. “They’re everywhere, and they’re changing something inherently in these tumors.”
 

Future research and therapeutic development

Siddhartha Jaiswal, MD, PhD, assistant professor in the Department of Pathology at Stanford University in California, whose lab focuses on clonal hematopoiesis, said the causality question is central to future research.

“The key question is, are these mutations acting because they alter the function of blood cells in some way to promote cancer risk, or is it reflective of some sort of shared etiology that’s not causal?” Dr. Jaiswal said in an interview.

Available data support both possibilities.

On one side, “reasonable evidence” supports the noncausal view, Dr. Jaiswal noted, because telomere length is one of the most common genetic risk factors for clonal hematopoiesis and also for solid tumors, suggesting a shared genetic factor. On the other hand, CHIP and mCA could be directly protumorigenic via conferred disturbances of immune cell function.

When asked if both causal and noncausal factors could be at play, Dr. Jaiswal said, “yeah, absolutely.”

The presence of a causal association could be promising from a therapeutic standpoint.

“If it turns out that this association is driven by a direct causal effect of the mutations, perhaps related to immune cell function or dysfunction, then targeting that dysfunction could be a therapeutic path to improve outcomes in people, and there’s a lot of interest in this,” Dr. Jaiswal said. He went on to explain how a trial exploring this approach via interleukin-8 inhibition in lung cancer fell short.

Yet earlier intervention may still hold promise, according to experts.

“[This study] provokes the hypothesis that CH‐targeted interventions could potentially reduce cancer risk in the future,” Dr. Takahashi and Ms. Shah said in their editorial.

The WHI program is funded by the National Heart, Lung, and Blood Institute; National Institutes of Health; and the Department of Health & Human Services. The investigators disclosed relationships with Eli Lilly, AbbVie, Celgene, and others. Dr. Jaiswal reported stock equity in a company that has an interest in clonal hematopoiesis.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM CANCER

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Teclistamab Promising as a Treatment of Last Resort for Refractory Autoimmune Diseases

Article Type
Changed
Thu, 09/05/2024 - 13:36

 

TOPLINE: 

Teclistamab, a T-cell engager that targets B-cell maturation antigen (BCMA), improved disease activity in four patients with refractory autoimmune conditions. In a separately published case report, teclistamab treatment induced remission in a patient with refractory systemic lupus erythematosus (SLE).

BACKGROUND: 

  • Chimeric antigen receptor (CAR) T cells or T-cell engagers against CD19 have been effective in small studies of patients with treatment-resistant autoimmune diseases.
  • Some patients have disease rooted in long-lived plasma cells that express BCMA but not CD19, making them resistant to CD19 CAR T-cell therapy.
  • Teclistamab acts on T cells through CD3 and targets plasmablasts and plasma cells through BCMA.

METHODOLOGY:

  • In one case series, researchers administered teclistamab subcutaneously to four patients with autoimmune diseases resistant to more than five immunosuppressants, including rituximab.
  • Patient 1 had systemic sclerosis, patient 2 had primary Sjögren disease, patient 3 had idiopathic inflammatory myositis, and patient 4 had rheumatoid arthritis.
  • Researchers incrementally increased teclistamab dosage in an inpatient setting: 0.06 mg/kg on day 1, 0.3 mg/kg on day 3, and 1.5 mg/kg on day 5. Patients 2, 3, and 4 received one maintenance dose of 1.5 mg/kg after 4 weeks, and patient 1 received a 1.5-mg/kg dose after 12 weeks.
  • In the single case report, the patient with SLE received a step-up dosage of teclistamab (0.06 mg/kg and 0.3 mg/kg) followed by 0.8 mg/kg on day 7. She received 1.5 mg/kg at weeks 2 and 5.

TAKEAWAY: 

  • Teclistamab therapy led to significant improvements in disease activity in all four patients, with notable reductions in skin disease, arthritis, and lung function scores.
  • Teclistamab therapy had a good safety profile, with no neurotoxicity or myelotoxicity and only lower-grade cytokine release syndrome reported.
  • Researchers observed seroconversion of PM-Scl-75, PM-Scl-100, rheumatoid factor, and autoantibodies against mutated citrullinated vimentin and lower levels of autoantibodies ANA, MDAS, SS-A/Ro, SS-B/La, and PL-7 after treatment.
  • In the separate case report, the patient reached complete drug-free remission by week 6, as defined by the Systemic Lupus Erythematosus Disease Activity Index 2000.
  • The level of anti–double-stranded DNA antibodies in the patient with SLE decreased rapidly, reaching normal range by week 5 and remaining undetectable through week 16.

IN PRACTICE:

“These data show that the targeting of the plasma-cell compartment by a BCMA-targeted T-cell engager is feasible in patients with autoimmune disease. Whether such therapy results in sustained clinical remission warrants further study,” write the authors of the four-patient case series.

SOURCE: 

Melanie Hagen, MD, Friedrich Alexander University Erlangen–Nuremberg, Germany, and colleagues reported their case series online in The New England Journal of Medicine. Tobias Alexander, MD, and colleagues at Charité–Universitätsmedizin Berlin, Germany, also described their single case report in The New England Journal of Medicine.

 

 

LIMITATIONS:

The small number of patients limits the generalizability of the findings. The short duration of follow-up may not capture long-term effects and potential late-onset adverse events. The lack of a control group makes it difficult to attribute improvements solely to teclistamab therapy.

DISCLOSURES:

The four-patient case series was supported by grants from the Deutsche Forschungsgemeinschaft, Bundesministerium für Bildung und Forschung, and the European Union. The single case report was supported by grants from the Deutsche Forschungsgemeinschaft and the European Union. Several authors have disclosed financial relationships with pharmaceutical companies, including Janssen Biotech, which markets teclistamab.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE: 

Teclistamab, a T-cell engager that targets B-cell maturation antigen (BCMA), improved disease activity in four patients with refractory autoimmune conditions. In a separately published case report, teclistamab treatment induced remission in a patient with refractory systemic lupus erythematosus (SLE).

BACKGROUND: 

  • Chimeric antigen receptor (CAR) T cells or T-cell engagers against CD19 have been effective in small studies of patients with treatment-resistant autoimmune diseases.
  • Some patients have disease rooted in long-lived plasma cells that express BCMA but not CD19, making them resistant to CD19 CAR T-cell therapy.
  • Teclistamab acts on T cells through CD3 and targets plasmablasts and plasma cells through BCMA.

METHODOLOGY:

  • In one case series, researchers administered teclistamab subcutaneously to four patients with autoimmune diseases resistant to more than five immunosuppressants, including rituximab.
  • Patient 1 had systemic sclerosis, patient 2 had primary Sjögren disease, patient 3 had idiopathic inflammatory myositis, and patient 4 had rheumatoid arthritis.
  • Researchers incrementally increased teclistamab dosage in an inpatient setting: 0.06 mg/kg on day 1, 0.3 mg/kg on day 3, and 1.5 mg/kg on day 5. Patients 2, 3, and 4 received one maintenance dose of 1.5 mg/kg after 4 weeks, and patient 1 received a 1.5-mg/kg dose after 12 weeks.
  • In the single case report, the patient with SLE received a step-up dosage of teclistamab (0.06 mg/kg and 0.3 mg/kg) followed by 0.8 mg/kg on day 7. She received 1.5 mg/kg at weeks 2 and 5.

TAKEAWAY: 

  • Teclistamab therapy led to significant improvements in disease activity in all four patients, with notable reductions in skin disease, arthritis, and lung function scores.
  • Teclistamab therapy had a good safety profile, with no neurotoxicity or myelotoxicity and only lower-grade cytokine release syndrome reported.
  • Researchers observed seroconversion of PM-Scl-75, PM-Scl-100, rheumatoid factor, and autoantibodies against mutated citrullinated vimentin and lower levels of autoantibodies ANA, MDAS, SS-A/Ro, SS-B/La, and PL-7 after treatment.
  • In the separate case report, the patient reached complete drug-free remission by week 6, as defined by the Systemic Lupus Erythematosus Disease Activity Index 2000.
  • The level of anti–double-stranded DNA antibodies in the patient with SLE decreased rapidly, reaching normal range by week 5 and remaining undetectable through week 16.

IN PRACTICE:

“These data show that the targeting of the plasma-cell compartment by a BCMA-targeted T-cell engager is feasible in patients with autoimmune disease. Whether such therapy results in sustained clinical remission warrants further study,” write the authors of the four-patient case series.

SOURCE: 

Melanie Hagen, MD, Friedrich Alexander University Erlangen–Nuremberg, Germany, and colleagues reported their case series online in The New England Journal of Medicine. Tobias Alexander, MD, and colleagues at Charité–Universitätsmedizin Berlin, Germany, also described their single case report in The New England Journal of Medicine.

 

 

LIMITATIONS:

The small number of patients limits the generalizability of the findings. The short duration of follow-up may not capture long-term effects and potential late-onset adverse events. The lack of a control group makes it difficult to attribute improvements solely to teclistamab therapy.

DISCLOSURES:

The four-patient case series was supported by grants from the Deutsche Forschungsgemeinschaft, Bundesministerium für Bildung und Forschung, and the European Union. The single case report was supported by grants from the Deutsche Forschungsgemeinschaft and the European Union. Several authors have disclosed financial relationships with pharmaceutical companies, including Janssen Biotech, which markets teclistamab.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE: 

Teclistamab, a T-cell engager that targets B-cell maturation antigen (BCMA), improved disease activity in four patients with refractory autoimmune conditions. In a separately published case report, teclistamab treatment induced remission in a patient with refractory systemic lupus erythematosus (SLE).

BACKGROUND: 

  • Chimeric antigen receptor (CAR) T cells or T-cell engagers against CD19 have been effective in small studies of patients with treatment-resistant autoimmune diseases.
  • Some patients have disease rooted in long-lived plasma cells that express BCMA but not CD19, making them resistant to CD19 CAR T-cell therapy.
  • Teclistamab acts on T cells through CD3 and targets plasmablasts and plasma cells through BCMA.

METHODOLOGY:

  • In one case series, researchers administered teclistamab subcutaneously to four patients with autoimmune diseases resistant to more than five immunosuppressants, including rituximab.
  • Patient 1 had systemic sclerosis, patient 2 had primary Sjögren disease, patient 3 had idiopathic inflammatory myositis, and patient 4 had rheumatoid arthritis.
  • Researchers incrementally increased teclistamab dosage in an inpatient setting: 0.06 mg/kg on day 1, 0.3 mg/kg on day 3, and 1.5 mg/kg on day 5. Patients 2, 3, and 4 received one maintenance dose of 1.5 mg/kg after 4 weeks, and patient 1 received a 1.5-mg/kg dose after 12 weeks.
  • In the single case report, the patient with SLE received a step-up dosage of teclistamab (0.06 mg/kg and 0.3 mg/kg) followed by 0.8 mg/kg on day 7. She received 1.5 mg/kg at weeks 2 and 5.

TAKEAWAY: 

  • Teclistamab therapy led to significant improvements in disease activity in all four patients, with notable reductions in skin disease, arthritis, and lung function scores.
  • Teclistamab therapy had a good safety profile, with no neurotoxicity or myelotoxicity and only lower-grade cytokine release syndrome reported.
  • Researchers observed seroconversion of PM-Scl-75, PM-Scl-100, rheumatoid factor, and autoantibodies against mutated citrullinated vimentin and lower levels of autoantibodies ANA, MDAS, SS-A/Ro, SS-B/La, and PL-7 after treatment.
  • In the separate case report, the patient reached complete drug-free remission by week 6, as defined by the Systemic Lupus Erythematosus Disease Activity Index 2000.
  • The level of anti–double-stranded DNA antibodies in the patient with SLE decreased rapidly, reaching normal range by week 5 and remaining undetectable through week 16.

IN PRACTICE:

“These data show that the targeting of the plasma-cell compartment by a BCMA-targeted T-cell engager is feasible in patients with autoimmune disease. Whether such therapy results in sustained clinical remission warrants further study,” write the authors of the four-patient case series.

SOURCE: 

Melanie Hagen, MD, Friedrich Alexander University Erlangen–Nuremberg, Germany, and colleagues reported their case series online in The New England Journal of Medicine. Tobias Alexander, MD, and colleagues at Charité–Universitätsmedizin Berlin, Germany, also described their single case report in The New England Journal of Medicine.

 

 

LIMITATIONS:

The small number of patients limits the generalizability of the findings. The short duration of follow-up may not capture long-term effects and potential late-onset adverse events. The lack of a control group makes it difficult to attribute improvements solely to teclistamab therapy.

DISCLOSURES:

The four-patient case series was supported by grants from the Deutsche Forschungsgemeinschaft, Bundesministerium für Bildung und Forschung, and the European Union. The single case report was supported by grants from the Deutsche Forschungsgemeinschaft and the European Union. Several authors have disclosed financial relationships with pharmaceutical companies, including Janssen Biotech, which markets teclistamab.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article