User login
gambling
compulsive behaviors
ammunition
assault rifle
black jack
Boko Haram
bondage
child abuse
cocaine
Daech
drug paraphernalia
explosion
gun
human trafficking
ISIL
ISIS
Islamic caliphate
Islamic state
mixed martial arts
MMA
molestation
national rifle association
NRA
nsfw
pedophile
pedophilia
poker
porn
pornography
psychedelic drug
recreational drug
sex slave rings
slot machine
terrorism
terrorist
Texas hold 'em
UFC
substance abuse
abuseed
abuseer
abusees
abuseing
abusely
abuses
aeolus
aeolused
aeoluser
aeoluses
aeolusing
aeolusly
aeoluss
ahole
aholeed
aholeer
aholees
aholeing
aholely
aholes
alcohol
alcoholed
alcoholer
alcoholes
alcoholing
alcoholly
alcohols
allman
allmaned
allmaner
allmanes
allmaning
allmanly
allmans
alted
altes
alting
altly
alts
analed
analer
anales
analing
anally
analprobe
analprobeed
analprobeer
analprobees
analprobeing
analprobely
analprobes
anals
anilingus
anilingused
anilinguser
anilinguses
anilingusing
anilingusly
anilinguss
anus
anused
anuser
anuses
anusing
anusly
anuss
areola
areolaed
areolaer
areolaes
areolaing
areolaly
areolas
areole
areoleed
areoleer
areolees
areoleing
areolely
areoles
arian
arianed
arianer
arianes
arianing
arianly
arians
aryan
aryaned
aryaner
aryanes
aryaning
aryanly
aryans
asiaed
asiaer
asiaes
asiaing
asialy
asias
ass
ass hole
ass lick
ass licked
ass licker
ass lickes
ass licking
ass lickly
ass licks
assbang
assbanged
assbangeded
assbangeder
assbangedes
assbangeding
assbangedly
assbangeds
assbanger
assbanges
assbanging
assbangly
assbangs
assbangsed
assbangser
assbangses
assbangsing
assbangsly
assbangss
assed
asser
asses
assesed
asseser
asseses
assesing
assesly
assess
assfuck
assfucked
assfucker
assfuckered
assfuckerer
assfuckeres
assfuckering
assfuckerly
assfuckers
assfuckes
assfucking
assfuckly
assfucks
asshat
asshated
asshater
asshates
asshating
asshatly
asshats
assholeed
assholeer
assholees
assholeing
assholely
assholes
assholesed
assholeser
assholeses
assholesing
assholesly
assholess
assing
assly
assmaster
assmastered
assmasterer
assmasteres
assmastering
assmasterly
assmasters
assmunch
assmunched
assmuncher
assmunches
assmunching
assmunchly
assmunchs
asss
asswipe
asswipeed
asswipeer
asswipees
asswipeing
asswipely
asswipes
asswipesed
asswipeser
asswipeses
asswipesing
asswipesly
asswipess
azz
azzed
azzer
azzes
azzing
azzly
azzs
babeed
babeer
babees
babeing
babely
babes
babesed
babeser
babeses
babesing
babesly
babess
ballsac
ballsaced
ballsacer
ballsaces
ballsacing
ballsack
ballsacked
ballsacker
ballsackes
ballsacking
ballsackly
ballsacks
ballsacly
ballsacs
ballsed
ballser
ballses
ballsing
ballsly
ballss
barf
barfed
barfer
barfes
barfing
barfly
barfs
bastard
bastarded
bastarder
bastardes
bastarding
bastardly
bastards
bastardsed
bastardser
bastardses
bastardsing
bastardsly
bastardss
bawdy
bawdyed
bawdyer
bawdyes
bawdying
bawdyly
bawdys
beaner
beanered
beanerer
beaneres
beanering
beanerly
beaners
beardedclam
beardedclamed
beardedclamer
beardedclames
beardedclaming
beardedclamly
beardedclams
beastiality
beastialityed
beastialityer
beastialityes
beastialitying
beastialityly
beastialitys
beatch
beatched
beatcher
beatches
beatching
beatchly
beatchs
beater
beatered
beaterer
beateres
beatering
beaterly
beaters
beered
beerer
beeres
beering
beerly
beeyotch
beeyotched
beeyotcher
beeyotches
beeyotching
beeyotchly
beeyotchs
beotch
beotched
beotcher
beotches
beotching
beotchly
beotchs
biatch
biatched
biatcher
biatches
biatching
biatchly
biatchs
big tits
big titsed
big titser
big titses
big titsing
big titsly
big titss
bigtits
bigtitsed
bigtitser
bigtitses
bigtitsing
bigtitsly
bigtitss
bimbo
bimboed
bimboer
bimboes
bimboing
bimboly
bimbos
bisexualed
bisexualer
bisexuales
bisexualing
bisexually
bisexuals
bitch
bitched
bitcheded
bitcheder
bitchedes
bitcheding
bitchedly
bitcheds
bitcher
bitches
bitchesed
bitcheser
bitcheses
bitchesing
bitchesly
bitchess
bitching
bitchly
bitchs
bitchy
bitchyed
bitchyer
bitchyes
bitchying
bitchyly
bitchys
bleached
bleacher
bleaches
bleaching
bleachly
bleachs
blow job
blow jobed
blow jober
blow jobes
blow jobing
blow jobly
blow jobs
blowed
blower
blowes
blowing
blowjob
blowjobed
blowjober
blowjobes
blowjobing
blowjobly
blowjobs
blowjobsed
blowjobser
blowjobses
blowjobsing
blowjobsly
blowjobss
blowly
blows
boink
boinked
boinker
boinkes
boinking
boinkly
boinks
bollock
bollocked
bollocker
bollockes
bollocking
bollockly
bollocks
bollocksed
bollockser
bollockses
bollocksing
bollocksly
bollockss
bollok
bolloked
bolloker
bollokes
bolloking
bollokly
bolloks
boner
bonered
bonerer
boneres
bonering
bonerly
boners
bonersed
bonerser
bonerses
bonersing
bonersly
bonerss
bong
bonged
bonger
bonges
bonging
bongly
bongs
boob
boobed
boober
boobes
boobies
boobiesed
boobieser
boobieses
boobiesing
boobiesly
boobiess
boobing
boobly
boobs
boobsed
boobser
boobses
boobsing
boobsly
boobss
booby
boobyed
boobyer
boobyes
boobying
boobyly
boobys
booger
boogered
boogerer
boogeres
boogering
boogerly
boogers
bookie
bookieed
bookieer
bookiees
bookieing
bookiely
bookies
bootee
booteeed
booteeer
booteees
booteeing
booteely
bootees
bootie
bootieed
bootieer
bootiees
bootieing
bootiely
booties
booty
bootyed
bootyer
bootyes
bootying
bootyly
bootys
boozeed
boozeer
boozees
boozeing
boozely
boozer
boozered
boozerer
boozeres
boozering
boozerly
boozers
boozes
boozy
boozyed
boozyer
boozyes
boozying
boozyly
boozys
bosomed
bosomer
bosomes
bosoming
bosomly
bosoms
bosomy
bosomyed
bosomyer
bosomyes
bosomying
bosomyly
bosomys
bugger
buggered
buggerer
buggeres
buggering
buggerly
buggers
bukkake
bukkakeed
bukkakeer
bukkakees
bukkakeing
bukkakely
bukkakes
bull shit
bull shited
bull shiter
bull shites
bull shiting
bull shitly
bull shits
bullshit
bullshited
bullshiter
bullshites
bullshiting
bullshitly
bullshits
bullshitsed
bullshitser
bullshitses
bullshitsing
bullshitsly
bullshitss
bullshitted
bullshitteded
bullshitteder
bullshittedes
bullshitteding
bullshittedly
bullshitteds
bullturds
bullturdsed
bullturdser
bullturdses
bullturdsing
bullturdsly
bullturdss
bung
bunged
bunger
bunges
bunging
bungly
bungs
busty
bustyed
bustyer
bustyes
bustying
bustyly
bustys
butt
butt fuck
butt fucked
butt fucker
butt fuckes
butt fucking
butt fuckly
butt fucks
butted
buttes
buttfuck
buttfucked
buttfucker
buttfuckered
buttfuckerer
buttfuckeres
buttfuckering
buttfuckerly
buttfuckers
buttfuckes
buttfucking
buttfuckly
buttfucks
butting
buttly
buttplug
buttpluged
buttpluger
buttpluges
buttpluging
buttplugly
buttplugs
butts
caca
cacaed
cacaer
cacaes
cacaing
cacaly
cacas
cahone
cahoneed
cahoneer
cahonees
cahoneing
cahonely
cahones
cameltoe
cameltoeed
cameltoeer
cameltoees
cameltoeing
cameltoely
cameltoes
carpetmuncher
carpetmunchered
carpetmuncherer
carpetmuncheres
carpetmunchering
carpetmuncherly
carpetmunchers
cawk
cawked
cawker
cawkes
cawking
cawkly
cawks
chinc
chinced
chincer
chinces
chincing
chincly
chincs
chincsed
chincser
chincses
chincsing
chincsly
chincss
chink
chinked
chinker
chinkes
chinking
chinkly
chinks
chode
chodeed
chodeer
chodees
chodeing
chodely
chodes
chodesed
chodeser
chodeses
chodesing
chodesly
chodess
clit
clited
cliter
clites
cliting
clitly
clitoris
clitorised
clitoriser
clitorises
clitorising
clitorisly
clitoriss
clitorus
clitorused
clitoruser
clitoruses
clitorusing
clitorusly
clitoruss
clits
clitsed
clitser
clitses
clitsing
clitsly
clitss
clitty
clittyed
clittyer
clittyes
clittying
clittyly
clittys
cocain
cocaine
cocained
cocaineed
cocaineer
cocainees
cocaineing
cocainely
cocainer
cocaines
cocaining
cocainly
cocains
cock
cock sucker
cock suckered
cock suckerer
cock suckeres
cock suckering
cock suckerly
cock suckers
cockblock
cockblocked
cockblocker
cockblockes
cockblocking
cockblockly
cockblocks
cocked
cocker
cockes
cockholster
cockholstered
cockholsterer
cockholsteres
cockholstering
cockholsterly
cockholsters
cocking
cockknocker
cockknockered
cockknockerer
cockknockeres
cockknockering
cockknockerly
cockknockers
cockly
cocks
cocksed
cockser
cockses
cocksing
cocksly
cocksmoker
cocksmokered
cocksmokerer
cocksmokeres
cocksmokering
cocksmokerly
cocksmokers
cockss
cocksucker
cocksuckered
cocksuckerer
cocksuckeres
cocksuckering
cocksuckerly
cocksuckers
coital
coitaled
coitaler
coitales
coitaling
coitally
coitals
commie
commieed
commieer
commiees
commieing
commiely
commies
condomed
condomer
condomes
condoming
condomly
condoms
coon
cooned
cooner
coones
cooning
coonly
coons
coonsed
coonser
coonses
coonsing
coonsly
coonss
corksucker
corksuckered
corksuckerer
corksuckeres
corksuckering
corksuckerly
corksuckers
cracked
crackwhore
crackwhoreed
crackwhoreer
crackwhorees
crackwhoreing
crackwhorely
crackwhores
crap
craped
craper
crapes
craping
craply
crappy
crappyed
crappyer
crappyes
crappying
crappyly
crappys
cum
cumed
cumer
cumes
cuming
cumly
cummin
cummined
cumminer
cummines
cumming
cumminged
cumminger
cumminges
cumminging
cummingly
cummings
cummining
cumminly
cummins
cums
cumshot
cumshoted
cumshoter
cumshotes
cumshoting
cumshotly
cumshots
cumshotsed
cumshotser
cumshotses
cumshotsing
cumshotsly
cumshotss
cumslut
cumsluted
cumsluter
cumslutes
cumsluting
cumslutly
cumsluts
cumstain
cumstained
cumstainer
cumstaines
cumstaining
cumstainly
cumstains
cunilingus
cunilingused
cunilinguser
cunilinguses
cunilingusing
cunilingusly
cunilinguss
cunnilingus
cunnilingused
cunnilinguser
cunnilinguses
cunnilingusing
cunnilingusly
cunnilinguss
cunny
cunnyed
cunnyer
cunnyes
cunnying
cunnyly
cunnys
cunt
cunted
cunter
cuntes
cuntface
cuntfaceed
cuntfaceer
cuntfacees
cuntfaceing
cuntfacely
cuntfaces
cunthunter
cunthuntered
cunthunterer
cunthunteres
cunthuntering
cunthunterly
cunthunters
cunting
cuntlick
cuntlicked
cuntlicker
cuntlickered
cuntlickerer
cuntlickeres
cuntlickering
cuntlickerly
cuntlickers
cuntlickes
cuntlicking
cuntlickly
cuntlicks
cuntly
cunts
cuntsed
cuntser
cuntses
cuntsing
cuntsly
cuntss
dago
dagoed
dagoer
dagoes
dagoing
dagoly
dagos
dagosed
dagoser
dagoses
dagosing
dagosly
dagoss
dammit
dammited
dammiter
dammites
dammiting
dammitly
dammits
damn
damned
damneded
damneder
damnedes
damneding
damnedly
damneds
damner
damnes
damning
damnit
damnited
damniter
damnites
damniting
damnitly
damnits
damnly
damns
dick
dickbag
dickbaged
dickbager
dickbages
dickbaging
dickbagly
dickbags
dickdipper
dickdippered
dickdipperer
dickdipperes
dickdippering
dickdipperly
dickdippers
dicked
dicker
dickes
dickface
dickfaceed
dickfaceer
dickfacees
dickfaceing
dickfacely
dickfaces
dickflipper
dickflippered
dickflipperer
dickflipperes
dickflippering
dickflipperly
dickflippers
dickhead
dickheaded
dickheader
dickheades
dickheading
dickheadly
dickheads
dickheadsed
dickheadser
dickheadses
dickheadsing
dickheadsly
dickheadss
dicking
dickish
dickished
dickisher
dickishes
dickishing
dickishly
dickishs
dickly
dickripper
dickrippered
dickripperer
dickripperes
dickrippering
dickripperly
dickrippers
dicks
dicksipper
dicksippered
dicksipperer
dicksipperes
dicksippering
dicksipperly
dicksippers
dickweed
dickweeded
dickweeder
dickweedes
dickweeding
dickweedly
dickweeds
dickwhipper
dickwhippered
dickwhipperer
dickwhipperes
dickwhippering
dickwhipperly
dickwhippers
dickzipper
dickzippered
dickzipperer
dickzipperes
dickzippering
dickzipperly
dickzippers
diddle
diddleed
diddleer
diddlees
diddleing
diddlely
diddles
dike
dikeed
dikeer
dikees
dikeing
dikely
dikes
dildo
dildoed
dildoer
dildoes
dildoing
dildoly
dildos
dildosed
dildoser
dildoses
dildosing
dildosly
dildoss
diligaf
diligafed
diligafer
diligafes
diligafing
diligafly
diligafs
dillweed
dillweeded
dillweeder
dillweedes
dillweeding
dillweedly
dillweeds
dimwit
dimwited
dimwiter
dimwites
dimwiting
dimwitly
dimwits
dingle
dingleed
dingleer
dinglees
dingleing
dinglely
dingles
dipship
dipshiped
dipshiper
dipshipes
dipshiping
dipshiply
dipships
dizzyed
dizzyer
dizzyes
dizzying
dizzyly
dizzys
doggiestyleed
doggiestyleer
doggiestylees
doggiestyleing
doggiestylely
doggiestyles
doggystyleed
doggystyleer
doggystylees
doggystyleing
doggystylely
doggystyles
dong
donged
donger
donges
donging
dongly
dongs
doofus
doofused
doofuser
doofuses
doofusing
doofusly
doofuss
doosh
dooshed
doosher
dooshes
dooshing
dooshly
dooshs
dopeyed
dopeyer
dopeyes
dopeying
dopeyly
dopeys
douchebag
douchebaged
douchebager
douchebages
douchebaging
douchebagly
douchebags
douchebagsed
douchebagser
douchebagses
douchebagsing
douchebagsly
douchebagss
doucheed
doucheer
douchees
doucheing
douchely
douches
douchey
doucheyed
doucheyer
doucheyes
doucheying
doucheyly
doucheys
drunk
drunked
drunker
drunkes
drunking
drunkly
drunks
dumass
dumassed
dumasser
dumasses
dumassing
dumassly
dumasss
dumbass
dumbassed
dumbasser
dumbasses
dumbassesed
dumbasseser
dumbasseses
dumbassesing
dumbassesly
dumbassess
dumbassing
dumbassly
dumbasss
dummy
dummyed
dummyer
dummyes
dummying
dummyly
dummys
dyke
dykeed
dykeer
dykees
dykeing
dykely
dykes
dykesed
dykeser
dykeses
dykesing
dykesly
dykess
erotic
eroticed
eroticer
erotices
eroticing
eroticly
erotics
extacy
extacyed
extacyer
extacyes
extacying
extacyly
extacys
extasy
extasyed
extasyer
extasyes
extasying
extasyly
extasys
fack
facked
facker
fackes
facking
fackly
facks
fag
faged
fager
fages
fagg
fagged
faggeded
faggeder
faggedes
faggeding
faggedly
faggeds
fagger
fagges
fagging
faggit
faggited
faggiter
faggites
faggiting
faggitly
faggits
faggly
faggot
faggoted
faggoter
faggotes
faggoting
faggotly
faggots
faggs
faging
fagly
fagot
fagoted
fagoter
fagotes
fagoting
fagotly
fagots
fags
fagsed
fagser
fagses
fagsing
fagsly
fagss
faig
faiged
faiger
faiges
faiging
faigly
faigs
faigt
faigted
faigter
faigtes
faigting
faigtly
faigts
fannybandit
fannybandited
fannybanditer
fannybandites
fannybanditing
fannybanditly
fannybandits
farted
farter
fartes
farting
fartknocker
fartknockered
fartknockerer
fartknockeres
fartknockering
fartknockerly
fartknockers
fartly
farts
felch
felched
felcher
felchered
felcherer
felcheres
felchering
felcherly
felchers
felches
felching
felchinged
felchinger
felchinges
felchinging
felchingly
felchings
felchly
felchs
fellate
fellateed
fellateer
fellatees
fellateing
fellately
fellates
fellatio
fellatioed
fellatioer
fellatioes
fellatioing
fellatioly
fellatios
feltch
feltched
feltcher
feltchered
feltcherer
feltcheres
feltchering
feltcherly
feltchers
feltches
feltching
feltchly
feltchs
feom
feomed
feomer
feomes
feoming
feomly
feoms
fisted
fisteded
fisteder
fistedes
fisteding
fistedly
fisteds
fisting
fistinged
fistinger
fistinges
fistinging
fistingly
fistings
fisty
fistyed
fistyer
fistyes
fistying
fistyly
fistys
floozy
floozyed
floozyer
floozyes
floozying
floozyly
floozys
foad
foaded
foader
foades
foading
foadly
foads
fondleed
fondleer
fondlees
fondleing
fondlely
fondles
foobar
foobared
foobarer
foobares
foobaring
foobarly
foobars
freex
freexed
freexer
freexes
freexing
freexly
freexs
frigg
frigga
friggaed
friggaer
friggaes
friggaing
friggaly
friggas
frigged
frigger
frigges
frigging
friggly
friggs
fubar
fubared
fubarer
fubares
fubaring
fubarly
fubars
fuck
fuckass
fuckassed
fuckasser
fuckasses
fuckassing
fuckassly
fuckasss
fucked
fuckeded
fuckeder
fuckedes
fuckeding
fuckedly
fuckeds
fucker
fuckered
fuckerer
fuckeres
fuckering
fuckerly
fuckers
fuckes
fuckface
fuckfaceed
fuckfaceer
fuckfacees
fuckfaceing
fuckfacely
fuckfaces
fuckin
fuckined
fuckiner
fuckines
fucking
fuckinged
fuckinger
fuckinges
fuckinging
fuckingly
fuckings
fuckining
fuckinly
fuckins
fuckly
fucknugget
fucknuggeted
fucknuggeter
fucknuggetes
fucknuggeting
fucknuggetly
fucknuggets
fucknut
fucknuted
fucknuter
fucknutes
fucknuting
fucknutly
fucknuts
fuckoff
fuckoffed
fuckoffer
fuckoffes
fuckoffing
fuckoffly
fuckoffs
fucks
fucksed
fuckser
fuckses
fucksing
fucksly
fuckss
fucktard
fucktarded
fucktarder
fucktardes
fucktarding
fucktardly
fucktards
fuckup
fuckuped
fuckuper
fuckupes
fuckuping
fuckuply
fuckups
fuckwad
fuckwaded
fuckwader
fuckwades
fuckwading
fuckwadly
fuckwads
fuckwit
fuckwited
fuckwiter
fuckwites
fuckwiting
fuckwitly
fuckwits
fudgepacker
fudgepackered
fudgepackerer
fudgepackeres
fudgepackering
fudgepackerly
fudgepackers
fuk
fuked
fuker
fukes
fuking
fukly
fuks
fvck
fvcked
fvcker
fvckes
fvcking
fvckly
fvcks
fxck
fxcked
fxcker
fxckes
fxcking
fxckly
fxcks
gae
gaeed
gaeer
gaees
gaeing
gaely
gaes
gai
gaied
gaier
gaies
gaiing
gaily
gais
ganja
ganjaed
ganjaer
ganjaes
ganjaing
ganjaly
ganjas
gayed
gayer
gayes
gaying
gayly
gays
gaysed
gayser
gayses
gaysing
gaysly
gayss
gey
geyed
geyer
geyes
geying
geyly
geys
gfc
gfced
gfcer
gfces
gfcing
gfcly
gfcs
gfy
gfyed
gfyer
gfyes
gfying
gfyly
gfys
ghay
ghayed
ghayer
ghayes
ghaying
ghayly
ghays
ghey
gheyed
gheyer
gheyes
gheying
gheyly
gheys
gigolo
gigoloed
gigoloer
gigoloes
gigoloing
gigololy
gigolos
goatse
goatseed
goatseer
goatsees
goatseing
goatsely
goatses
godamn
godamned
godamner
godamnes
godamning
godamnit
godamnited
godamniter
godamnites
godamniting
godamnitly
godamnits
godamnly
godamns
goddam
goddamed
goddamer
goddames
goddaming
goddamly
goddammit
goddammited
goddammiter
goddammites
goddammiting
goddammitly
goddammits
goddamn
goddamned
goddamner
goddamnes
goddamning
goddamnly
goddamns
goddams
goldenshower
goldenshowered
goldenshowerer
goldenshoweres
goldenshowering
goldenshowerly
goldenshowers
gonad
gonaded
gonader
gonades
gonading
gonadly
gonads
gonadsed
gonadser
gonadses
gonadsing
gonadsly
gonadss
gook
gooked
gooker
gookes
gooking
gookly
gooks
gooksed
gookser
gookses
gooksing
gooksly
gookss
gringo
gringoed
gringoer
gringoes
gringoing
gringoly
gringos
gspot
gspoted
gspoter
gspotes
gspoting
gspotly
gspots
gtfo
gtfoed
gtfoer
gtfoes
gtfoing
gtfoly
gtfos
guido
guidoed
guidoer
guidoes
guidoing
guidoly
guidos
handjob
handjobed
handjober
handjobes
handjobing
handjobly
handjobs
hard on
hard oned
hard oner
hard ones
hard oning
hard only
hard ons
hardknight
hardknighted
hardknighter
hardknightes
hardknighting
hardknightly
hardknights
hebe
hebeed
hebeer
hebees
hebeing
hebely
hebes
heeb
heebed
heeber
heebes
heebing
heebly
heebs
hell
helled
heller
helles
helling
hellly
hells
hemp
hemped
hemper
hempes
hemping
hemply
hemps
heroined
heroiner
heroines
heroining
heroinly
heroins
herp
herped
herper
herpes
herpesed
herpeser
herpeses
herpesing
herpesly
herpess
herping
herply
herps
herpy
herpyed
herpyer
herpyes
herpying
herpyly
herpys
hitler
hitlered
hitlerer
hitleres
hitlering
hitlerly
hitlers
hived
hiver
hives
hiving
hivly
hivs
hobag
hobaged
hobager
hobages
hobaging
hobagly
hobags
homey
homeyed
homeyer
homeyes
homeying
homeyly
homeys
homo
homoed
homoer
homoes
homoey
homoeyed
homoeyer
homoeyes
homoeying
homoeyly
homoeys
homoing
homoly
homos
honky
honkyed
honkyer
honkyes
honkying
honkyly
honkys
hooch
hooched
hoocher
hooches
hooching
hoochly
hoochs
hookah
hookahed
hookaher
hookahes
hookahing
hookahly
hookahs
hooker
hookered
hookerer
hookeres
hookering
hookerly
hookers
hoor
hoored
hoorer
hoores
hooring
hoorly
hoors
hootch
hootched
hootcher
hootches
hootching
hootchly
hootchs
hooter
hootered
hooterer
hooteres
hootering
hooterly
hooters
hootersed
hooterser
hooterses
hootersing
hootersly
hooterss
horny
hornyed
hornyer
hornyes
hornying
hornyly
hornys
houstoned
houstoner
houstones
houstoning
houstonly
houstons
hump
humped
humpeded
humpeder
humpedes
humpeding
humpedly
humpeds
humper
humpes
humping
humpinged
humpinger
humpinges
humpinging
humpingly
humpings
humply
humps
husbanded
husbander
husbandes
husbanding
husbandly
husbands
hussy
hussyed
hussyer
hussyes
hussying
hussyly
hussys
hymened
hymener
hymenes
hymening
hymenly
hymens
inbred
inbreded
inbreder
inbredes
inbreding
inbredly
inbreds
incest
incested
incester
incestes
incesting
incestly
incests
injun
injuned
injuner
injunes
injuning
injunly
injuns
jackass
jackassed
jackasser
jackasses
jackassing
jackassly
jackasss
jackhole
jackholeed
jackholeer
jackholees
jackholeing
jackholely
jackholes
jackoff
jackoffed
jackoffer
jackoffes
jackoffing
jackoffly
jackoffs
jap
japed
japer
japes
japing
japly
japs
japsed
japser
japses
japsing
japsly
japss
jerkoff
jerkoffed
jerkoffer
jerkoffes
jerkoffing
jerkoffly
jerkoffs
jerks
jism
jismed
jismer
jismes
jisming
jismly
jisms
jiz
jized
jizer
jizes
jizing
jizly
jizm
jizmed
jizmer
jizmes
jizming
jizmly
jizms
jizs
jizz
jizzed
jizzeded
jizzeder
jizzedes
jizzeding
jizzedly
jizzeds
jizzer
jizzes
jizzing
jizzly
jizzs
junkie
junkieed
junkieer
junkiees
junkieing
junkiely
junkies
junky
junkyed
junkyer
junkyes
junkying
junkyly
junkys
kike
kikeed
kikeer
kikees
kikeing
kikely
kikes
kikesed
kikeser
kikeses
kikesing
kikesly
kikess
killed
killer
killes
killing
killly
kills
kinky
kinkyed
kinkyer
kinkyes
kinkying
kinkyly
kinkys
kkk
kkked
kkker
kkkes
kkking
kkkly
kkks
klan
klaned
klaner
klanes
klaning
klanly
klans
knobend
knobended
knobender
knobendes
knobending
knobendly
knobends
kooch
kooched
koocher
kooches
koochesed
koocheser
koocheses
koochesing
koochesly
koochess
kooching
koochly
koochs
kootch
kootched
kootcher
kootches
kootching
kootchly
kootchs
kraut
krauted
krauter
krautes
krauting
krautly
krauts
kyke
kykeed
kykeer
kykees
kykeing
kykely
kykes
lech
leched
lecher
leches
leching
lechly
lechs
leper
lepered
leperer
leperes
lepering
leperly
lepers
lesbiansed
lesbianser
lesbianses
lesbiansing
lesbiansly
lesbianss
lesbo
lesboed
lesboer
lesboes
lesboing
lesboly
lesbos
lesbosed
lesboser
lesboses
lesbosing
lesbosly
lesboss
lez
lezbianed
lezbianer
lezbianes
lezbianing
lezbianly
lezbians
lezbiansed
lezbianser
lezbianses
lezbiansing
lezbiansly
lezbianss
lezbo
lezboed
lezboer
lezboes
lezboing
lezboly
lezbos
lezbosed
lezboser
lezboses
lezbosing
lezbosly
lezboss
lezed
lezer
lezes
lezing
lezly
lezs
lezzie
lezzieed
lezzieer
lezziees
lezzieing
lezziely
lezzies
lezziesed
lezzieser
lezzieses
lezziesing
lezziesly
lezziess
lezzy
lezzyed
lezzyer
lezzyes
lezzying
lezzyly
lezzys
lmaoed
lmaoer
lmaoes
lmaoing
lmaoly
lmaos
lmfao
lmfaoed
lmfaoer
lmfaoes
lmfaoing
lmfaoly
lmfaos
loined
loiner
loines
loining
loinly
loins
loinsed
loinser
loinses
loinsing
loinsly
loinss
lubeed
lubeer
lubees
lubeing
lubely
lubes
lusty
lustyed
lustyer
lustyes
lustying
lustyly
lustys
massa
massaed
massaer
massaes
massaing
massaly
massas
masterbate
masterbateed
masterbateer
masterbatees
masterbateing
masterbately
masterbates
masterbating
masterbatinged
masterbatinger
masterbatinges
masterbatinging
masterbatingly
masterbatings
masterbation
masterbationed
masterbationer
masterbationes
masterbationing
masterbationly
masterbations
masturbate
masturbateed
masturbateer
masturbatees
masturbateing
masturbately
masturbates
masturbating
masturbatinged
masturbatinger
masturbatinges
masturbatinging
masturbatingly
masturbatings
masturbation
masturbationed
masturbationer
masturbationes
masturbationing
masturbationly
masturbations
methed
mether
methes
mething
methly
meths
militaryed
militaryer
militaryes
militarying
militaryly
militarys
mofo
mofoed
mofoer
mofoes
mofoing
mofoly
mofos
molest
molested
molester
molestes
molesting
molestly
molests
moolie
moolieed
moolieer
mooliees
moolieing
mooliely
moolies
moron
moroned
moroner
morones
moroning
moronly
morons
motherfucka
motherfuckaed
motherfuckaer
motherfuckaes
motherfuckaing
motherfuckaly
motherfuckas
motherfucker
motherfuckered
motherfuckerer
motherfuckeres
motherfuckering
motherfuckerly
motherfuckers
motherfucking
motherfuckinged
motherfuckinger
motherfuckinges
motherfuckinging
motherfuckingly
motherfuckings
mtherfucker
mtherfuckered
mtherfuckerer
mtherfuckeres
mtherfuckering
mtherfuckerly
mtherfuckers
mthrfucker
mthrfuckered
mthrfuckerer
mthrfuckeres
mthrfuckering
mthrfuckerly
mthrfuckers
mthrfucking
mthrfuckinged
mthrfuckinger
mthrfuckinges
mthrfuckinging
mthrfuckingly
mthrfuckings
muff
muffdiver
muffdivered
muffdiverer
muffdiveres
muffdivering
muffdiverly
muffdivers
muffed
muffer
muffes
muffing
muffly
muffs
murdered
murderer
murderes
murdering
murderly
murders
muthafuckaz
muthafuckazed
muthafuckazer
muthafuckazes
muthafuckazing
muthafuckazly
muthafuckazs
muthafucker
muthafuckered
muthafuckerer
muthafuckeres
muthafuckering
muthafuckerly
muthafuckers
mutherfucker
mutherfuckered
mutherfuckerer
mutherfuckeres
mutherfuckering
mutherfuckerly
mutherfuckers
mutherfucking
mutherfuckinged
mutherfuckinger
mutherfuckinges
mutherfuckinging
mutherfuckingly
mutherfuckings
muthrfucking
muthrfuckinged
muthrfuckinger
muthrfuckinges
muthrfuckinging
muthrfuckingly
muthrfuckings
nad
naded
nader
nades
nading
nadly
nads
nadsed
nadser
nadses
nadsing
nadsly
nadss
nakeded
nakeder
nakedes
nakeding
nakedly
nakeds
napalm
napalmed
napalmer
napalmes
napalming
napalmly
napalms
nappy
nappyed
nappyer
nappyes
nappying
nappyly
nappys
nazi
nazied
nazier
nazies
naziing
nazily
nazis
nazism
nazismed
nazismer
nazismes
nazisming
nazismly
nazisms
negro
negroed
negroer
negroes
negroing
negroly
negros
nigga
niggaed
niggaer
niggaes
niggah
niggahed
niggaher
niggahes
niggahing
niggahly
niggahs
niggaing
niggaly
niggas
niggased
niggaser
niggases
niggasing
niggasly
niggass
niggaz
niggazed
niggazer
niggazes
niggazing
niggazly
niggazs
nigger
niggered
niggerer
niggeres
niggering
niggerly
niggers
niggersed
niggerser
niggerses
niggersing
niggersly
niggerss
niggle
niggleed
niggleer
nigglees
niggleing
nigglely
niggles
niglet
nigleted
nigleter
nigletes
nigleting
nigletly
niglets
nimrod
nimroded
nimroder
nimrodes
nimroding
nimrodly
nimrods
ninny
ninnyed
ninnyer
ninnyes
ninnying
ninnyly
ninnys
nooky
nookyed
nookyer
nookyes
nookying
nookyly
nookys
nuccitelli
nuccitellied
nuccitellier
nuccitellies
nuccitelliing
nuccitellily
nuccitellis
nympho
nymphoed
nymphoer
nymphoes
nymphoing
nympholy
nymphos
opium
opiumed
opiumer
opiumes
opiuming
opiumly
opiums
orgies
orgiesed
orgieser
orgieses
orgiesing
orgiesly
orgiess
orgy
orgyed
orgyer
orgyes
orgying
orgyly
orgys
paddy
paddyed
paddyer
paddyes
paddying
paddyly
paddys
paki
pakied
pakier
pakies
pakiing
pakily
pakis
pantie
pantieed
pantieer
pantiees
pantieing
pantiely
panties
pantiesed
pantieser
pantieses
pantiesing
pantiesly
pantiess
panty
pantyed
pantyer
pantyes
pantying
pantyly
pantys
pastie
pastieed
pastieer
pastiees
pastieing
pastiely
pasties
pasty
pastyed
pastyer
pastyes
pastying
pastyly
pastys
pecker
peckered
peckerer
peckeres
peckering
peckerly
peckers
pedo
pedoed
pedoer
pedoes
pedoing
pedoly
pedophile
pedophileed
pedophileer
pedophilees
pedophileing
pedophilely
pedophiles
pedophilia
pedophiliac
pedophiliaced
pedophiliacer
pedophiliaces
pedophiliacing
pedophiliacly
pedophiliacs
pedophiliaed
pedophiliaer
pedophiliaes
pedophiliaing
pedophilialy
pedophilias
pedos
penial
penialed
penialer
peniales
penialing
penially
penials
penile
penileed
penileer
penilees
penileing
penilely
peniles
penis
penised
peniser
penises
penising
penisly
peniss
perversion
perversioned
perversioner
perversiones
perversioning
perversionly
perversions
peyote
peyoteed
peyoteer
peyotees
peyoteing
peyotely
peyotes
phuck
phucked
phucker
phuckes
phucking
phuckly
phucks
pillowbiter
pillowbitered
pillowbiterer
pillowbiteres
pillowbitering
pillowbiterly
pillowbiters
pimp
pimped
pimper
pimpes
pimping
pimply
pimps
pinko
pinkoed
pinkoer
pinkoes
pinkoing
pinkoly
pinkos
pissed
pisseded
pisseder
pissedes
pisseding
pissedly
pisseds
pisser
pisses
pissing
pissly
pissoff
pissoffed
pissoffer
pissoffes
pissoffing
pissoffly
pissoffs
pisss
polack
polacked
polacker
polackes
polacking
polackly
polacks
pollock
pollocked
pollocker
pollockes
pollocking
pollockly
pollocks
poon
pooned
pooner
poones
pooning
poonly
poons
poontang
poontanged
poontanger
poontanges
poontanging
poontangly
poontangs
porn
porned
porner
pornes
porning
pornly
porno
pornoed
pornoer
pornoes
pornography
pornographyed
pornographyer
pornographyes
pornographying
pornographyly
pornographys
pornoing
pornoly
pornos
porns
prick
pricked
pricker
prickes
pricking
prickly
pricks
prig
priged
priger
priges
priging
prigly
prigs
prostitute
prostituteed
prostituteer
prostitutees
prostituteing
prostitutely
prostitutes
prude
prudeed
prudeer
prudees
prudeing
prudely
prudes
punkass
punkassed
punkasser
punkasses
punkassing
punkassly
punkasss
punky
punkyed
punkyer
punkyes
punkying
punkyly
punkys
puss
pussed
pusser
pusses
pussies
pussiesed
pussieser
pussieses
pussiesing
pussiesly
pussiess
pussing
pussly
pusss
pussy
pussyed
pussyer
pussyes
pussying
pussyly
pussypounder
pussypoundered
pussypounderer
pussypounderes
pussypoundering
pussypounderly
pussypounders
pussys
puto
putoed
putoer
putoes
putoing
putoly
putos
queaf
queafed
queafer
queafes
queafing
queafly
queafs
queef
queefed
queefer
queefes
queefing
queefly
queefs
queer
queered
queerer
queeres
queering
queerly
queero
queeroed
queeroer
queeroes
queeroing
queeroly
queeros
queers
queersed
queerser
queerses
queersing
queersly
queerss
quicky
quickyed
quickyer
quickyes
quickying
quickyly
quickys
quim
quimed
quimer
quimes
quiming
quimly
quims
racy
racyed
racyer
racyes
racying
racyly
racys
rape
raped
rapeded
rapeder
rapedes
rapeding
rapedly
rapeds
rapeed
rapeer
rapees
rapeing
rapely
raper
rapered
raperer
raperes
rapering
raperly
rapers
rapes
rapist
rapisted
rapister
rapistes
rapisting
rapistly
rapists
raunch
raunched
rauncher
raunches
raunching
raunchly
raunchs
rectus
rectused
rectuser
rectuses
rectusing
rectusly
rectuss
reefer
reefered
reeferer
reeferes
reefering
reeferly
reefers
reetard
reetarded
reetarder
reetardes
reetarding
reetardly
reetards
reich
reiched
reicher
reiches
reiching
reichly
reichs
retard
retarded
retardeded
retardeder
retardedes
retardeding
retardedly
retardeds
retarder
retardes
retarding
retardly
retards
rimjob
rimjobed
rimjober
rimjobes
rimjobing
rimjobly
rimjobs
ritard
ritarded
ritarder
ritardes
ritarding
ritardly
ritards
rtard
rtarded
rtarder
rtardes
rtarding
rtardly
rtards
rum
rumed
rumer
rumes
ruming
rumly
rump
rumped
rumper
rumpes
rumping
rumply
rumprammer
rumprammered
rumprammerer
rumprammeres
rumprammering
rumprammerly
rumprammers
rumps
rums
ruski
ruskied
ruskier
ruskies
ruskiing
ruskily
ruskis
sadism
sadismed
sadismer
sadismes
sadisming
sadismly
sadisms
sadist
sadisted
sadister
sadistes
sadisting
sadistly
sadists
scag
scaged
scager
scages
scaging
scagly
scags
scantily
scantilyed
scantilyer
scantilyes
scantilying
scantilyly
scantilys
schlong
schlonged
schlonger
schlonges
schlonging
schlongly
schlongs
scrog
scroged
scroger
scroges
scroging
scrogly
scrogs
scrot
scrote
scroted
scroteed
scroteer
scrotees
scroteing
scrotely
scroter
scrotes
scroting
scrotly
scrots
scrotum
scrotumed
scrotumer
scrotumes
scrotuming
scrotumly
scrotums
scrud
scruded
scruder
scrudes
scruding
scrudly
scruds
scum
scumed
scumer
scumes
scuming
scumly
scums
seaman
seamaned
seamaner
seamanes
seamaning
seamanly
seamans
seamen
seamened
seamener
seamenes
seamening
seamenly
seamens
seduceed
seduceer
seducees
seduceing
seducely
seduces
semen
semened
semener
semenes
semening
semenly
semens
shamedame
shamedameed
shamedameer
shamedamees
shamedameing
shamedamely
shamedames
shit
shite
shiteater
shiteatered
shiteaterer
shiteateres
shiteatering
shiteaterly
shiteaters
shited
shiteed
shiteer
shitees
shiteing
shitely
shiter
shites
shitface
shitfaceed
shitfaceer
shitfacees
shitfaceing
shitfacely
shitfaces
shithead
shitheaded
shitheader
shitheades
shitheading
shitheadly
shitheads
shithole
shitholeed
shitholeer
shitholees
shitholeing
shitholely
shitholes
shithouse
shithouseed
shithouseer
shithousees
shithouseing
shithousely
shithouses
shiting
shitly
shits
shitsed
shitser
shitses
shitsing
shitsly
shitss
shitt
shitted
shitteded
shitteder
shittedes
shitteding
shittedly
shitteds
shitter
shittered
shitterer
shitteres
shittering
shitterly
shitters
shittes
shitting
shittly
shitts
shitty
shittyed
shittyer
shittyes
shittying
shittyly
shittys
shiz
shized
shizer
shizes
shizing
shizly
shizs
shooted
shooter
shootes
shooting
shootly
shoots
sissy
sissyed
sissyer
sissyes
sissying
sissyly
sissys
skag
skaged
skager
skages
skaging
skagly
skags
skank
skanked
skanker
skankes
skanking
skankly
skanks
slave
slaveed
slaveer
slavees
slaveing
slavely
slaves
sleaze
sleazeed
sleazeer
sleazees
sleazeing
sleazely
sleazes
sleazy
sleazyed
sleazyer
sleazyes
sleazying
sleazyly
sleazys
slut
slutdumper
slutdumpered
slutdumperer
slutdumperes
slutdumpering
slutdumperly
slutdumpers
sluted
sluter
slutes
sluting
slutkiss
slutkissed
slutkisser
slutkisses
slutkissing
slutkissly
slutkisss
slutly
sluts
slutsed
slutser
slutses
slutsing
slutsly
slutss
smegma
smegmaed
smegmaer
smegmaes
smegmaing
smegmaly
smegmas
smut
smuted
smuter
smutes
smuting
smutly
smuts
smutty
smuttyed
smuttyer
smuttyes
smuttying
smuttyly
smuttys
snatch
snatched
snatcher
snatches
snatching
snatchly
snatchs
sniper
snipered
sniperer
sniperes
snipering
sniperly
snipers
snort
snorted
snorter
snortes
snorting
snortly
snorts
snuff
snuffed
snuffer
snuffes
snuffing
snuffly
snuffs
sodom
sodomed
sodomer
sodomes
sodoming
sodomly
sodoms
spic
spiced
spicer
spices
spicing
spick
spicked
spicker
spickes
spicking
spickly
spicks
spicly
spics
spik
spoof
spoofed
spoofer
spoofes
spoofing
spoofly
spoofs
spooge
spoogeed
spoogeer
spoogees
spoogeing
spoogely
spooges
spunk
spunked
spunker
spunkes
spunking
spunkly
spunks
steamyed
steamyer
steamyes
steamying
steamyly
steamys
stfu
stfued
stfuer
stfues
stfuing
stfuly
stfus
stiffy
stiffyed
stiffyer
stiffyes
stiffying
stiffyly
stiffys
stoneded
stoneder
stonedes
stoneding
stonedly
stoneds
stupided
stupider
stupides
stupiding
stupidly
stupids
suckeded
suckeder
suckedes
suckeding
suckedly
suckeds
sucker
suckes
sucking
suckinged
suckinger
suckinges
suckinging
suckingly
suckings
suckly
sucks
sumofabiatch
sumofabiatched
sumofabiatcher
sumofabiatches
sumofabiatching
sumofabiatchly
sumofabiatchs
tard
tarded
tarder
tardes
tarding
tardly
tards
tawdry
tawdryed
tawdryer
tawdryes
tawdrying
tawdryly
tawdrys
teabagging
teabagginged
teabagginger
teabagginges
teabagginging
teabaggingly
teabaggings
terd
terded
terder
terdes
terding
terdly
terds
teste
testee
testeed
testeeed
testeeer
testeees
testeeing
testeely
testeer
testees
testeing
testely
testes
testesed
testeser
testeses
testesing
testesly
testess
testicle
testicleed
testicleer
testiclees
testicleing
testiclely
testicles
testis
testised
testiser
testises
testising
testisly
testiss
thrusted
thruster
thrustes
thrusting
thrustly
thrusts
thug
thuged
thuger
thuges
thuging
thugly
thugs
tinkle
tinkleed
tinkleer
tinklees
tinkleing
tinklely
tinkles
tit
tited
titer
tites
titfuck
titfucked
titfucker
titfuckes
titfucking
titfuckly
titfucks
titi
titied
titier
tities
titiing
titily
titing
titis
titly
tits
titsed
titser
titses
titsing
titsly
titss
tittiefucker
tittiefuckered
tittiefuckerer
tittiefuckeres
tittiefuckering
tittiefuckerly
tittiefuckers
titties
tittiesed
tittieser
tittieses
tittiesing
tittiesly
tittiess
titty
tittyed
tittyer
tittyes
tittyfuck
tittyfucked
tittyfucker
tittyfuckered
tittyfuckerer
tittyfuckeres
tittyfuckering
tittyfuckerly
tittyfuckers
tittyfuckes
tittyfucking
tittyfuckly
tittyfucks
tittying
tittyly
tittys
toke
tokeed
tokeer
tokees
tokeing
tokely
tokes
toots
tootsed
tootser
tootses
tootsing
tootsly
tootss
tramp
tramped
tramper
trampes
tramping
tramply
tramps
transsexualed
transsexualer
transsexuales
transsexualing
transsexually
transsexuals
trashy
trashyed
trashyer
trashyes
trashying
trashyly
trashys
tubgirl
tubgirled
tubgirler
tubgirles
tubgirling
tubgirlly
tubgirls
turd
turded
turder
turdes
turding
turdly
turds
tush
tushed
tusher
tushes
tushing
tushly
tushs
twat
twated
twater
twates
twating
twatly
twats
twatsed
twatser
twatses
twatsing
twatsly
twatss
undies
undiesed
undieser
undieses
undiesing
undiesly
undiess
unweded
unweder
unwedes
unweding
unwedly
unweds
uzi
uzied
uzier
uzies
uziing
uzily
uzis
vag
vaged
vager
vages
vaging
vagly
vags
valium
valiumed
valiumer
valiumes
valiuming
valiumly
valiums
venous
virgined
virginer
virgines
virgining
virginly
virgins
vixen
vixened
vixener
vixenes
vixening
vixenly
vixens
vodkaed
vodkaer
vodkaes
vodkaing
vodkaly
vodkas
voyeur
voyeured
voyeurer
voyeures
voyeuring
voyeurly
voyeurs
vulgar
vulgared
vulgarer
vulgares
vulgaring
vulgarly
vulgars
wang
wanged
wanger
wanges
wanging
wangly
wangs
wank
wanked
wanker
wankered
wankerer
wankeres
wankering
wankerly
wankers
wankes
wanking
wankly
wanks
wazoo
wazooed
wazooer
wazooes
wazooing
wazooly
wazoos
wedgie
wedgieed
wedgieer
wedgiees
wedgieing
wedgiely
wedgies
weeded
weeder
weedes
weeding
weedly
weeds
weenie
weenieed
weenieer
weeniees
weenieing
weeniely
weenies
weewee
weeweeed
weeweeer
weeweees
weeweeing
weeweely
weewees
weiner
weinered
weinerer
weineres
weinering
weinerly
weiners
weirdo
weirdoed
weirdoer
weirdoes
weirdoing
weirdoly
weirdos
wench
wenched
wencher
wenches
wenching
wenchly
wenchs
wetback
wetbacked
wetbacker
wetbackes
wetbacking
wetbackly
wetbacks
whitey
whiteyed
whiteyer
whiteyes
whiteying
whiteyly
whiteys
whiz
whized
whizer
whizes
whizing
whizly
whizs
whoralicious
whoralicioused
whoraliciouser
whoraliciouses
whoraliciousing
whoraliciously
whoraliciouss
whore
whorealicious
whorealicioused
whorealiciouser
whorealiciouses
whorealiciousing
whorealiciously
whorealiciouss
whored
whoreded
whoreder
whoredes
whoreding
whoredly
whoreds
whoreed
whoreer
whorees
whoreface
whorefaceed
whorefaceer
whorefacees
whorefaceing
whorefacely
whorefaces
whorehopper
whorehoppered
whorehopperer
whorehopperes
whorehoppering
whorehopperly
whorehoppers
whorehouse
whorehouseed
whorehouseer
whorehousees
whorehouseing
whorehousely
whorehouses
whoreing
whorely
whores
whoresed
whoreser
whoreses
whoresing
whoresly
whoress
whoring
whoringed
whoringer
whoringes
whoringing
whoringly
whorings
wigger
wiggered
wiggerer
wiggeres
wiggering
wiggerly
wiggers
woody
woodyed
woodyer
woodyes
woodying
woodyly
woodys
wop
woped
woper
wopes
woping
woply
wops
wtf
wtfed
wtfer
wtfes
wtfing
wtfly
wtfs
xxx
xxxed
xxxer
xxxes
xxxing
xxxly
xxxs
yeasty
yeastyed
yeastyer
yeastyes
yeastying
yeastyly
yeastys
yobbo
yobboed
yobboer
yobboes
yobboing
yobboly
yobbos
zoophile
zoophileed
zoophileer
zoophilees
zoophileing
zoophilely
zoophiles
anal
ass
ass lick
balls
ballsac
bisexual
bleach
causas
cheap
cost of miracles
cunt
display network stats
fart
fda and death
fda AND warn
fda AND warning
fda AND warns
feom
fuck
gfc
humira AND expensive
illegal
madvocate
masturbation
nuccitelli
overdose
porn
shit
snort
texarkana
effective for the treatment of a baby
effective for the treatment of a boy
effective for the treatment of a child
effective for the treatment of a female
effective for the treatment of a girl
effective for the treatment of a kid
effective for the treatment of a minor
effective for the treatment of a newborn
effective for the treatment of a teen
effective for the treatment of a teenager
effective for the treatment of a toddler
effective for the treatment of a woman
effective for the treatment of adolescents
effective for the treatment of an adolescent
effective for the treatment of an infant
effective for the treatment of babies
effective for the treatment of baby
effective for the treatment of body building
effective for the treatment of boys
effective for the treatment of breast feeding
effective for the treatment of children
effective for the treatment of females
effective for the treatment of fetus
effective for the treatment of girls
effective for the treatment of infants
effective for the treatment of kids
effective for the treatment of minors
effective for the treatment of newborn
effective for the treatment of pediatric
effective for the treatment of pregnancy
effective for the treatment of pregnant
effective for the treatment of teenagers
effective for the treatment of teens
effective for the treatment of toddlers
effective for the treatment of women
effective for the treatment of youths
for the relief of a baby
for the relief of a boy
for the relief of a child
for the relief of a female
for the relief of a girl
for the relief of a kid
for the relief of a minor
for the relief of a newborn
for the relief of a teen
for the relief of a teenager
for the relief of a toddler
for the relief of a woman
for the relief of adolescents
for the relief of an adolescent
for the relief of an infant
for the relief of babies
for the relief of baby
for the relief of body building
for the relief of boys
for the relief of breast feeding
for the relief of children
for the relief of females
for the relief of fetus
for the relief of girls
for the relief of infants
for the relief of kids
for the relief of minors
for the relief of newborn
for the relief of pediatric
for the relief of pregnancy
for the relief of pregnant
for the relief of teenagers
for the relief of teens
for the relief of toddlers
for the relief of women
for the relief of youths
medicating a baby
medicating a boy
medicating a child
medicating a female
medicating a girl
medicating a kid
medicating a minor
medicating a newborn
medicating a teen
medicating a teenager
medicating a toddler
medicating a woman
medicating adolescents
medicating an adolescent
medicating an infant
medicating babies
medicating baby
medicating body building
medicating boys
medicating breast feeding
medicating children
medicating females
medicating fetus
medicating girls
medicating infants
medicating kids
medicating minors
medicating newborn
medicating pediatric
medicating pregnancy
medicating pregnant
medicating teenagers
medicating teens
medicating toddlers
medicating women
medicating youths
at risk for a baby
at risk for a boy
at risk for a child
at risk for a female
at risk for a girl
at risk for a kid
at risk for a minor
at risk for a newborn
at risk for a teen
at risk for a teenager
at risk for a toddler
at risk for a woman
at risk for adolescents
at risk for an adolescent
at risk for an infant
at risk for babies
at risk for baby
at risk for body building
at risk for boys
at risk for breast feeding
at risk for children
at risk for females
at risk for fetus
at risk for girls
at risk for infants
at risk for kids
at risk for minors
at risk for newborn
at risk for pediatric
at risk for pregnancy
at risk for pregnant
at risk for teenagers
at risk for teens
at risk for toddlers
at risk for women
at risk for youths
treating a baby
treating a boy
treating a child
treating a female
treating a girl
treating a kid
treating a minor
treating a newborn
treating a teen
treating a teenager
treating a toddler
treating a woman
treating adolescents
treating an adolescent
treating an infant
treating babies
treating baby
treating body building
treating boys
treating breast feeding
treating children
treating females
treating fetus
treating girls
treating infants
treating kids
treating minors
treating newborn
treating pediatric
treating pregnancy
treating pregnant
treating teenagers
treating teens
treating toddlers
treating women
treating youths
treatment for a baby
treatment for a boy
treatment for a child
treatment for a female
treatment for a girl
treatment for a kid
treatment for a minor
treatment for a newborn
treatment for a teen
treatment for a teenager
treatment for a toddler
treatment for a woman
treatment for adolescents
treatment for an adolescent
treatment for an infant
treatment for babies
treatment for baby
treatment for body building
treatment for boys
treatment for breast feeding
treatment for children
treatment for females
treatment for fetus
treatment for girls
treatment for infants
treatment for kids
treatment for minors
treatment for newborn
treatment for pediatric
treatment for pregnancy
treatment for pregnant
treatment for teenagers
treatment for teens
treatment for toddlers
treatment for women
treatment for youths
treatments for a baby
treatments for a boy
treatments for a child
treatments for a female
treatments for a girl
treatments for a kid
treatments for a minor
treatments for a newborn
treatments for a teen
treatments for a teenager
treatments for a toddler
treatments for a woman
treatments for adolescents
treatments for an adolescent
treatments for an infant
treatments for babies
treatments for baby
treatments for body building
treatments for boys
treatments for breast feeding
treatments for children
treatments for females
treatments for fetus
treatments for girls
treatments for infants
treatments for kids
treatments for minors
treatments for newborn
treatments for pediatric
treatments for pregnancy
treatments for pregnant
treatments for teenagers
treatments for teens
treatments for toddlers
treatments for women
treatments for youths
diagnosing a baby
diagnosing a boy
diagnosing a child
diagnosing a female
diagnosing a girl
diagnosing a kid
diagnosing a minor
diagnosing a newborn
diagnosing a teen
diagnosing a teenager
diagnosing a toddler
diagnosing a woman
diagnosing adolescents
diagnosing an adolescent
diagnosing an infant
diagnosing babies
diagnosing baby
diagnosing body building
diagnosing boys
diagnosing breast feeding
diagnosing children
diagnosing females
diagnosing fetus
diagnosing girls
diagnosing infants
diagnosing kids
diagnosing minors
diagnosing newborn
diagnosing pediatric
diagnosing pregnancy
diagnosing pregnant
diagnosing teenagers
diagnosing teens
diagnosing toddlers
diagnosing women
diagnosing youths
indicated for a baby
indicated for a boy
indicated for a child
indicated for a female
indicated for a girl
indicated for a kid
indicated for a minor
indicated for a newborn
indicated for a teen
indicated for a teenager
indicated for a toddler
indicated for a woman
indicated for adolescents
indicated for an adolescent
indicated for an infant
indicated for babies
indicated for baby
indicated for body building
indicated for boys
indicated for breast feeding
indicated for children
indicated for females
indicated for fetus
indicated for girls
indicated for infants
indicated for kids
indicated for minors
indicated for newborn
indicated for pediatric
indicated for pregnancy
indicated for pregnant
indicated for teenagers
indicated for teens
indicated for toddlers
indicated for women
indicated for youths
useful for a baby
useful for a boy
useful for a child
useful for a female
useful for a girl
useful for a kid
useful for a minor
useful for a newborn
useful for a teen
useful for a teenager
useful for a toddler
useful for a woman
useful for adolescents
useful for an adolescent
useful for an infant
useful for babies
useful for baby
useful for body building
useful for boys
useful for breast feeding
useful for children
useful for females
useful for fetus
useful for girls
useful for infants
useful for kids
useful for minors
useful for newborn
useful for pediatric
useful for pregnancy
useful for pregnant
useful for teenagers
useful for teens
useful for toddlers
useful for women
useful for youths
effective for a baby
effective for a boy
effective for a child
effective for a female
effective for a girl
effective for a kid
effective for a minor
effective for a newborn
effective for a teen
effective for a teenager
effective for a toddler
effective for a woman
effective for adolescents
effective for an adolescent
effective for an infant
effective for babies
effective for baby
effective for body building
effective for boys
effective for breast feeding
effective for children
effective for females
effective for fetus
effective for girls
effective for infants
effective for kids
effective for minors
effective for newborn
effective for pediatric
effective for pregnancy
effective for pregnant
effective for teenagers
effective for teens
effective for toddlers
effective for women
effective for youths
cures for a baby
cures for a boy
cures for a child
cures for a female
cures for a girl
cures for a kid
cures for a minor
cures for a newborn
cures for a teen
cures for a teenager
cures for a toddler
cures for a woman
cures for adolescents
cures for an adolescent
cures for an infant
cures for babies
cures for baby
cures for body building
cures for boys
cures for breast feeding
cures for children
cures for females
cures for fetus
cures for girls
cures for infants
cures for kids
cures for minors
cures for newborn
cures for pediatric
cures for pregnancy
cures for pregnant
cures for teenagers
cures for teens
cures for toddlers
cures for women
cures for youths
use in a baby
use in a boy
use in a child
use in a female
use in a girl
use in a kid
use in a minor
use in a newborn
use in a teen
use in a teenager
use in a toddler
use in a woman
use in adolescents
use in an adolescent
use in an infant
use in babies
use in baby
use in body building
use in boys
use in breast feeding
use in children
use in females
use in fetus
use in girls
use in infants
use in kids
use in minors
use in newborn
use in pediatric
use in pregnancy
use in pregnant
use in teenagers
use in teens
use in toddlers
use in women
use in youths
use in patients with a baby
use in patients with a boy
use in patients with a child
use in patients with a female
use in patients with a girl
use in patients with a kid
use in patients with a minor
use in patients with a newborn
use in patients with a teen
use in patients with a teenager
use in patients with a toddler
use in patients with a woman
use in patients with adolescents
use in patients with an adolescent
use in patients with an infant
use in patients with babies
use in patients with baby
use in patients with body building
use in patients with boys
use in patients with breast feeding
use in patients with children
use in patients with females
use in patients with fetus
use in patients with girls
use in patients with infants
use in patients with kids
use in patients with minors
use in patients with newborn
use in patients with pediatric
use in patients with pregnancy
use in patients with pregnant
use in patients with teenagers
use in patients with teens
use in patients with toddlers
use in patients with women
use in patients with youths
a baby diagnosis
a boy diagnosis
a child diagnosis
a female diagnosis
a girl diagnosis
a kid diagnosis
a minor diagnosis
a newborn diagnosis
a teen diagnosis
a teenager diagnosis
a toddler diagnosis
a woman diagnosis
adolescents diagnosis
an adolescent diagnosis
an infant diagnosis
babies diagnosis
baby diagnosis
body building diagnosis
boys diagnosis
breast feeding diagnosis
children diagnosis
females diagnosis
fetus diagnosis
girls diagnosis
infants diagnosis
kids diagnosis
minors diagnosis
newborn diagnosis
pediatric diagnosis
pregnancy diagnosis
pregnant diagnosis
teenagers diagnosis
teens diagnosis
toddlers diagnosis
women diagnosis
youths diagnosis
a baby medication
a boy medication
a child medication
a female medication
a girl medication
a kid medication
a minor medication
a newborn medication
a teen medication
a teenager medication
a toddler medication
a woman medication
adolescents medication
an adolescent medication
an infant medication
babies medication
baby medication
body building medication
boys medication
breast feeding medication
children medication
females medication
fetus medication
girls medication
infants medication
kids medication
minors medication
newborn medication
pediatric medication
pregnancy medication
pregnant medication
teenagers medication
teens medication
toddlers medication
women medication
youths medication
a baby therapy
a boy therapy
a child therapy
a female therapy
a girl therapy
a kid therapy
a minor therapy
a newborn therapy
a teen therapy
a teenager therapy
a toddler therapy
a woman therapy
adolescents therapy
an adolescent therapy
an infant therapy
babies therapy
baby therapy
body building therapy
boys therapy
breast feeding therapy
children therapy
females therapy
fetus therapy
girls therapy
infants therapy
kids therapy
minors therapy
newborn therapy
pediatric therapy
pregnancy therapy
pregnant therapy
teenagers therapy
teens therapy
toddlers therapy
women therapy
youths therapy
a baby treatment
a boy treatment
a child treatment
a female treatment
a girl treatment
a kid treatment
a minor treatment
a newborn treatment
a teen treatment
a teenager treatment
a toddler treatment
a woman treatment
adolescents treatment
an adolescent treatment
an infant treatment
babies treatment
baby treatment
body building treatment
boys treatment
breast feeding treatment
children treatment
females treatment
fetus treatment
girls treatment
infants treatment
kids treatment
minors treatment
newborn treatment
pediatric treatment
pregnancy treatment
pregnant treatment
teenagers treatment
teens treatment
toddlers treatment
women treatment
youths treatment
a baby cure
a boy cure
a child cure
a female cure
a girl cure
a kid cure
a minor cure
a newborn cure
a teen cure
a teenager cure
a toddler cure
a woman cure
adolescents cure
an adolescent cure
an infant cure
babies cure
baby cure
body building cure
boys cure
breast feeding cure
children cure
females cure
fetus cure
girls cure
infants cure
kids cure
minors cure
newborn cure
pediatric cure
pregnancy cure
pregnant cure
teenagers cure
teens cure
toddlers cure
women cure
youths cure
a baby symptoms
a boy symptoms
a child symptoms
a female symptoms
a girl symptoms
a kid symptoms
a minor symptoms
a newborn symptoms
a teen symptoms
a teenager symptoms
a toddler symptoms
a woman symptoms
adolescents symptoms
an adolescent symptoms
an infant symptoms
babies symptoms
baby symptoms
body building symptoms
boys symptoms
breast feeding symptoms
children symptoms
females symptoms
fetus symptoms
girls symptoms
infants symptoms
kids symptoms
minors symptoms
newborn symptoms
pediatric symptoms
pregnancy symptoms
pregnant symptoms
teenagers symptoms
teens symptoms
toddlers symptoms
women symptoms
youths symptoms
a baby medicine
a boy medicine
a child medicine
a female medicine
a girl medicine
a kid medicine
a minor medicine
a newborn medicine
a teen medicine
a teenager medicine
a toddler medicine
a woman medicine
adolescents medicine
an adolescent medicine
an infant medicine
babies medicine
baby medicine
body building medicine
boys medicine
breast feeding medicine
children medicine
females medicine
fetus medicine
girls medicine
infants medicine
kids medicine
minors medicine
newborn medicine
pediatric medicine
pregnancy medicine
pregnant medicine
teenagers medicine
teens medicine
toddlers medicine
women medicine
youths medicine
a baby usage
a boy usage
a child usage
a female usage
a girl usage
a kid usage
a minor usage
a newborn usage
a teen usage
a teenager usage
a toddler usage
a woman usage
adolescents usage
an adolescent usage
an infant usage
babies usage
baby usage
body building usage
boys usage
breast feeding usage
children usage
females usage
fetus usage
girls usage
infants usage
kids usage
minors usage
newborn usage
pediatric usage
pregnancy usage
pregnant usage
teenagers usage
teens usage
toddlers usage
women usage
youths usage
a baby remedy
a boy remedy
a child remedy
a female remedy
a girl remedy
a kid remedy
a minor remedy
a newborn remedy
a teen remedy
a teenager remedy
a toddler remedy
a woman remedy
adolescents remedy
an adolescent remedy
an infant remedy
babies remedy
baby remedy
body building remedy
boys remedy
breast feeding remedy
children remedy
females remedy
fetus remedy
girls remedy
infants remedy
kids remedy
minors remedy
newborn remedy
pediatric remedy
pregnancy remedy
pregnant remedy
teenagers remedy
teens remedy
toddlers remedy
women remedy
youths remedy
a baby prescription
a boy prescription
a child prescription
a female prescription
a girl prescription
a kid prescription
a minor prescription
a newborn prescription
a teen prescription
a teenager prescription
a toddler prescription
a woman prescription
adolescents prescription
an adolescent prescription
an infant prescription
babies prescription
baby prescription
body building prescription
boys prescription
breast feeding prescription
children prescription
females prescription
fetus prescription
girls prescription
infants prescription
kids prescription
minors prescription
newborn prescription
pediatric prescription
pregnancy prescription
pregnant prescription
teenagers prescription
teens prescription
toddlers prescription
women prescription
youths prescription
a baby pill
a boy pill
a child pill
a female pill
a girl pill
a kid pill
a minor pill
a newborn pill
a teen pill
a teenager pill
a toddler pill
a woman pill
adolescents pill
an adolescent pill
an infant pill
babies pill
baby pill
body building pill
boys pill
breast feeding pill
children pill
females pill
fetus pill
girls pill
infants pill
kids pill
minors pill
newborn pill
pediatric pill
pregnancy pill
pregnant pill
teenagers pill
teens pill
toddlers pill
women pill
youths pill
a baby drug
a boy drug
a child drug
a female drug
a girl drug
a kid drug
a minor drug
a newborn drug
a teen drug
a teenager drug
a toddler drug
a woman drug
adolescents drug
an adolescent drug
an infant drug
babies drug
baby drug
body building drug
boys drug
breast feeding drug
children drug
females drug
fetus drug
girls drug
infants drug
kids drug
minors drug
newborn drug
pediatric drug
pregnancy drug
pregnant drug
teenagers drug
teens drug
toddlers drug
women drug
youths drug
a baby tablet
a boy tablet
a child tablet
a female tablet
a girl tablet
a kid tablet
a minor tablet
a newborn tablet
a teen tablet
a teenager tablet
a toddler tablet
a woman tablet
adolescents tablet
an adolescent tablet
an infant tablet
babies tablet
baby tablet
body building tablet
boys tablet
breast feeding tablet
children tablet
females tablet
fetus tablet
girls tablet
infants tablet
kids tablet
minors tablet
newborn tablet
pediatric tablet
pregnancy tablet
pregnant tablet
teenagers tablet
teens tablet
toddlers tablet
women tablet
youths tablet
a baby management
a boy management
a child management
a female management
a girl management
a kid management
a minor management
a newborn management
a teen management
a teenager management
a toddler management
a woman management
adolescents management
an adolescent management
an infant management
babies management
baby management
body building management
boys management
breast feeding management
children management
females management
fetus management
girls management
infants management
kids management
minors management
newborn management
pediatric management
pregnancy management
pregnant management
teenagers management
teens management
toddlers management
women management
youths management
a baby indication
a boy indication
a child indication
a female indication
a girl indication
a kid indication
a minor indication
a newborn indication
a teen indication
a teenager indication
a toddler indication
a woman indication
adolescents indication
an adolescent indication
an infant indication
babies indication
baby indication
body building indication
boys indication
breast feeding indication
children indication
females indication
fetus indication
girls indication
infants indication
kids indication
minors indication
newborn indication
pediatric indication
pregnancy indication
pregnant indication
teenagers indication
teens indication
toddlers indication
women indication
youths indication
breast cancer a baby
breast cancer a boy
breast cancer a child
breast cancer a female
breast cancer a girl
breast cancer a kid
breast cancer a minor
breast cancer a newborn
breast cancer a teen
breast cancer a teenager
breast cancer a toddler
breast cancer a woman
breast cancer adolescents
breast cancer an adolescent
breast cancer an infant
breast cancer babies
breast cancer baby
breast cancer body building
breast cancer boys
breast cancer breast feeding
breast cancer children
breast cancer females
breast cancer fetus
breast cancer girls
breast cancer infants
breast cancer kids
breast cancer minors
breast cancer newborn
breast cancer pediatric
breast cancer pregnancy
breast cancer pregnant
breast cancer teenagers
breast cancer teens
breast cancer toddlers
breast cancer women
breast cancer youths
prostate cancer a baby
prostate cancer a boy
prostate cancer a child
prostate cancer a female
prostate cancer a girl
prostate cancer a kid
prostate cancer a minor
prostate cancer a newborn
prostate cancer a teen
prostate cancer a teenager
prostate cancer a toddler
prostate cancer a woman
prostate cancer adolescents
prostate cancer an adolescent
prostate cancer an infant
prostate cancer babies
prostate cancer baby
prostate cancer body building
prostate cancer boys
prostate cancer breast feeding
prostate cancer children
prostate cancer females
prostate cancer fetus
prostate cancer girls
prostate cancer infants
prostate cancer kids
prostate cancer minors
prostate cancer newborn
prostate cancer pediatric
prostate cancer pregnancy
prostate cancer pregnant
prostate cancer teenagers
prostate cancer teens
prostate cancer toddlers
prostate cancer women
prostate cancer youths
steroid a baby
steroid a boy
steroid a child
steroid a female
steroid a girl
steroid a kid
steroid a minor
steroid a newborn
steroid a teen
steroid a teenager
steroid a toddler
steroid a woman
steroid adolescents
steroid an adolescent
steroid an infant
steroid babies
steroid baby
steroid body building
steroid boys
steroid breast feeding
steroid children
steroid females
steroid fetus
steroid girls
steroid infants
steroid kids
steroid minors
steroid newborn
steroid pediatric
steroid pregnancy
steroid pregnant
steroid teenagers
steroid teens
steroid toddlers
steroid women
steroid youths
steroids a baby
steroids a boy
steroids a child
steroids a female
steroids a girl
steroids a kid
steroids a minor
steroids a newborn
steroids a teen
steroids a teenager
steroids a toddler
steroids a woman
steroids adolescents
steroids an adolescent
steroids an infant
steroids babies
steroids baby
steroids body building
steroids boys
steroids breast feeding
steroids children
steroids females
steroids fetus
steroids girls
steroids infants
steroids kids
steroids minors
steroids newborn
steroids pediatric
steroids pregnancy
steroids pregnant
steroids teenagers
steroids teens
steroids toddlers
steroids women
steroids youths
abbvie
AbbVie
acid
addicted
addiction
adolescent
adult sites
Advocacy
advocacy
agitated states
AJO, postsurgical analgesic, knee, replacement, surgery
alcohol
amphetamine
androgen
antibody
apple cider vinegar
assistance
Assistance
association
at home
attorney
audit
ayurvedic
baby
ban
baricitinib
bed bugs
best
bible
bisexual
black
bleach
blog
bulimia nervosa
buy
cannabis
certificate
certification
certified
cervical cancer, concurrent chemoradiotherapy, intravoxel incoherent motion magnetic resonance imaging, MRI, IVIM, diffusion-weighted MRI, DWI
charlie sheen
cheap
cheapest
child
childhood
childlike
children
chronic fatigue syndrome
Cladribine Tablets
cocaine
cock
combination therapies, synergistic antitumor efficacy, pertuzumab, trastuzumab, ipilimumab, nivolumab, palbociclib, letrozole, lapatinib, docetaxel, trametinib, dabrafenib, carflzomib, lenalidomide
contagious
Cortical Lesions
cream
creams
crime
criminal
cure
dangerous
dangers
dasabuvir
Dasabuvir
dead
deadly
death
dementia
dependence
dependent
depression
dermatillomania
die
diet
Disability
Discount
discount
dog
drink
drug abuse
drug-induced
dying
eastern medicine
eat
ect
eczema
electroconvulsive therapy
electromagnetic therapy
electrotherapy
epa
epilepsy
erectile dysfunction
explosive disorder
fake
Fake-ovir
fatal
fatalities
fatality
fibromyalgia
financial
Financial
fish oil
food
foods
foundation
free
Gabriel Pardo
gaston
general hospital
genetic
geriatric
Giancarlo Comi
gilead
Gilead
glaucoma
Glenn S. Williams
Glenn Williams
Gloria Dalla Costa
gonorrhea
Greedy
greedy
guns
hallucinations
harvoni
Harvoni
herbal
herbs
heroin
herpes
Hidradenitis Suppurativa
holistic
home
home remedies
home remedy
homeopathic
homeopathy
hydrocortisone
ice
image
images
job
kid
kids
kill
killer
laser
lawsuit
lawyer
ledipasvir
Ledipasvir
lesbian
lesions
lights
liver
lupus
marijuana
melancholic
memory loss
menopausal
mental retardation
military
milk
moisturizers
monoamine oxidase inhibitor drugs
MRI
MS
murder
national
natural
natural cure
natural cures
natural medications
natural medicine
natural medicines
natural remedies
natural remedy
natural treatment
natural treatments
naturally
Needy
needy
Neurology Reviews
neuropathic
nightclub massacre
nightclub shooting
nude
nudity
nutraceuticals
OASIS
oasis
off label
ombitasvir
Ombitasvir
ombitasvir/paritaprevir/ritonavir with dasabuvir
orlando shooting
overactive thyroid gland
overdose
overdosed
Paolo Preziosa
paritaprevir
Paritaprevir
pediatric
pedophile
photo
photos
picture
post partum
postnatal
pregnancy
pregnant
prenatal
prepartum
prison
program
Program
Protest
protest
psychedelics
pulse nightclub
puppy
purchase
purchasing
rape
recall
recreational drug
Rehabilitation
Retinal Measurements
retrograde ejaculation
risperdal
ritonavir
Ritonavir
ritonavir with dasabuvir
robin williams
sales
sasquatch
schizophrenia
seizure
seizures
sex
sexual
sexy
shock treatment
silver
sleep disorders
smoking
sociopath
sofosbuvir
Sofosbuvir
sovaldi
ssri
store
sue
suicidal
suicide
supplements
support
Support
Support Path
teen
teenage
teenagers
Telerehabilitation
testosterone
Th17
Th17:FoxP3+Treg cell ratio
Th22
toxic
toxin
tragedy
treatment resistant
V Pak
vagina
velpatasvir
Viekira Pa
Viekira Pak
viekira pak
violence
virgin
vitamin
VPak
weight loss
withdrawal
wrinkles
xxx
young adult
young adults
zoloft
financial
sofosbuvir
ritonavir with dasabuvir
discount
support path
program
ritonavir
greedy
ledipasvir
assistance
viekira pak
vpak
advocacy
needy
protest
abbvie
paritaprevir
ombitasvir
direct-acting antivirals
dasabuvir
gilead
fake-ovir
support
v pak
oasis
harvoni
section[contains(@class, 'nav-hidden')]
footer[@id='footer']
div[contains(@class, 'pane-pub-article-imn')]
div[contains(@class, 'pane-pub-home-imn')]
div[contains(@class, 'pane-pub-topic-imn')]
div[contains(@class, 'panel-panel-inner')]
div[contains(@class, 'pane-node-field-article-topics')]
section[contains(@class, 'footer-nav-section-wrapper')]
The Strange Untold Story of How Science Solved Narcolepsy
It was 1996, and Masashi Yanagisawa was on the brink of his next discovery.
The Japanese scientist had arrived at the University of Texas Southwestern in Dallas 5 years earlier, setting up his own lab at age 31. After earning his medical degree, he’d gained notoriety as a PhD student when he discovered endothelin, the body’s most potent vasoconstrictor.
Yanagisawa was about to prove this wasn’t a first-timer’s fluke.
His focus was G-protein–coupled receptors (GPCRs), cell surface receptors that respond to a range of molecules and a popular target for drug discovery. The Human Genome Project had just revealed a slew of newly discovered receptors, or “orphan” GPCRs, and identifying an activating molecule could yield a new drug. (That vasoconstrictor endothelin was one such success story, leading to four new drug approvals in the United States over the past quarter century.)
Yanagisawa and his team created 50 cell lines, each expressing one orphan receptor. They applied animal tissue to every line, along with a calcium-sensitive dye. If the cells glowed under the microscope, they had a hit.
“He was basically doing an elaborate fishing expedition,” said Jon Willie, MD, PhD, an associate professor of neurosurgery at Washington University School of Medicine in St. Louis, Missouri, who would later join Yanagisawa’s team.
It wasn’t long before the neon-green fluorescence signaled a match. After isolating the activating molecule, the scientists realized they were dealing with two neuropeptides.
No one had ever seen these proteins before. And no one knew their discovery would set off a decades-long journey that would finally solve a century-old medical mystery — and may even fix one of the biggest health crises of our time, as revealed by research published earlier in 2024. It’s a story of strange coincidences, serendipitous discoveries, and quirky details. Most of all, it’s a fascinating example of how basic science can revolutionize medicine — and how true breakthroughs happen over time and in real time.
But That’s Basic Science for You
Most basic science studies — the early, foundational research that provides the building blocks for science that follows — don’t lead to medical breakthroughs. But some do, often in surprising ways.
Also called curiosity-driven research, basic science aims to fill knowledge gaps to keep science moving, even if the trajectory isn’t always clear.
“The people working on the basic research that led to discoveries that transformed the modern world had no idea at the time,” said Isobel Ronai, PhD, a postdoctoral fellow in life sciences at Harvard University, Cambridge, Massachusetts. “Often, these stories can only be seen in hindsight,” sometimes decades later.
Case in point: For molecular biology techniques — things like DNA sequencing and gene targeting — the lag between basic science and breakthrough is, on average, 23 years. While many of the resulting techniques have received Nobel Prizes, few of the foundational discoveries have been awarded such accolades.
“The scientific glory is more often associated with the downstream applications,” said Ronai. “The importance of basic research can get lost. But it is the foundation for any future application, such as drug development.”
As funding is increasingly funneled toward applied research, basic science can require a certain persistence. What this under-appreciation can obscure is the pathway to discovery — which is often as compelling as the end result, full of unpredictable twists, turns, and even interpersonal intrigue.
And then there’s the fascinating — and definitely complicated — phenomenon of multiple independent discoveries.
As in: What happens when two independent teams discover the same thing at the same time?
Back to Yanagisawa’s Lab ...
... where he and his team learned a few things about those new neuropeptides. Rat brain studies pinpointed the lateral hypothalamus as the peptides’ area of activity — a region often called the brain’s feeding center.
“If you destroy that part of the brain, animals lose appetite,” said Yanagisawa. So these peptides must control feeding, the scientists thought.
Sure enough, injecting the proteins into rat brains led the rodents to start eating.
Satisfied, the team named them “orexin-A” and “orexin-B,” for the Greek word “orexis,” meaning appetite. The brain receptors became “orexin-1” and “orexin-2.” The team prepared to publish its findings in Cell.
But another group beat them to it.
Introducing the ‘Hypocretins’
In early January 1998, a team of Scripps Research Institute scientists, led by J. Gregor Sutcliffe, PhD, released a paper in the journal PNAS. They described a gene encoding for the precursor to two neuropeptides
As the peptides were in the hypothalamus and structurally like secretin (a gut hormone), they called them “hypocretins.” The hypocretin peptides excited neurons in the hypothalamus, and later that year, the scientists discovered that the neurons’ branches extended, tentacle-like, throughout the brain. “Many of the connected areas were involved in sleep-wake control,” said Thomas Kilduff, PhD, who joined the Sutcliffe lab just weeks before the hypocretin discovery. At the time, however, the significance of this finding was not yet clear.
Weeks later, in February 1998, Yanagisawa’s paper came out.
Somehow, two groups, over 1000 miles apart, had stumbled on the same neuropeptides at the same time.
“I first heard about [Yanagisawa’s] paper on NBC Nightly News,” recalls Kilduff. “I was skiing in the mountains, so I had to wait until Monday to get back to the lab to see what the paper was all about.”
He realized that Yanagisawa’s orexin was his lab’s hypocretin, although the study didn’t mention another team’s discovery.
“There may have been accusations. But as far as I know, it’s because [Yanagisawa] didn’t know [about the other paper],” said Willie. “This was not something he produced in 2 months. This was clearly years of work.”
‘Multiple Discovery’ Happens More Often Than You Think
In the mid-20th century, sociologist Robert Merton described the phenomenon of “multiple discovery,” where many scientific discoveries or inventions are made independently at roughly the same time.
“This happens much more frequently in scientific research than people suppose,” said David Pendlebury, head of research analysis at Clarivate’s Institute for Scientific Information, the analytics company’s research arm. (Last year, Pendlebury flagged the hypocretin/orexin discovery for Clarivate’s prestigious Citations Laureates award, an honor that aims to predict, often successfully, who will go on to win the Nobel Prize.)
“People have this idea of the lone researcher making a brilliant discovery,” Pendlebury said. “But more and more, teams find things at the same time.”
While this can — and does — lead to squabbling about who deserves credit, the desire to be first can also be highly motivating, said Mike Schneider, PhD, an assistant professor of philosophy at the University of Missouri, Columbia, who studies the social dynamics of science, potentially leading to faster scientific advancement.
The downside? If two groups produce the same or similar results, but one publishes first, scientific journals tend to reject the second, citing a lack of novelty.
Yet duplicating research is a key step in confirming the validity of a discovery.
That’s why, in 2018, the journal PLOS Biology created a provision for “scooped” scientists, allowing them to submit their paper within 6 months of the first as a complementary finding. Instead of viewing this as redundancy, the editors believe it adds robustness to the research.
‘What the Heck Is This Mouse Doing?’
Even though he’d been scooped, Yanagisawa forged on to the next challenge: Confirming whether orexin regulated feeding.
He began breeding mice missing the orexin gene. His team expected these “knockout” mice to eat less, resulting in a thinner body than other rodents. To the contrary, “they were on average fatter,” said Willie. “They were eating less but weighed more, indicating a slower metabolism.”
The researchers were befuddled. “We were really disappointed, almost desperate about what to do,” said Yanagisawa.
As nocturnal animals eat more at night, he decided they should study the mice after dark. One of his students, Richard Chemelli, MD, bought an infrared video camera from Radio Shack, filming the first 4 hours of the mice’s active period for several nights.
After watching the footage, “Rick called me and said, ‘Let’s get into the lab,’ ” said Willie. “It was four of us on a Saturday looking at these videos, saying, ‘What the heck is this mouse doing?’ ”
While exploring their habitat, the knockout mice would randomly fall over, pop back up after a minute or so, and resume normal activity. This happened over and over — and the scientists were unsure why.
They began monitoring the mice’s brains during these episodes — and made a startling discovery.
The mice weren’t having seizures. They were shifting directly into REM sleep, bypassing the non-REM stage, then quickly toggling back to wake mode.
“That’s when we knew these animals had something akin to narcolepsy,” said Willie.
The team recruited Thomas Scammell, MD, a Harvard neurologist, to investigate whether modafinil — an anti-narcoleptic drug without a clear mechanism — affected orexin neurons.
Two hours after injecting the mice with the medication, the scientists sacrificed them and stained their brains. Remarkably, the number of neurons showing orexin activity had increased ninefold. It seemed modafinil worked by activating the orexin system.
These findings had the potential to crack open the science of narcolepsy, one of the most mysterious sleep disorders.
Unless, of course, another team did it first.
The Mystery of Narcolepsy
Yet another multiple discovery, narcolepsy was first described by two scientists — one in Germany, the other in France — within a short span in the late 1800s.
It would be more than a hundred years before anyone understood the disorder’s cause, even though it affects about 1 in 2000 people.
“Patients were often labeled as lazy and malingerers,” said Kilduff, “since they were sleepy all the time and had this weird motor behavior called cataplexy” or the sudden loss of muscle tone.
In the early 1970s, William Dement, MD, PhD — “the father of sleep medicine” — was searching for a narcoleptic cat to study. He couldn’t find a feline, but several colleagues mentioned dogs with narcolepsy-like symptoms.
Dement, who died in 2020, had found his newest research subjects.
In 1973, he started a narcoleptic dog colony at Stanford University in Palo Alto, California. At first, he focused on poodles and beagles. After discovering their narcolepsy wasn’t genetic, he pivoted to dobermans and labradors. Their narcolepsy was inherited, so he could breed them to populate the colony.
Although human narcolepsy is rarely genetic, it’s otherwise a lot like the version in these dogs.
Both involve daytime sleepiness, “pathological” bouts of REM sleep, and the loss of muscle tone in response to emotions, often positive ones.
The researchers hoped the canines could unlock a treatment for human narcolepsy. They began laying out a path of dog kibble, then injecting the dogs with drugs such as selective serotonin reuptake inhibitors. They wanted to see what might help them stay awake as they excitedly chowed down.
Kilduff also started a molecular genetics program, trying to identify the genetic defect behind canine narcolepsy. But after a parvovirus outbreak, Kilduff resigned from the project, drained from the strain of seeing so many dogs die.
A decade after his departure from the dog colony, his work would dramatically intersect with that of his successor, Emmanuel Mignot, MD, PhD.
“I thought I had closed the narcolepsy chapter in my life forever,” said Kilduff. “Then in 1998, we described this novel neuropeptide, hypocretin, that turned out to be the key to understanding the disorder.”
Narcoleptic Dogs in California, Mutant Mice in Texas
It was modafinil — the same anti-narcoleptic drug Yanagisawa’s team studied — that brought Emmanuel Mignot to the United States. After training as a pharmacologist in France, his home country sent him to Stanford to study the drug, which was discovered by French scientists, as his required military service.
As Kilduff’s replacement at the dog colony, his goal was to figure out how modafinil worked, hoping to attract a US company to develop the drug.
The plan succeeded. Modafinil became Provigil, a billion-dollar narcolepsy drug, and Mignot became “completely fascinated” with the disorder.
“I realized quickly that there was no way we’d find the cause of narcolepsy by finding the mode of action of this drug,” Mignot said. “Most likely, the drug was acting downstream, not at the cause of the disorder.”
To discover the answer, he needed to become a geneticist. And so began his 11-year odyssey to find the cause of canine narcolepsy.
After mapping the dog genome, Mignot set out to find the smallest stretch of chromosome that the narcoleptic animals had in common. “For a very long time, we were stuck with a relatively large region [of DNA],” he recalls. “It was a no man’s land.”
Within that region was the gene for the hypocretin/orexin-2 receptor — the same receptor that Yanagisawa had identified in his first orexin paper. Mignot didn’t immediately pursue that gene as a possibility — even though his students suggested it. Why?
“The decision was simply: Should we lose time to test a possible candidate [gene] among many?” Mignot said.
As Mignot studied dog DNA in California, Yanagisawa was creating mutant mice in Texas. Unbeknownst to either scientist, their work was about to converge.
What Happened Next Is Somewhat Disputed
After diagnosing his mice with narcolepsy, Yanagisawa opted not to share this finding with Mignot, though he knew about Mignot’s interest in the condition. Instead, he asked a colleague to find out how far along Mignot was in his genetics research.
According to Yanagisawa, his colleague didn’t realize how quickly DNA sequencing could happen once a target gene was identified. At a sleep meeting, “he showed Emmanuel all of our raw data. Almost accidentally, he disclosed our findings,” he said. “It was a shock for me.”
Unsure whether he was part of the orexin group, Mignot decided not to reveal that he’d identified the hypocretin/orexin-2 receptor gene as the faulty one in his narcoleptic dogs.
Although he didn’t share this finding, Mignot said he did offer to speak with the lead researcher to see if their findings were the same. If they were, they could jointly submit their articles. But Mignot never heard back.
Meanwhile, back at his lab, Mignot buckled down. While he wasn’t convinced the mouse data proved anything, it did give him the motivation to move faster.
Within weeks, he submitted his findings to Cell, revealing a mutation in the hypocretin/orexin-2 receptor gene as the cause of canine narcolepsy. According to Yanagisawa, the journal’s editor invited him to peer-review the paper, tipping him off to its existence.
“I told him I had a conflict of interest,” said Yanagisawa. “And then we scrambled to finish our manuscript. We wrote up the paper within almost 5 days.”
For a moment, it seemed both papers would be published together in Cell. Instead, on August 6, 1999, Mignot’s study was splashed solo across the journal’s cover.
“At the time, our team was pissed off, but looking back, what else could Emmanuel have done?” said Willie, who was part of Yanagisawa’s team. “The grant he’d been working on for years was at risk. He had it within his power to do the final experiments. Of course he was going to finish.”
Two weeks later, Yanagisawa’s findings followed, also in Cell.
His paper proposed knockout mice as a model for human narcolepsy and orexin as a key regulator of the sleep/wake cycle. With orexin-activated neurons branching into other areas of the brain, the peptide seemed to promote wakefulness by synchronizing several arousal neurotransmitters, such as serotonin, norepinephrine, and histamine.
“If you don’t have orexin, each of those systems can still function, but they’re not as coordinated,” said Willie. “If you have narcolepsy, you’re capable of wakefulness, and you’re capable of sleep. What you can’t do is prevent inappropriately switching between states.”
Together, the two papers painted a clear picture: Narcolepsy was the result of a dysfunction in the hypocretin/orexin system.
After more than a century, the cause of narcolepsy was starting to come into focus.
“This was blockbuster,” said Willie.
By itself, either finding — one in dogs, one in mice — might have been met with skepticism. But in combination, they offered indisputable evidence about narcolepsy’s cause.
The Human Brains in Your Fridge Hold Secrets
Jerome Siegel had been searching for the cause of human narcolepsy for years. A PhD and professor at the University of California, Los Angeles, he had managed to acquire four human narcoleptic brains. As laughter is often the trigger for the sudden shift to REM sleep in humans, he focused on the amygdala, an area linked to emotion.
“I looked in the amygdala and didn’t see anything,” he said. “So the brains stayed in my refrigerator for probably 10 years.”
Then he was invited to review Yanagisawa’s study in Cell. The lightbulb clicked on: Maybe the hypothalamus — not the amygdala — was the area of abnormality. He and his team dug out the decade-old brains.
When they stained the brains, the massive loss of hypocretin-activated neurons was hard to miss: On average, the narcoleptic brains had only about 7000 of the cells versus 70,000 in the average human brain. The scientists also noticed scar tissue in the hypothalamus, indicating that the neurons had at some point died, rather than being absent from birth.
What Siegel didn’t know: Mignot had also acquired a handful of human narcoleptic brains.
Already, he had coauthored a study showing that hypocretin/orexin was undetectable in the cerebrospinal fluid of the majority of the people with narcolepsy his team tested. It seemed clear that the hypocretin/orexin system was flawed — or even broken — in people with the condition.
“It looked like the cause of narcolepsy in humans was indeed this lack of orexin in the brain,” he said. “That was the hypothesis immediately. To me, this is when we established that narcolepsy in humans was due to a lack of orexin. The next thing was to check that the cells were missing.”
Now he could do exactly that.
As expected, Mignot’s team observed a dramatic loss of hypocretin/orexin cells in the narcoleptic brains. They also noticed that a different cell type in the hypothalamus was unaffected. This implied the damage was specific to the hypocretin-activated cells and supported a hunch they already had: That the deficit was the result not of a genetic defect but of an autoimmune attack. (It’s a hypothesis Mignot has spent the last 15 years proving.)
It wasn’t until a gathering in Hawaii, in late August 2000, that the two realized the overlap of their work.
To celebrate his team’s finding, Mignot had invited a group of researchers to Big Island. With his paper scheduled for publication on September 1, he felt comfortable presenting his findings to his guests, which included Siegel.
Until then, “I didn’t know what he had found, and he didn’t know what I had found, which basically was the same thing,” said Siegel.
In yet another strange twist, the two papers were published just weeks apart, simultaneously revealing that human narcoleptics have a depleted supply of the neurons that bind to hypocretin/orexin. The cause of the disorder was at last a certainty.
“Even if I was first, what does it matter? In the end, you need confirmation,” said Mignot. “You need multiple people to make sure that it’s true. It’s good science when things like this happen.”
How All of This Changed Medicine
Since these groundbreaking discoveries, the diagnosis of narcolepsy has become much simpler. Lab tests can now easily measure hypocretin in cerebrospinal fluid, providing a definitive diagnosis.
But the development of narcolepsy treatments has lagged — even though hypocretin/orexin replacement therapy is the obvious answer.
“Almost 25 years have elapsed, and there’s no such therapeutic on the market,” said Kilduff, who now works for SRI International, a non-profit research and development institute.
That’s partly because agonists — drugs that bind to receptors in the brain — are challenging to create, as this requires mimicking the activating molecule’s structure, like copying the grooves of an intricate key.
Antagonists, by comparison, are easier to develop. These act as a gate, blocking access to the receptors. As a result, drugs that promote sleep by thwarting hypocretin/orexin have emerged more quickly, providing a flurry of new options for people with insomnia. The first, suvorexant, was launched in 2014. Two others followed in recent years.
Researchers are hopeful a hypocretin/orexin agonist is on the horizon.
“This is a very hot area of drug development,” said Kilduff. “It’s just a matter of who’s going to get the drug to market first.”
One More Hypocretin/Orexin Surprise — and It Could Be The Biggest
Several years ago, Siegel’s lab received what was supposed to be a healthy human brain — one they could use as a comparison for narcoleptic brains. But researcher Thomas Thannickal, PhD, lead author of the UCLA study linking hypocretin loss to human narcolepsy, noticed something strange: This brain had significantly more hypocretin neurons than average.
Was this due to a seizure? A traumatic death? Siegel called the brain bank to request the donor’s records. He was told they were missing.
Years later, Siegel happened to be visiting the brain bank for another project and found himself in a room adjacent to the medical records. “Nobody was there,” he said, “so I just opened a drawer.”
Shuffling through the brain bank’s files, Siegel found the medical records he’d been told were lost. In the file was a note from the donor, explaining that he was a former heroin addict.
“I almost fell out of my chair,” said Siegel. “I realized this guy’s heroin addiction likely had something to do with his very unusual brain.”
Obviously, opioids affected the orexin system. But how?
“It’s when people are happy that this peptide is released,” said Siegel. “The hypocretin system is not just related to alertness. It’s related to pleasure.”
As Yanagisawa observed early on, hypocretin/orexin does indeed play a role in eating — just not the one he initially thought. The peptides prompted pleasure seeking. So the rodents ate.
In 2018, after acquiring five more brains, Siegel’s group published a study in Translational Medicine showing 54% more detectable hypocretin neurons in the brains of heroin addicts than in those of control individuals.
In 2022, another breakthrough: His team showed that morphine significantly altered the pathways of hypocretin neurons in mice, sending their axons into brain regions associated with addiction. Then, when they removed the mice’s hypocretin neurons and discontinued their daily morphine dose, the rodents showed no symptoms of opioid withdrawal.
This fits the connection with narcolepsy: Among the standard treatments for the condition are amphetamines and other stimulants, which all have addictive potential. Yet, “narcoleptics never abuse these drugs,” Siegel said. “They seem to be uniquely resistant to addiction.”
This could powerfully change the way opioids are administered.
“If you prevent the hypocretin response to opioids, you may be able to prevent opioid addiction,” said Siegel. In other words, blocking the hypocretin system with a drug like those used to treat insomnia may allow patients to experience the pain-relieving benefits of opioids — without the risk for addiction.
His team is currently investigating treatments targeting the hypocretin/orexin system for opioid addiction.
In a study published in July, they found that mice who received suvorexant — the drug for insomnia — didn’t anticipate their daily dose of opioids the way other rodents did. This suggests the medication prevented addiction, without diminishing the pain-relieving effect of opioids.
If it translates to humans, this discovery could potentially save millions of lives.
“I think it’s just us working on this,” said Siegel.
But with hypocretin/orexin, you never know.
A version of this article appeared on Medscape.com.
It was 1996, and Masashi Yanagisawa was on the brink of his next discovery.
The Japanese scientist had arrived at the University of Texas Southwestern in Dallas 5 years earlier, setting up his own lab at age 31. After earning his medical degree, he’d gained notoriety as a PhD student when he discovered endothelin, the body’s most potent vasoconstrictor.
Yanagisawa was about to prove this wasn’t a first-timer’s fluke.
His focus was G-protein–coupled receptors (GPCRs), cell surface receptors that respond to a range of molecules and a popular target for drug discovery. The Human Genome Project had just revealed a slew of newly discovered receptors, or “orphan” GPCRs, and identifying an activating molecule could yield a new drug. (That vasoconstrictor endothelin was one such success story, leading to four new drug approvals in the United States over the past quarter century.)
Yanagisawa and his team created 50 cell lines, each expressing one orphan receptor. They applied animal tissue to every line, along with a calcium-sensitive dye. If the cells glowed under the microscope, they had a hit.
“He was basically doing an elaborate fishing expedition,” said Jon Willie, MD, PhD, an associate professor of neurosurgery at Washington University School of Medicine in St. Louis, Missouri, who would later join Yanagisawa’s team.
It wasn’t long before the neon-green fluorescence signaled a match. After isolating the activating molecule, the scientists realized they were dealing with two neuropeptides.
No one had ever seen these proteins before. And no one knew their discovery would set off a decades-long journey that would finally solve a century-old medical mystery — and may even fix one of the biggest health crises of our time, as revealed by research published earlier in 2024. It’s a story of strange coincidences, serendipitous discoveries, and quirky details. Most of all, it’s a fascinating example of how basic science can revolutionize medicine — and how true breakthroughs happen over time and in real time.
But That’s Basic Science for You
Most basic science studies — the early, foundational research that provides the building blocks for science that follows — don’t lead to medical breakthroughs. But some do, often in surprising ways.
Also called curiosity-driven research, basic science aims to fill knowledge gaps to keep science moving, even if the trajectory isn’t always clear.
“The people working on the basic research that led to discoveries that transformed the modern world had no idea at the time,” said Isobel Ronai, PhD, a postdoctoral fellow in life sciences at Harvard University, Cambridge, Massachusetts. “Often, these stories can only be seen in hindsight,” sometimes decades later.
Case in point: For molecular biology techniques — things like DNA sequencing and gene targeting — the lag between basic science and breakthrough is, on average, 23 years. While many of the resulting techniques have received Nobel Prizes, few of the foundational discoveries have been awarded such accolades.
“The scientific glory is more often associated with the downstream applications,” said Ronai. “The importance of basic research can get lost. But it is the foundation for any future application, such as drug development.”
As funding is increasingly funneled toward applied research, basic science can require a certain persistence. What this under-appreciation can obscure is the pathway to discovery — which is often as compelling as the end result, full of unpredictable twists, turns, and even interpersonal intrigue.
And then there’s the fascinating — and definitely complicated — phenomenon of multiple independent discoveries.
As in: What happens when two independent teams discover the same thing at the same time?
Back to Yanagisawa’s Lab ...
... where he and his team learned a few things about those new neuropeptides. Rat brain studies pinpointed the lateral hypothalamus as the peptides’ area of activity — a region often called the brain’s feeding center.
“If you destroy that part of the brain, animals lose appetite,” said Yanagisawa. So these peptides must control feeding, the scientists thought.
Sure enough, injecting the proteins into rat brains led the rodents to start eating.
Satisfied, the team named them “orexin-A” and “orexin-B,” for the Greek word “orexis,” meaning appetite. The brain receptors became “orexin-1” and “orexin-2.” The team prepared to publish its findings in Cell.
But another group beat them to it.
Introducing the ‘Hypocretins’
In early January 1998, a team of Scripps Research Institute scientists, led by J. Gregor Sutcliffe, PhD, released a paper in the journal PNAS. They described a gene encoding for the precursor to two neuropeptides
As the peptides were in the hypothalamus and structurally like secretin (a gut hormone), they called them “hypocretins.” The hypocretin peptides excited neurons in the hypothalamus, and later that year, the scientists discovered that the neurons’ branches extended, tentacle-like, throughout the brain. “Many of the connected areas were involved in sleep-wake control,” said Thomas Kilduff, PhD, who joined the Sutcliffe lab just weeks before the hypocretin discovery. At the time, however, the significance of this finding was not yet clear.
Weeks later, in February 1998, Yanagisawa’s paper came out.
Somehow, two groups, over 1000 miles apart, had stumbled on the same neuropeptides at the same time.
“I first heard about [Yanagisawa’s] paper on NBC Nightly News,” recalls Kilduff. “I was skiing in the mountains, so I had to wait until Monday to get back to the lab to see what the paper was all about.”
He realized that Yanagisawa’s orexin was his lab’s hypocretin, although the study didn’t mention another team’s discovery.
“There may have been accusations. But as far as I know, it’s because [Yanagisawa] didn’t know [about the other paper],” said Willie. “This was not something he produced in 2 months. This was clearly years of work.”
‘Multiple Discovery’ Happens More Often Than You Think
In the mid-20th century, sociologist Robert Merton described the phenomenon of “multiple discovery,” where many scientific discoveries or inventions are made independently at roughly the same time.
“This happens much more frequently in scientific research than people suppose,” said David Pendlebury, head of research analysis at Clarivate’s Institute for Scientific Information, the analytics company’s research arm. (Last year, Pendlebury flagged the hypocretin/orexin discovery for Clarivate’s prestigious Citations Laureates award, an honor that aims to predict, often successfully, who will go on to win the Nobel Prize.)
“People have this idea of the lone researcher making a brilliant discovery,” Pendlebury said. “But more and more, teams find things at the same time.”
While this can — and does — lead to squabbling about who deserves credit, the desire to be first can also be highly motivating, said Mike Schneider, PhD, an assistant professor of philosophy at the University of Missouri, Columbia, who studies the social dynamics of science, potentially leading to faster scientific advancement.
The downside? If two groups produce the same or similar results, but one publishes first, scientific journals tend to reject the second, citing a lack of novelty.
Yet duplicating research is a key step in confirming the validity of a discovery.
That’s why, in 2018, the journal PLOS Biology created a provision for “scooped” scientists, allowing them to submit their paper within 6 months of the first as a complementary finding. Instead of viewing this as redundancy, the editors believe it adds robustness to the research.
‘What the Heck Is This Mouse Doing?’
Even though he’d been scooped, Yanagisawa forged on to the next challenge: Confirming whether orexin regulated feeding.
He began breeding mice missing the orexin gene. His team expected these “knockout” mice to eat less, resulting in a thinner body than other rodents. To the contrary, “they were on average fatter,” said Willie. “They were eating less but weighed more, indicating a slower metabolism.”
The researchers were befuddled. “We were really disappointed, almost desperate about what to do,” said Yanagisawa.
As nocturnal animals eat more at night, he decided they should study the mice after dark. One of his students, Richard Chemelli, MD, bought an infrared video camera from Radio Shack, filming the first 4 hours of the mice’s active period for several nights.
After watching the footage, “Rick called me and said, ‘Let’s get into the lab,’ ” said Willie. “It was four of us on a Saturday looking at these videos, saying, ‘What the heck is this mouse doing?’ ”
While exploring their habitat, the knockout mice would randomly fall over, pop back up after a minute or so, and resume normal activity. This happened over and over — and the scientists were unsure why.
They began monitoring the mice’s brains during these episodes — and made a startling discovery.
The mice weren’t having seizures. They were shifting directly into REM sleep, bypassing the non-REM stage, then quickly toggling back to wake mode.
“That’s when we knew these animals had something akin to narcolepsy,” said Willie.
The team recruited Thomas Scammell, MD, a Harvard neurologist, to investigate whether modafinil — an anti-narcoleptic drug without a clear mechanism — affected orexin neurons.
Two hours after injecting the mice with the medication, the scientists sacrificed them and stained their brains. Remarkably, the number of neurons showing orexin activity had increased ninefold. It seemed modafinil worked by activating the orexin system.
These findings had the potential to crack open the science of narcolepsy, one of the most mysterious sleep disorders.
Unless, of course, another team did it first.
The Mystery of Narcolepsy
Yet another multiple discovery, narcolepsy was first described by two scientists — one in Germany, the other in France — within a short span in the late 1800s.
It would be more than a hundred years before anyone understood the disorder’s cause, even though it affects about 1 in 2000 people.
“Patients were often labeled as lazy and malingerers,” said Kilduff, “since they were sleepy all the time and had this weird motor behavior called cataplexy” or the sudden loss of muscle tone.
In the early 1970s, William Dement, MD, PhD — “the father of sleep medicine” — was searching for a narcoleptic cat to study. He couldn’t find a feline, but several colleagues mentioned dogs with narcolepsy-like symptoms.
Dement, who died in 2020, had found his newest research subjects.
In 1973, he started a narcoleptic dog colony at Stanford University in Palo Alto, California. At first, he focused on poodles and beagles. After discovering their narcolepsy wasn’t genetic, he pivoted to dobermans and labradors. Their narcolepsy was inherited, so he could breed them to populate the colony.
Although human narcolepsy is rarely genetic, it’s otherwise a lot like the version in these dogs.
Both involve daytime sleepiness, “pathological” bouts of REM sleep, and the loss of muscle tone in response to emotions, often positive ones.
The researchers hoped the canines could unlock a treatment for human narcolepsy. They began laying out a path of dog kibble, then injecting the dogs with drugs such as selective serotonin reuptake inhibitors. They wanted to see what might help them stay awake as they excitedly chowed down.
Kilduff also started a molecular genetics program, trying to identify the genetic defect behind canine narcolepsy. But after a parvovirus outbreak, Kilduff resigned from the project, drained from the strain of seeing so many dogs die.
A decade after his departure from the dog colony, his work would dramatically intersect with that of his successor, Emmanuel Mignot, MD, PhD.
“I thought I had closed the narcolepsy chapter in my life forever,” said Kilduff. “Then in 1998, we described this novel neuropeptide, hypocretin, that turned out to be the key to understanding the disorder.”
Narcoleptic Dogs in California, Mutant Mice in Texas
It was modafinil — the same anti-narcoleptic drug Yanagisawa’s team studied — that brought Emmanuel Mignot to the United States. After training as a pharmacologist in France, his home country sent him to Stanford to study the drug, which was discovered by French scientists, as his required military service.
As Kilduff’s replacement at the dog colony, his goal was to figure out how modafinil worked, hoping to attract a US company to develop the drug.
The plan succeeded. Modafinil became Provigil, a billion-dollar narcolepsy drug, and Mignot became “completely fascinated” with the disorder.
“I realized quickly that there was no way we’d find the cause of narcolepsy by finding the mode of action of this drug,” Mignot said. “Most likely, the drug was acting downstream, not at the cause of the disorder.”
To discover the answer, he needed to become a geneticist. And so began his 11-year odyssey to find the cause of canine narcolepsy.
After mapping the dog genome, Mignot set out to find the smallest stretch of chromosome that the narcoleptic animals had in common. “For a very long time, we were stuck with a relatively large region [of DNA],” he recalls. “It was a no man’s land.”
Within that region was the gene for the hypocretin/orexin-2 receptor — the same receptor that Yanagisawa had identified in his first orexin paper. Mignot didn’t immediately pursue that gene as a possibility — even though his students suggested it. Why?
“The decision was simply: Should we lose time to test a possible candidate [gene] among many?” Mignot said.
As Mignot studied dog DNA in California, Yanagisawa was creating mutant mice in Texas. Unbeknownst to either scientist, their work was about to converge.
What Happened Next Is Somewhat Disputed
After diagnosing his mice with narcolepsy, Yanagisawa opted not to share this finding with Mignot, though he knew about Mignot’s interest in the condition. Instead, he asked a colleague to find out how far along Mignot was in his genetics research.
According to Yanagisawa, his colleague didn’t realize how quickly DNA sequencing could happen once a target gene was identified. At a sleep meeting, “he showed Emmanuel all of our raw data. Almost accidentally, he disclosed our findings,” he said. “It was a shock for me.”
Unsure whether he was part of the orexin group, Mignot decided not to reveal that he’d identified the hypocretin/orexin-2 receptor gene as the faulty one in his narcoleptic dogs.
Although he didn’t share this finding, Mignot said he did offer to speak with the lead researcher to see if their findings were the same. If they were, they could jointly submit their articles. But Mignot never heard back.
Meanwhile, back at his lab, Mignot buckled down. While he wasn’t convinced the mouse data proved anything, it did give him the motivation to move faster.
Within weeks, he submitted his findings to Cell, revealing a mutation in the hypocretin/orexin-2 receptor gene as the cause of canine narcolepsy. According to Yanagisawa, the journal’s editor invited him to peer-review the paper, tipping him off to its existence.
“I told him I had a conflict of interest,” said Yanagisawa. “And then we scrambled to finish our manuscript. We wrote up the paper within almost 5 days.”
For a moment, it seemed both papers would be published together in Cell. Instead, on August 6, 1999, Mignot’s study was splashed solo across the journal’s cover.
“At the time, our team was pissed off, but looking back, what else could Emmanuel have done?” said Willie, who was part of Yanagisawa’s team. “The grant he’d been working on for years was at risk. He had it within his power to do the final experiments. Of course he was going to finish.”
Two weeks later, Yanagisawa’s findings followed, also in Cell.
His paper proposed knockout mice as a model for human narcolepsy and orexin as a key regulator of the sleep/wake cycle. With orexin-activated neurons branching into other areas of the brain, the peptide seemed to promote wakefulness by synchronizing several arousal neurotransmitters, such as serotonin, norepinephrine, and histamine.
“If you don’t have orexin, each of those systems can still function, but they’re not as coordinated,” said Willie. “If you have narcolepsy, you’re capable of wakefulness, and you’re capable of sleep. What you can’t do is prevent inappropriately switching between states.”
Together, the two papers painted a clear picture: Narcolepsy was the result of a dysfunction in the hypocretin/orexin system.
After more than a century, the cause of narcolepsy was starting to come into focus.
“This was blockbuster,” said Willie.
By itself, either finding — one in dogs, one in mice — might have been met with skepticism. But in combination, they offered indisputable evidence about narcolepsy’s cause.
The Human Brains in Your Fridge Hold Secrets
Jerome Siegel had been searching for the cause of human narcolepsy for years. A PhD and professor at the University of California, Los Angeles, he had managed to acquire four human narcoleptic brains. As laughter is often the trigger for the sudden shift to REM sleep in humans, he focused on the amygdala, an area linked to emotion.
“I looked in the amygdala and didn’t see anything,” he said. “So the brains stayed in my refrigerator for probably 10 years.”
Then he was invited to review Yanagisawa’s study in Cell. The lightbulb clicked on: Maybe the hypothalamus — not the amygdala — was the area of abnormality. He and his team dug out the decade-old brains.
When they stained the brains, the massive loss of hypocretin-activated neurons was hard to miss: On average, the narcoleptic brains had only about 7000 of the cells versus 70,000 in the average human brain. The scientists also noticed scar tissue in the hypothalamus, indicating that the neurons had at some point died, rather than being absent from birth.
What Siegel didn’t know: Mignot had also acquired a handful of human narcoleptic brains.
Already, he had coauthored a study showing that hypocretin/orexin was undetectable in the cerebrospinal fluid of the majority of the people with narcolepsy his team tested. It seemed clear that the hypocretin/orexin system was flawed — or even broken — in people with the condition.
“It looked like the cause of narcolepsy in humans was indeed this lack of orexin in the brain,” he said. “That was the hypothesis immediately. To me, this is when we established that narcolepsy in humans was due to a lack of orexin. The next thing was to check that the cells were missing.”
Now he could do exactly that.
As expected, Mignot’s team observed a dramatic loss of hypocretin/orexin cells in the narcoleptic brains. They also noticed that a different cell type in the hypothalamus was unaffected. This implied the damage was specific to the hypocretin-activated cells and supported a hunch they already had: That the deficit was the result not of a genetic defect but of an autoimmune attack. (It’s a hypothesis Mignot has spent the last 15 years proving.)
It wasn’t until a gathering in Hawaii, in late August 2000, that the two realized the overlap of their work.
To celebrate his team’s finding, Mignot had invited a group of researchers to Big Island. With his paper scheduled for publication on September 1, he felt comfortable presenting his findings to his guests, which included Siegel.
Until then, “I didn’t know what he had found, and he didn’t know what I had found, which basically was the same thing,” said Siegel.
In yet another strange twist, the two papers were published just weeks apart, simultaneously revealing that human narcoleptics have a depleted supply of the neurons that bind to hypocretin/orexin. The cause of the disorder was at last a certainty.
“Even if I was first, what does it matter? In the end, you need confirmation,” said Mignot. “You need multiple people to make sure that it’s true. It’s good science when things like this happen.”
How All of This Changed Medicine
Since these groundbreaking discoveries, the diagnosis of narcolepsy has become much simpler. Lab tests can now easily measure hypocretin in cerebrospinal fluid, providing a definitive diagnosis.
But the development of narcolepsy treatments has lagged — even though hypocretin/orexin replacement therapy is the obvious answer.
“Almost 25 years have elapsed, and there’s no such therapeutic on the market,” said Kilduff, who now works for SRI International, a non-profit research and development institute.
That’s partly because agonists — drugs that bind to receptors in the brain — are challenging to create, as this requires mimicking the activating molecule’s structure, like copying the grooves of an intricate key.
Antagonists, by comparison, are easier to develop. These act as a gate, blocking access to the receptors. As a result, drugs that promote sleep by thwarting hypocretin/orexin have emerged more quickly, providing a flurry of new options for people with insomnia. The first, suvorexant, was launched in 2014. Two others followed in recent years.
Researchers are hopeful a hypocretin/orexin agonist is on the horizon.
“This is a very hot area of drug development,” said Kilduff. “It’s just a matter of who’s going to get the drug to market first.”
One More Hypocretin/Orexin Surprise — and It Could Be The Biggest
Several years ago, Siegel’s lab received what was supposed to be a healthy human brain — one they could use as a comparison for narcoleptic brains. But researcher Thomas Thannickal, PhD, lead author of the UCLA study linking hypocretin loss to human narcolepsy, noticed something strange: This brain had significantly more hypocretin neurons than average.
Was this due to a seizure? A traumatic death? Siegel called the brain bank to request the donor’s records. He was told they were missing.
Years later, Siegel happened to be visiting the brain bank for another project and found himself in a room adjacent to the medical records. “Nobody was there,” he said, “so I just opened a drawer.”
Shuffling through the brain bank’s files, Siegel found the medical records he’d been told were lost. In the file was a note from the donor, explaining that he was a former heroin addict.
“I almost fell out of my chair,” said Siegel. “I realized this guy’s heroin addiction likely had something to do with his very unusual brain.”
Obviously, opioids affected the orexin system. But how?
“It’s when people are happy that this peptide is released,” said Siegel. “The hypocretin system is not just related to alertness. It’s related to pleasure.”
As Yanagisawa observed early on, hypocretin/orexin does indeed play a role in eating — just not the one he initially thought. The peptides prompted pleasure seeking. So the rodents ate.
In 2018, after acquiring five more brains, Siegel’s group published a study in Translational Medicine showing 54% more detectable hypocretin neurons in the brains of heroin addicts than in those of control individuals.
In 2022, another breakthrough: His team showed that morphine significantly altered the pathways of hypocretin neurons in mice, sending their axons into brain regions associated with addiction. Then, when they removed the mice’s hypocretin neurons and discontinued their daily morphine dose, the rodents showed no symptoms of opioid withdrawal.
This fits the connection with narcolepsy: Among the standard treatments for the condition are amphetamines and other stimulants, which all have addictive potential. Yet, “narcoleptics never abuse these drugs,” Siegel said. “They seem to be uniquely resistant to addiction.”
This could powerfully change the way opioids are administered.
“If you prevent the hypocretin response to opioids, you may be able to prevent opioid addiction,” said Siegel. In other words, blocking the hypocretin system with a drug like those used to treat insomnia may allow patients to experience the pain-relieving benefits of opioids — without the risk for addiction.
His team is currently investigating treatments targeting the hypocretin/orexin system for opioid addiction.
In a study published in July, they found that mice who received suvorexant — the drug for insomnia — didn’t anticipate their daily dose of opioids the way other rodents did. This suggests the medication prevented addiction, without diminishing the pain-relieving effect of opioids.
If it translates to humans, this discovery could potentially save millions of lives.
“I think it’s just us working on this,” said Siegel.
But with hypocretin/orexin, you never know.
A version of this article appeared on Medscape.com.
It was 1996, and Masashi Yanagisawa was on the brink of his next discovery.
The Japanese scientist had arrived at the University of Texas Southwestern in Dallas 5 years earlier, setting up his own lab at age 31. After earning his medical degree, he’d gained notoriety as a PhD student when he discovered endothelin, the body’s most potent vasoconstrictor.
Yanagisawa was about to prove this wasn’t a first-timer’s fluke.
His focus was G-protein–coupled receptors (GPCRs), cell surface receptors that respond to a range of molecules and a popular target for drug discovery. The Human Genome Project had just revealed a slew of newly discovered receptors, or “orphan” GPCRs, and identifying an activating molecule could yield a new drug. (That vasoconstrictor endothelin was one such success story, leading to four new drug approvals in the United States over the past quarter century.)
Yanagisawa and his team created 50 cell lines, each expressing one orphan receptor. They applied animal tissue to every line, along with a calcium-sensitive dye. If the cells glowed under the microscope, they had a hit.
“He was basically doing an elaborate fishing expedition,” said Jon Willie, MD, PhD, an associate professor of neurosurgery at Washington University School of Medicine in St. Louis, Missouri, who would later join Yanagisawa’s team.
It wasn’t long before the neon-green fluorescence signaled a match. After isolating the activating molecule, the scientists realized they were dealing with two neuropeptides.
No one had ever seen these proteins before. And no one knew their discovery would set off a decades-long journey that would finally solve a century-old medical mystery — and may even fix one of the biggest health crises of our time, as revealed by research published earlier in 2024. It’s a story of strange coincidences, serendipitous discoveries, and quirky details. Most of all, it’s a fascinating example of how basic science can revolutionize medicine — and how true breakthroughs happen over time and in real time.
But That’s Basic Science for You
Most basic science studies — the early, foundational research that provides the building blocks for science that follows — don’t lead to medical breakthroughs. But some do, often in surprising ways.
Also called curiosity-driven research, basic science aims to fill knowledge gaps to keep science moving, even if the trajectory isn’t always clear.
“The people working on the basic research that led to discoveries that transformed the modern world had no idea at the time,” said Isobel Ronai, PhD, a postdoctoral fellow in life sciences at Harvard University, Cambridge, Massachusetts. “Often, these stories can only be seen in hindsight,” sometimes decades later.
Case in point: For molecular biology techniques — things like DNA sequencing and gene targeting — the lag between basic science and breakthrough is, on average, 23 years. While many of the resulting techniques have received Nobel Prizes, few of the foundational discoveries have been awarded such accolades.
“The scientific glory is more often associated with the downstream applications,” said Ronai. “The importance of basic research can get lost. But it is the foundation for any future application, such as drug development.”
As funding is increasingly funneled toward applied research, basic science can require a certain persistence. What this under-appreciation can obscure is the pathway to discovery — which is often as compelling as the end result, full of unpredictable twists, turns, and even interpersonal intrigue.
And then there’s the fascinating — and definitely complicated — phenomenon of multiple independent discoveries.
As in: What happens when two independent teams discover the same thing at the same time?
Back to Yanagisawa’s Lab ...
... where he and his team learned a few things about those new neuropeptides. Rat brain studies pinpointed the lateral hypothalamus as the peptides’ area of activity — a region often called the brain’s feeding center.
“If you destroy that part of the brain, animals lose appetite,” said Yanagisawa. So these peptides must control feeding, the scientists thought.
Sure enough, injecting the proteins into rat brains led the rodents to start eating.
Satisfied, the team named them “orexin-A” and “orexin-B,” for the Greek word “orexis,” meaning appetite. The brain receptors became “orexin-1” and “orexin-2.” The team prepared to publish its findings in Cell.
But another group beat them to it.
Introducing the ‘Hypocretins’
In early January 1998, a team of Scripps Research Institute scientists, led by J. Gregor Sutcliffe, PhD, released a paper in the journal PNAS. They described a gene encoding for the precursor to two neuropeptides
As the peptides were in the hypothalamus and structurally like secretin (a gut hormone), they called them “hypocretins.” The hypocretin peptides excited neurons in the hypothalamus, and later that year, the scientists discovered that the neurons’ branches extended, tentacle-like, throughout the brain. “Many of the connected areas were involved in sleep-wake control,” said Thomas Kilduff, PhD, who joined the Sutcliffe lab just weeks before the hypocretin discovery. At the time, however, the significance of this finding was not yet clear.
Weeks later, in February 1998, Yanagisawa’s paper came out.
Somehow, two groups, over 1000 miles apart, had stumbled on the same neuropeptides at the same time.
“I first heard about [Yanagisawa’s] paper on NBC Nightly News,” recalls Kilduff. “I was skiing in the mountains, so I had to wait until Monday to get back to the lab to see what the paper was all about.”
He realized that Yanagisawa’s orexin was his lab’s hypocretin, although the study didn’t mention another team’s discovery.
“There may have been accusations. But as far as I know, it’s because [Yanagisawa] didn’t know [about the other paper],” said Willie. “This was not something he produced in 2 months. This was clearly years of work.”
‘Multiple Discovery’ Happens More Often Than You Think
In the mid-20th century, sociologist Robert Merton described the phenomenon of “multiple discovery,” where many scientific discoveries or inventions are made independently at roughly the same time.
“This happens much more frequently in scientific research than people suppose,” said David Pendlebury, head of research analysis at Clarivate’s Institute for Scientific Information, the analytics company’s research arm. (Last year, Pendlebury flagged the hypocretin/orexin discovery for Clarivate’s prestigious Citations Laureates award, an honor that aims to predict, often successfully, who will go on to win the Nobel Prize.)
“People have this idea of the lone researcher making a brilliant discovery,” Pendlebury said. “But more and more, teams find things at the same time.”
While this can — and does — lead to squabbling about who deserves credit, the desire to be first can also be highly motivating, said Mike Schneider, PhD, an assistant professor of philosophy at the University of Missouri, Columbia, who studies the social dynamics of science, potentially leading to faster scientific advancement.
The downside? If two groups produce the same or similar results, but one publishes first, scientific journals tend to reject the second, citing a lack of novelty.
Yet duplicating research is a key step in confirming the validity of a discovery.
That’s why, in 2018, the journal PLOS Biology created a provision for “scooped” scientists, allowing them to submit their paper within 6 months of the first as a complementary finding. Instead of viewing this as redundancy, the editors believe it adds robustness to the research.
‘What the Heck Is This Mouse Doing?’
Even though he’d been scooped, Yanagisawa forged on to the next challenge: Confirming whether orexin regulated feeding.
He began breeding mice missing the orexin gene. His team expected these “knockout” mice to eat less, resulting in a thinner body than other rodents. To the contrary, “they were on average fatter,” said Willie. “They were eating less but weighed more, indicating a slower metabolism.”
The researchers were befuddled. “We were really disappointed, almost desperate about what to do,” said Yanagisawa.
As nocturnal animals eat more at night, he decided they should study the mice after dark. One of his students, Richard Chemelli, MD, bought an infrared video camera from Radio Shack, filming the first 4 hours of the mice’s active period for several nights.
After watching the footage, “Rick called me and said, ‘Let’s get into the lab,’ ” said Willie. “It was four of us on a Saturday looking at these videos, saying, ‘What the heck is this mouse doing?’ ”
While exploring their habitat, the knockout mice would randomly fall over, pop back up after a minute or so, and resume normal activity. This happened over and over — and the scientists were unsure why.
They began monitoring the mice’s brains during these episodes — and made a startling discovery.
The mice weren’t having seizures. They were shifting directly into REM sleep, bypassing the non-REM stage, then quickly toggling back to wake mode.
“That’s when we knew these animals had something akin to narcolepsy,” said Willie.
The team recruited Thomas Scammell, MD, a Harvard neurologist, to investigate whether modafinil — an anti-narcoleptic drug without a clear mechanism — affected orexin neurons.
Two hours after injecting the mice with the medication, the scientists sacrificed them and stained their brains. Remarkably, the number of neurons showing orexin activity had increased ninefold. It seemed modafinil worked by activating the orexin system.
These findings had the potential to crack open the science of narcolepsy, one of the most mysterious sleep disorders.
Unless, of course, another team did it first.
The Mystery of Narcolepsy
Yet another multiple discovery, narcolepsy was first described by two scientists — one in Germany, the other in France — within a short span in the late 1800s.
It would be more than a hundred years before anyone understood the disorder’s cause, even though it affects about 1 in 2000 people.
“Patients were often labeled as lazy and malingerers,” said Kilduff, “since they were sleepy all the time and had this weird motor behavior called cataplexy” or the sudden loss of muscle tone.
In the early 1970s, William Dement, MD, PhD — “the father of sleep medicine” — was searching for a narcoleptic cat to study. He couldn’t find a feline, but several colleagues mentioned dogs with narcolepsy-like symptoms.
Dement, who died in 2020, had found his newest research subjects.
In 1973, he started a narcoleptic dog colony at Stanford University in Palo Alto, California. At first, he focused on poodles and beagles. After discovering their narcolepsy wasn’t genetic, he pivoted to dobermans and labradors. Their narcolepsy was inherited, so he could breed them to populate the colony.
Although human narcolepsy is rarely genetic, it’s otherwise a lot like the version in these dogs.
Both involve daytime sleepiness, “pathological” bouts of REM sleep, and the loss of muscle tone in response to emotions, often positive ones.
The researchers hoped the canines could unlock a treatment for human narcolepsy. They began laying out a path of dog kibble, then injecting the dogs with drugs such as selective serotonin reuptake inhibitors. They wanted to see what might help them stay awake as they excitedly chowed down.
Kilduff also started a molecular genetics program, trying to identify the genetic defect behind canine narcolepsy. But after a parvovirus outbreak, Kilduff resigned from the project, drained from the strain of seeing so many dogs die.
A decade after his departure from the dog colony, his work would dramatically intersect with that of his successor, Emmanuel Mignot, MD, PhD.
“I thought I had closed the narcolepsy chapter in my life forever,” said Kilduff. “Then in 1998, we described this novel neuropeptide, hypocretin, that turned out to be the key to understanding the disorder.”
Narcoleptic Dogs in California, Mutant Mice in Texas
It was modafinil — the same anti-narcoleptic drug Yanagisawa’s team studied — that brought Emmanuel Mignot to the United States. After training as a pharmacologist in France, his home country sent him to Stanford to study the drug, which was discovered by French scientists, as his required military service.
As Kilduff’s replacement at the dog colony, his goal was to figure out how modafinil worked, hoping to attract a US company to develop the drug.
The plan succeeded. Modafinil became Provigil, a billion-dollar narcolepsy drug, and Mignot became “completely fascinated” with the disorder.
“I realized quickly that there was no way we’d find the cause of narcolepsy by finding the mode of action of this drug,” Mignot said. “Most likely, the drug was acting downstream, not at the cause of the disorder.”
To discover the answer, he needed to become a geneticist. And so began his 11-year odyssey to find the cause of canine narcolepsy.
After mapping the dog genome, Mignot set out to find the smallest stretch of chromosome that the narcoleptic animals had in common. “For a very long time, we were stuck with a relatively large region [of DNA],” he recalls. “It was a no man’s land.”
Within that region was the gene for the hypocretin/orexin-2 receptor — the same receptor that Yanagisawa had identified in his first orexin paper. Mignot didn’t immediately pursue that gene as a possibility — even though his students suggested it. Why?
“The decision was simply: Should we lose time to test a possible candidate [gene] among many?” Mignot said.
As Mignot studied dog DNA in California, Yanagisawa was creating mutant mice in Texas. Unbeknownst to either scientist, their work was about to converge.
What Happened Next Is Somewhat Disputed
After diagnosing his mice with narcolepsy, Yanagisawa opted not to share this finding with Mignot, though he knew about Mignot’s interest in the condition. Instead, he asked a colleague to find out how far along Mignot was in his genetics research.
According to Yanagisawa, his colleague didn’t realize how quickly DNA sequencing could happen once a target gene was identified. At a sleep meeting, “he showed Emmanuel all of our raw data. Almost accidentally, he disclosed our findings,” he said. “It was a shock for me.”
Unsure whether he was part of the orexin group, Mignot decided not to reveal that he’d identified the hypocretin/orexin-2 receptor gene as the faulty one in his narcoleptic dogs.
Although he didn’t share this finding, Mignot said he did offer to speak with the lead researcher to see if their findings were the same. If they were, they could jointly submit their articles. But Mignot never heard back.
Meanwhile, back at his lab, Mignot buckled down. While he wasn’t convinced the mouse data proved anything, it did give him the motivation to move faster.
Within weeks, he submitted his findings to Cell, revealing a mutation in the hypocretin/orexin-2 receptor gene as the cause of canine narcolepsy. According to Yanagisawa, the journal’s editor invited him to peer-review the paper, tipping him off to its existence.
“I told him I had a conflict of interest,” said Yanagisawa. “And then we scrambled to finish our manuscript. We wrote up the paper within almost 5 days.”
For a moment, it seemed both papers would be published together in Cell. Instead, on August 6, 1999, Mignot’s study was splashed solo across the journal’s cover.
“At the time, our team was pissed off, but looking back, what else could Emmanuel have done?” said Willie, who was part of Yanagisawa’s team. “The grant he’d been working on for years was at risk. He had it within his power to do the final experiments. Of course he was going to finish.”
Two weeks later, Yanagisawa’s findings followed, also in Cell.
His paper proposed knockout mice as a model for human narcolepsy and orexin as a key regulator of the sleep/wake cycle. With orexin-activated neurons branching into other areas of the brain, the peptide seemed to promote wakefulness by synchronizing several arousal neurotransmitters, such as serotonin, norepinephrine, and histamine.
“If you don’t have orexin, each of those systems can still function, but they’re not as coordinated,” said Willie. “If you have narcolepsy, you’re capable of wakefulness, and you’re capable of sleep. What you can’t do is prevent inappropriately switching between states.”
Together, the two papers painted a clear picture: Narcolepsy was the result of a dysfunction in the hypocretin/orexin system.
After more than a century, the cause of narcolepsy was starting to come into focus.
“This was blockbuster,” said Willie.
By itself, either finding — one in dogs, one in mice — might have been met with skepticism. But in combination, they offered indisputable evidence about narcolepsy’s cause.
The Human Brains in Your Fridge Hold Secrets
Jerome Siegel had been searching for the cause of human narcolepsy for years. A PhD and professor at the University of California, Los Angeles, he had managed to acquire four human narcoleptic brains. As laughter is often the trigger for the sudden shift to REM sleep in humans, he focused on the amygdala, an area linked to emotion.
“I looked in the amygdala and didn’t see anything,” he said. “So the brains stayed in my refrigerator for probably 10 years.”
Then he was invited to review Yanagisawa’s study in Cell. The lightbulb clicked on: Maybe the hypothalamus — not the amygdala — was the area of abnormality. He and his team dug out the decade-old brains.
When they stained the brains, the massive loss of hypocretin-activated neurons was hard to miss: On average, the narcoleptic brains had only about 7000 of the cells versus 70,000 in the average human brain. The scientists also noticed scar tissue in the hypothalamus, indicating that the neurons had at some point died, rather than being absent from birth.
What Siegel didn’t know: Mignot had also acquired a handful of human narcoleptic brains.
Already, he had coauthored a study showing that hypocretin/orexin was undetectable in the cerebrospinal fluid of the majority of the people with narcolepsy his team tested. It seemed clear that the hypocretin/orexin system was flawed — or even broken — in people with the condition.
“It looked like the cause of narcolepsy in humans was indeed this lack of orexin in the brain,” he said. “That was the hypothesis immediately. To me, this is when we established that narcolepsy in humans was due to a lack of orexin. The next thing was to check that the cells were missing.”
Now he could do exactly that.
As expected, Mignot’s team observed a dramatic loss of hypocretin/orexin cells in the narcoleptic brains. They also noticed that a different cell type in the hypothalamus was unaffected. This implied the damage was specific to the hypocretin-activated cells and supported a hunch they already had: That the deficit was the result not of a genetic defect but of an autoimmune attack. (It’s a hypothesis Mignot has spent the last 15 years proving.)
It wasn’t until a gathering in Hawaii, in late August 2000, that the two realized the overlap of their work.
To celebrate his team’s finding, Mignot had invited a group of researchers to Big Island. With his paper scheduled for publication on September 1, he felt comfortable presenting his findings to his guests, which included Siegel.
Until then, “I didn’t know what he had found, and he didn’t know what I had found, which basically was the same thing,” said Siegel.
In yet another strange twist, the two papers were published just weeks apart, simultaneously revealing that human narcoleptics have a depleted supply of the neurons that bind to hypocretin/orexin. The cause of the disorder was at last a certainty.
“Even if I was first, what does it matter? In the end, you need confirmation,” said Mignot. “You need multiple people to make sure that it’s true. It’s good science when things like this happen.”
How All of This Changed Medicine
Since these groundbreaking discoveries, the diagnosis of narcolepsy has become much simpler. Lab tests can now easily measure hypocretin in cerebrospinal fluid, providing a definitive diagnosis.
But the development of narcolepsy treatments has lagged — even though hypocretin/orexin replacement therapy is the obvious answer.
“Almost 25 years have elapsed, and there’s no such therapeutic on the market,” said Kilduff, who now works for SRI International, a non-profit research and development institute.
That’s partly because agonists — drugs that bind to receptors in the brain — are challenging to create, as this requires mimicking the activating molecule’s structure, like copying the grooves of an intricate key.
Antagonists, by comparison, are easier to develop. These act as a gate, blocking access to the receptors. As a result, drugs that promote sleep by thwarting hypocretin/orexin have emerged more quickly, providing a flurry of new options for people with insomnia. The first, suvorexant, was launched in 2014. Two others followed in recent years.
Researchers are hopeful a hypocretin/orexin agonist is on the horizon.
“This is a very hot area of drug development,” said Kilduff. “It’s just a matter of who’s going to get the drug to market first.”
One More Hypocretin/Orexin Surprise — and It Could Be The Biggest
Several years ago, Siegel’s lab received what was supposed to be a healthy human brain — one they could use as a comparison for narcoleptic brains. But researcher Thomas Thannickal, PhD, lead author of the UCLA study linking hypocretin loss to human narcolepsy, noticed something strange: This brain had significantly more hypocretin neurons than average.
Was this due to a seizure? A traumatic death? Siegel called the brain bank to request the donor’s records. He was told they were missing.
Years later, Siegel happened to be visiting the brain bank for another project and found himself in a room adjacent to the medical records. “Nobody was there,” he said, “so I just opened a drawer.”
Shuffling through the brain bank’s files, Siegel found the medical records he’d been told were lost. In the file was a note from the donor, explaining that he was a former heroin addict.
“I almost fell out of my chair,” said Siegel. “I realized this guy’s heroin addiction likely had something to do with his very unusual brain.”
Obviously, opioids affected the orexin system. But how?
“It’s when people are happy that this peptide is released,” said Siegel. “The hypocretin system is not just related to alertness. It’s related to pleasure.”
As Yanagisawa observed early on, hypocretin/orexin does indeed play a role in eating — just not the one he initially thought. The peptides prompted pleasure seeking. So the rodents ate.
In 2018, after acquiring five more brains, Siegel’s group published a study in Translational Medicine showing 54% more detectable hypocretin neurons in the brains of heroin addicts than in those of control individuals.
In 2022, another breakthrough: His team showed that morphine significantly altered the pathways of hypocretin neurons in mice, sending their axons into brain regions associated with addiction. Then, when they removed the mice’s hypocretin neurons and discontinued their daily morphine dose, the rodents showed no symptoms of opioid withdrawal.
This fits the connection with narcolepsy: Among the standard treatments for the condition are amphetamines and other stimulants, which all have addictive potential. Yet, “narcoleptics never abuse these drugs,” Siegel said. “They seem to be uniquely resistant to addiction.”
This could powerfully change the way opioids are administered.
“If you prevent the hypocretin response to opioids, you may be able to prevent opioid addiction,” said Siegel. In other words, blocking the hypocretin system with a drug like those used to treat insomnia may allow patients to experience the pain-relieving benefits of opioids — without the risk for addiction.
His team is currently investigating treatments targeting the hypocretin/orexin system for opioid addiction.
In a study published in July, they found that mice who received suvorexant — the drug for insomnia — didn’t anticipate their daily dose of opioids the way other rodents did. This suggests the medication prevented addiction, without diminishing the pain-relieving effect of opioids.
If it translates to humans, this discovery could potentially save millions of lives.
“I think it’s just us working on this,” said Siegel.
But with hypocretin/orexin, you never know.
A version of this article appeared on Medscape.com.
Does Semaglutide Increase Risk for Optic Neuropathy?
TOPLINE:
METHODOLOGY:
- Researchers conducted a retrospective cohort study using data from the TriNetX Analytics Network to investigate the potential risk for NAION associated with semaglutide use in a broader population worldwide.
- They included Caucasians aged ≥ 18 years with only type 2 diabetes (n = 37,245) , only obesity (n = 138,391), or both (n = 64,989) who visited healthcare facilities three or more times.
- The participants were further grouped into those prescribed semaglutide and those using non–GLP-1 RA medications.
- Propensity score matching was performed to balance age, sex, body mass index, A1C levels, medications, and underlying comorbidities between the participants using semaglutide or non–GLP-1 RAs.
- The main outcome measure was the occurrence of NAION, evaluated at 1, 2, and 3 years of follow-up.
TAKEAWAY:
- The use of semaglutide vs non–GLP-1 RAs was not associated with an increased risk for NAION in people with only type 2 diabetes during the 1-year (hazard ratio [HR], 2.32; 95% CI, 0.60-8.97), 2-year (HR, 2.31; 95% CI, 0.86-6.17), and 3-year (HR, 1.51; 0.71-3.25) follow-up periods.
- Similarly, in the obesity-only cohort, use of semaglutide was not linked to the development of NAION across 1-year (HR, 0.41; 95% CI, 0.08-2.09), 2-year (HR, 0.67; 95% CI, 0.20-2.24), and 3-year (HR, 0.72; 95% CI, 0.24-2.17) follow-up periods.
- The patients with both diabetes and obesity also showed no significant association between use of semaglutide and the risk for NAION across each follow-up period.
- Sensitivity analysis confirmed the prescription of semaglutide was not associated with an increased risk for NAION compared with non–GLP-1 RA medications.
IN PRACTICE:
“Our large, multinational, population-based, real-world study found that semaglutide is not associated with an increased risk of NAION in the general population,” the authors of the study wrote.
SOURCE:
The study was led by Chien-Chih Chou, MD, PhD, of National Yang Ming Chiao Tung University, in Taipei City, Taiwan, and was published online on November 02, 2024, in Ophthalmology.
LIMITATIONS:
The retrospective nature of the study may have limited the ability to establish causality between the use of semaglutide and the risk for NAION. The reliance on diagnosis coding for NAION may have introduced a potential misclassification of cases. Moreover, approximately half of the healthcare organizations in the TriNetX network are based in the United States, potentially limiting the diversity of the data.
DISCLOSURES:
This study was supported by a grant from Taichung Veterans General Hospital. The authors declared no potential conflicts of interest.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.
TOPLINE:
METHODOLOGY:
- Researchers conducted a retrospective cohort study using data from the TriNetX Analytics Network to investigate the potential risk for NAION associated with semaglutide use in a broader population worldwide.
- They included Caucasians aged ≥ 18 years with only type 2 diabetes (n = 37,245) , only obesity (n = 138,391), or both (n = 64,989) who visited healthcare facilities three or more times.
- The participants were further grouped into those prescribed semaglutide and those using non–GLP-1 RA medications.
- Propensity score matching was performed to balance age, sex, body mass index, A1C levels, medications, and underlying comorbidities between the participants using semaglutide or non–GLP-1 RAs.
- The main outcome measure was the occurrence of NAION, evaluated at 1, 2, and 3 years of follow-up.
TAKEAWAY:
- The use of semaglutide vs non–GLP-1 RAs was not associated with an increased risk for NAION in people with only type 2 diabetes during the 1-year (hazard ratio [HR], 2.32; 95% CI, 0.60-8.97), 2-year (HR, 2.31; 95% CI, 0.86-6.17), and 3-year (HR, 1.51; 0.71-3.25) follow-up periods.
- Similarly, in the obesity-only cohort, use of semaglutide was not linked to the development of NAION across 1-year (HR, 0.41; 95% CI, 0.08-2.09), 2-year (HR, 0.67; 95% CI, 0.20-2.24), and 3-year (HR, 0.72; 95% CI, 0.24-2.17) follow-up periods.
- The patients with both diabetes and obesity also showed no significant association between use of semaglutide and the risk for NAION across each follow-up period.
- Sensitivity analysis confirmed the prescription of semaglutide was not associated with an increased risk for NAION compared with non–GLP-1 RA medications.
IN PRACTICE:
“Our large, multinational, population-based, real-world study found that semaglutide is not associated with an increased risk of NAION in the general population,” the authors of the study wrote.
SOURCE:
The study was led by Chien-Chih Chou, MD, PhD, of National Yang Ming Chiao Tung University, in Taipei City, Taiwan, and was published online on November 02, 2024, in Ophthalmology.
LIMITATIONS:
The retrospective nature of the study may have limited the ability to establish causality between the use of semaglutide and the risk for NAION. The reliance on diagnosis coding for NAION may have introduced a potential misclassification of cases. Moreover, approximately half of the healthcare organizations in the TriNetX network are based in the United States, potentially limiting the diversity of the data.
DISCLOSURES:
This study was supported by a grant from Taichung Veterans General Hospital. The authors declared no potential conflicts of interest.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.
TOPLINE:
METHODOLOGY:
- Researchers conducted a retrospective cohort study using data from the TriNetX Analytics Network to investigate the potential risk for NAION associated with semaglutide use in a broader population worldwide.
- They included Caucasians aged ≥ 18 years with only type 2 diabetes (n = 37,245) , only obesity (n = 138,391), or both (n = 64,989) who visited healthcare facilities three or more times.
- The participants were further grouped into those prescribed semaglutide and those using non–GLP-1 RA medications.
- Propensity score matching was performed to balance age, sex, body mass index, A1C levels, medications, and underlying comorbidities between the participants using semaglutide or non–GLP-1 RAs.
- The main outcome measure was the occurrence of NAION, evaluated at 1, 2, and 3 years of follow-up.
TAKEAWAY:
- The use of semaglutide vs non–GLP-1 RAs was not associated with an increased risk for NAION in people with only type 2 diabetes during the 1-year (hazard ratio [HR], 2.32; 95% CI, 0.60-8.97), 2-year (HR, 2.31; 95% CI, 0.86-6.17), and 3-year (HR, 1.51; 0.71-3.25) follow-up periods.
- Similarly, in the obesity-only cohort, use of semaglutide was not linked to the development of NAION across 1-year (HR, 0.41; 95% CI, 0.08-2.09), 2-year (HR, 0.67; 95% CI, 0.20-2.24), and 3-year (HR, 0.72; 95% CI, 0.24-2.17) follow-up periods.
- The patients with both diabetes and obesity also showed no significant association between use of semaglutide and the risk for NAION across each follow-up period.
- Sensitivity analysis confirmed the prescription of semaglutide was not associated with an increased risk for NAION compared with non–GLP-1 RA medications.
IN PRACTICE:
“Our large, multinational, population-based, real-world study found that semaglutide is not associated with an increased risk of NAION in the general population,” the authors of the study wrote.
SOURCE:
The study was led by Chien-Chih Chou, MD, PhD, of National Yang Ming Chiao Tung University, in Taipei City, Taiwan, and was published online on November 02, 2024, in Ophthalmology.
LIMITATIONS:
The retrospective nature of the study may have limited the ability to establish causality between the use of semaglutide and the risk for NAION. The reliance on diagnosis coding for NAION may have introduced a potential misclassification of cases. Moreover, approximately half of the healthcare organizations in the TriNetX network are based in the United States, potentially limiting the diversity of the data.
DISCLOSURES:
This study was supported by a grant from Taichung Veterans General Hospital. The authors declared no potential conflicts of interest.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.
Ultraprocessed Foods Linked to Faster Biological Aging
TOPLINE:
and factors other than poor nutritional content may be to blame.
METHODOLOGY:
- Previous studies have reported an association between high consumption of UPFs and some measures of early biological aging, such as shorter telomere length, cognitive decline, and frailty, but the relationship is largely unexplored so far, including exactly how UPFs may harm health.
- To examine the association between UPF consumption and biological aging, researchers conducted a cross-sectional analysis of 22,495 participants (mean chronological age, 55.6 years; 52% women) from the Moli-sani Study in Italy, who were recruited between 2005 and 2010.
- Food intake was assessed with a food frequency questionnaire that covered 188 different food items, each of which was categorized into one of four groups based on the extent of processing, ranging from minimally processed foods, such as fruits, vegetables, meat and fish, to UPFs.
- UPF intake was determined by weight, using the ratio of UPFs to the total weight of food and beverages (g/d), and participants were categorized into sex-specific fifths according to the proportion of UPFs in their total food intake. Diet quality was also evaluated using the Mediterranean Diet Score.
- Biological age was computed using a deep neural network approach based on 36 circulating blood biomarkers, and the mean difference between the mean biological and chronological ages was analyzed.
TAKEAWAY:
- The mean difference between biological and chronological ages of the participants was –0.70 years.
- Higher intake of UPFs was associated with accelerated biological aging compared with the lowest intake (regression coefficient, 0.34; 95% CI, 0.08-0.61), with a mean difference between the biological and chronological ages of −4.1 years and 1.6 years in those with the lowest and highest intakes, respectively.
- The association between UPF consumption and biological aging was nonlinear (P = .049 for nonlinearity). The association tended to be stronger in men than in women, but this was not statistically significant.
- Including the Mediterranean Diet Score in the model slightly attenuated the association by 9.1%, indicating that poor nutritional content was likely to explain a small part of the underlying mechanism.
IN PRACTICE:
“Our results showed that the UPFs–biological aging association was weakly explained by the poor nutritional composition of these highly processed foods, suggesting that biological aging could be mainly influenced by non-nutrient food characteristics, which include altered food matrix, contact materials and neo-formed compounds,” the authors wrote.
SOURCE:
The study was led by Simona Esposito, Research Unit of Epidemiology and Prevention, IRCCS Neuromed, Isernia, Italy. It was published online in The American Journal of Clinical Nutrition.
LIMITATIONS:
The cross-sectional design of the study limited the ability to determine the temporal directionality of the association, and the observational nature of the study limited the ability to establish the causality between UPF consumption and biological aging. The use of self-reported dietary data may have introduced recall bias. The study population was limited to adults from Central-Southern Italy, which may affect the generalizability of the findings.
DISCLOSURES:
The study was developed within the project funded by the Next Generation European Union “Age-It — Ageing well in an ageing society” project, National Recovery and Resilience Plan. The analyses were partially supported by the Italian Ministry of Health. The authors declared no conflicts of interest.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.
TOPLINE:
and factors other than poor nutritional content may be to blame.
METHODOLOGY:
- Previous studies have reported an association between high consumption of UPFs and some measures of early biological aging, such as shorter telomere length, cognitive decline, and frailty, but the relationship is largely unexplored so far, including exactly how UPFs may harm health.
- To examine the association between UPF consumption and biological aging, researchers conducted a cross-sectional analysis of 22,495 participants (mean chronological age, 55.6 years; 52% women) from the Moli-sani Study in Italy, who were recruited between 2005 and 2010.
- Food intake was assessed with a food frequency questionnaire that covered 188 different food items, each of which was categorized into one of four groups based on the extent of processing, ranging from minimally processed foods, such as fruits, vegetables, meat and fish, to UPFs.
- UPF intake was determined by weight, using the ratio of UPFs to the total weight of food and beverages (g/d), and participants were categorized into sex-specific fifths according to the proportion of UPFs in their total food intake. Diet quality was also evaluated using the Mediterranean Diet Score.
- Biological age was computed using a deep neural network approach based on 36 circulating blood biomarkers, and the mean difference between the mean biological and chronological ages was analyzed.
TAKEAWAY:
- The mean difference between biological and chronological ages of the participants was –0.70 years.
- Higher intake of UPFs was associated with accelerated biological aging compared with the lowest intake (regression coefficient, 0.34; 95% CI, 0.08-0.61), with a mean difference between the biological and chronological ages of −4.1 years and 1.6 years in those with the lowest and highest intakes, respectively.
- The association between UPF consumption and biological aging was nonlinear (P = .049 for nonlinearity). The association tended to be stronger in men than in women, but this was not statistically significant.
- Including the Mediterranean Diet Score in the model slightly attenuated the association by 9.1%, indicating that poor nutritional content was likely to explain a small part of the underlying mechanism.
IN PRACTICE:
“Our results showed that the UPFs–biological aging association was weakly explained by the poor nutritional composition of these highly processed foods, suggesting that biological aging could be mainly influenced by non-nutrient food characteristics, which include altered food matrix, contact materials and neo-formed compounds,” the authors wrote.
SOURCE:
The study was led by Simona Esposito, Research Unit of Epidemiology and Prevention, IRCCS Neuromed, Isernia, Italy. It was published online in The American Journal of Clinical Nutrition.
LIMITATIONS:
The cross-sectional design of the study limited the ability to determine the temporal directionality of the association, and the observational nature of the study limited the ability to establish the causality between UPF consumption and biological aging. The use of self-reported dietary data may have introduced recall bias. The study population was limited to adults from Central-Southern Italy, which may affect the generalizability of the findings.
DISCLOSURES:
The study was developed within the project funded by the Next Generation European Union “Age-It — Ageing well in an ageing society” project, National Recovery and Resilience Plan. The analyses were partially supported by the Italian Ministry of Health. The authors declared no conflicts of interest.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.
TOPLINE:
and factors other than poor nutritional content may be to blame.
METHODOLOGY:
- Previous studies have reported an association between high consumption of UPFs and some measures of early biological aging, such as shorter telomere length, cognitive decline, and frailty, but the relationship is largely unexplored so far, including exactly how UPFs may harm health.
- To examine the association between UPF consumption and biological aging, researchers conducted a cross-sectional analysis of 22,495 participants (mean chronological age, 55.6 years; 52% women) from the Moli-sani Study in Italy, who were recruited between 2005 and 2010.
- Food intake was assessed with a food frequency questionnaire that covered 188 different food items, each of which was categorized into one of four groups based on the extent of processing, ranging from minimally processed foods, such as fruits, vegetables, meat and fish, to UPFs.
- UPF intake was determined by weight, using the ratio of UPFs to the total weight of food and beverages (g/d), and participants were categorized into sex-specific fifths according to the proportion of UPFs in their total food intake. Diet quality was also evaluated using the Mediterranean Diet Score.
- Biological age was computed using a deep neural network approach based on 36 circulating blood biomarkers, and the mean difference between the mean biological and chronological ages was analyzed.
TAKEAWAY:
- The mean difference between biological and chronological ages of the participants was –0.70 years.
- Higher intake of UPFs was associated with accelerated biological aging compared with the lowest intake (regression coefficient, 0.34; 95% CI, 0.08-0.61), with a mean difference between the biological and chronological ages of −4.1 years and 1.6 years in those with the lowest and highest intakes, respectively.
- The association between UPF consumption and biological aging was nonlinear (P = .049 for nonlinearity). The association tended to be stronger in men than in women, but this was not statistically significant.
- Including the Mediterranean Diet Score in the model slightly attenuated the association by 9.1%, indicating that poor nutritional content was likely to explain a small part of the underlying mechanism.
IN PRACTICE:
“Our results showed that the UPFs–biological aging association was weakly explained by the poor nutritional composition of these highly processed foods, suggesting that biological aging could be mainly influenced by non-nutrient food characteristics, which include altered food matrix, contact materials and neo-formed compounds,” the authors wrote.
SOURCE:
The study was led by Simona Esposito, Research Unit of Epidemiology and Prevention, IRCCS Neuromed, Isernia, Italy. It was published online in The American Journal of Clinical Nutrition.
LIMITATIONS:
The cross-sectional design of the study limited the ability to determine the temporal directionality of the association, and the observational nature of the study limited the ability to establish the causality between UPF consumption and biological aging. The use of self-reported dietary data may have introduced recall bias. The study population was limited to adults from Central-Southern Italy, which may affect the generalizability of the findings.
DISCLOSURES:
The study was developed within the project funded by the Next Generation European Union “Age-It — Ageing well in an ageing society” project, National Recovery and Resilience Plan. The analyses were partially supported by the Italian Ministry of Health. The authors declared no conflicts of interest.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.
Cancer Mortality Not Higher for Patients With Autoimmune Disease on Checkpoint Inhibitors
WASHINGTON — Immune checkpoint inhibitor (ICI) therapy does not increase mortality in people with preexisting autoimmune diseases, new research has found.
Results from a large database analysis of patients with and without autoimmune diseases suggest it is safe to treat them with ICI if they develop a cancer for which it is indicated, Greg Challener, MD, a postdoctoral fellow at the Rheumatology and Allergy Clinical Epidemiology Research Center, Massachusetts General Hospital, Boston, said at the American College of Rheumatology 2024 Annual Meeting.
“One message is that, when rheumatologists are asked by oncologists about patients with rheumatoid arthritis or vasculitis or other autoimmune diseases and whether it’s safe to treat them with immune checkpoint inhibitors, this result provides some evidence that it probably is safe…. Checkpoint inhibitors are really incredible drugs, and they’ve improved mortality for a lot of cancers, particularly melanoma, and so I think there should be a pretty high threshold for us to say a patient shouldn’t receive them because of an autoimmune condition,” he told this news organization.
Another implication, Challener said, is that people with autoimmune diseases shouldn’t routinely be excluded from clinical trials of ICIs. Currently they are excluded because of concerns about exacerbation of underlying autoimmunity, possible interference between the ICI and the immunosuppressive drugs used to treat the autoimmune condition, and a theoretical risk for serious adverse events.
“Clinical trials are continuing to exclude these patients, and they paint with a very broad brush anyone with underlying autoimmunity ... I’m hoping that that changes. I don’t think there’s a great evidence base to support that practice, and it’s unfortunate that patients with underlying autoimmune diseases are excluded from important studies,” Challener said.
Asked to comment, session moderator Matlock Jeffries, MD, director of the Arthritis Research Unit at the Oklahoma Medical Research Foundation, Oklahoma City, told this news organization that he agrees the data are generally reassuring. “If one of our patients gets cancer and their oncologist wants to use a checkpoint inhibitor, we’d obviously still monitor them for complications, but we wouldn’t automatically assume the combination of a checkpoint inhibitor and autoimmune disease would increase their mortality.”
No Difference in Mortality for Those With and Without Autoimmune Disease
Challener and colleagues used administrative health data from the TriNetX Diamond network of 92 US healthcare sites with 212 million patients. All patients included in the study were receiving anti-programmed death protein 1/programmed death ligand 1 to treat malignancies involving the skin, lung/bronchus, digestive organs, or urinary tract. The study population also had at least one rheumatologic, gastrointestinal, neurologic, dermatologic, or endocrine autoimmune disease.
Propensity score matching between those with and without autoimmune disease was performed for about 100 covariates. Prior to the matching, the autoimmune disease group had significantly higher rates of cardiovascular and other comorbidities. The matching yielded 23,714 individuals with autoimmune disease and the same number without who had similar demographics and comorbidity rates, as well as malignancy type, alcohol/tobacco use, and medication use.
At a median follow-up of 250 days, the risk for mortality prior to propensity matching was 40.0% in the autoimmune disease group and 38.1% for those without, a significant difference with hazard ratio 1.07 (95% CI, 1.05-1.10). But after the matching, the difference was no longer significant: 39.8% vs 40.2%, respectively (0.97, 0.94-1.00).
The Kaplan-Meier curves for survival probability for those with or without autoimmune disease were nearly superimposed, showing no difference up to 1600 days. An analysis of just the patients with rheumatic diseases yielded similar results, Challener said.
Some Caveats About the Data
Jeffries, who is also an associate professor of medicine at the University of Oklahoma Health Sciences Center, Oklahoma City, and the Oklahoma VA, said he would like to see additional data on outcomes, both for the autoimmune conditions and the cancers. Challener said there are plans to look at other hard endpoints such as myocardial infarction and end-stage renal disease, but that the database is limited.
Both Challener and Jeffries also cautioned that the reassurance may not apply to patients with active disease.
“One thing this research doesn’t address is whether active autoimmune disease might have a different outcome compared to more kind of quiet disease…. If you have a patient who has extremely active rheumatoid arthritis or extremely active giant cell arthritis, for instance, I think that could be more challenging. I would be frightened to put a patient with really active GCA on pembrolizumab or say that it’s safe without their disease being controlled. But for someone who has well-controlled disease or minimally active disease, this is very reassuring,” Challener told this news organization.
“I think this may also be important in that it’s a good argument to tell the drug companies to include autoimmune patients in these trials so we can get better data,” Jeffries said.
Challener and Jeffries had no relevant disclosures.
A version of this article appeared on Medscape.com.
WASHINGTON — Immune checkpoint inhibitor (ICI) therapy does not increase mortality in people with preexisting autoimmune diseases, new research has found.
Results from a large database analysis of patients with and without autoimmune diseases suggest it is safe to treat them with ICI if they develop a cancer for which it is indicated, Greg Challener, MD, a postdoctoral fellow at the Rheumatology and Allergy Clinical Epidemiology Research Center, Massachusetts General Hospital, Boston, said at the American College of Rheumatology 2024 Annual Meeting.
“One message is that, when rheumatologists are asked by oncologists about patients with rheumatoid arthritis or vasculitis or other autoimmune diseases and whether it’s safe to treat them with immune checkpoint inhibitors, this result provides some evidence that it probably is safe…. Checkpoint inhibitors are really incredible drugs, and they’ve improved mortality for a lot of cancers, particularly melanoma, and so I think there should be a pretty high threshold for us to say a patient shouldn’t receive them because of an autoimmune condition,” he told this news organization.
Another implication, Challener said, is that people with autoimmune diseases shouldn’t routinely be excluded from clinical trials of ICIs. Currently they are excluded because of concerns about exacerbation of underlying autoimmunity, possible interference between the ICI and the immunosuppressive drugs used to treat the autoimmune condition, and a theoretical risk for serious adverse events.
“Clinical trials are continuing to exclude these patients, and they paint with a very broad brush anyone with underlying autoimmunity ... I’m hoping that that changes. I don’t think there’s a great evidence base to support that practice, and it’s unfortunate that patients with underlying autoimmune diseases are excluded from important studies,” Challener said.
Asked to comment, session moderator Matlock Jeffries, MD, director of the Arthritis Research Unit at the Oklahoma Medical Research Foundation, Oklahoma City, told this news organization that he agrees the data are generally reassuring. “If one of our patients gets cancer and their oncologist wants to use a checkpoint inhibitor, we’d obviously still monitor them for complications, but we wouldn’t automatically assume the combination of a checkpoint inhibitor and autoimmune disease would increase their mortality.”
No Difference in Mortality for Those With and Without Autoimmune Disease
Challener and colleagues used administrative health data from the TriNetX Diamond network of 92 US healthcare sites with 212 million patients. All patients included in the study were receiving anti-programmed death protein 1/programmed death ligand 1 to treat malignancies involving the skin, lung/bronchus, digestive organs, or urinary tract. The study population also had at least one rheumatologic, gastrointestinal, neurologic, dermatologic, or endocrine autoimmune disease.
Propensity score matching between those with and without autoimmune disease was performed for about 100 covariates. Prior to the matching, the autoimmune disease group had significantly higher rates of cardiovascular and other comorbidities. The matching yielded 23,714 individuals with autoimmune disease and the same number without who had similar demographics and comorbidity rates, as well as malignancy type, alcohol/tobacco use, and medication use.
At a median follow-up of 250 days, the risk for mortality prior to propensity matching was 40.0% in the autoimmune disease group and 38.1% for those without, a significant difference with hazard ratio 1.07 (95% CI, 1.05-1.10). But after the matching, the difference was no longer significant: 39.8% vs 40.2%, respectively (0.97, 0.94-1.00).
The Kaplan-Meier curves for survival probability for those with or without autoimmune disease were nearly superimposed, showing no difference up to 1600 days. An analysis of just the patients with rheumatic diseases yielded similar results, Challener said.
Some Caveats About the Data
Jeffries, who is also an associate professor of medicine at the University of Oklahoma Health Sciences Center, Oklahoma City, and the Oklahoma VA, said he would like to see additional data on outcomes, both for the autoimmune conditions and the cancers. Challener said there are plans to look at other hard endpoints such as myocardial infarction and end-stage renal disease, but that the database is limited.
Both Challener and Jeffries also cautioned that the reassurance may not apply to patients with active disease.
“One thing this research doesn’t address is whether active autoimmune disease might have a different outcome compared to more kind of quiet disease…. If you have a patient who has extremely active rheumatoid arthritis or extremely active giant cell arthritis, for instance, I think that could be more challenging. I would be frightened to put a patient with really active GCA on pembrolizumab or say that it’s safe without their disease being controlled. But for someone who has well-controlled disease or minimally active disease, this is very reassuring,” Challener told this news organization.
“I think this may also be important in that it’s a good argument to tell the drug companies to include autoimmune patients in these trials so we can get better data,” Jeffries said.
Challener and Jeffries had no relevant disclosures.
A version of this article appeared on Medscape.com.
WASHINGTON — Immune checkpoint inhibitor (ICI) therapy does not increase mortality in people with preexisting autoimmune diseases, new research has found.
Results from a large database analysis of patients with and without autoimmune diseases suggest it is safe to treat them with ICI if they develop a cancer for which it is indicated, Greg Challener, MD, a postdoctoral fellow at the Rheumatology and Allergy Clinical Epidemiology Research Center, Massachusetts General Hospital, Boston, said at the American College of Rheumatology 2024 Annual Meeting.
“One message is that, when rheumatologists are asked by oncologists about patients with rheumatoid arthritis or vasculitis or other autoimmune diseases and whether it’s safe to treat them with immune checkpoint inhibitors, this result provides some evidence that it probably is safe…. Checkpoint inhibitors are really incredible drugs, and they’ve improved mortality for a lot of cancers, particularly melanoma, and so I think there should be a pretty high threshold for us to say a patient shouldn’t receive them because of an autoimmune condition,” he told this news organization.
Another implication, Challener said, is that people with autoimmune diseases shouldn’t routinely be excluded from clinical trials of ICIs. Currently they are excluded because of concerns about exacerbation of underlying autoimmunity, possible interference between the ICI and the immunosuppressive drugs used to treat the autoimmune condition, and a theoretical risk for serious adverse events.
“Clinical trials are continuing to exclude these patients, and they paint with a very broad brush anyone with underlying autoimmunity ... I’m hoping that that changes. I don’t think there’s a great evidence base to support that practice, and it’s unfortunate that patients with underlying autoimmune diseases are excluded from important studies,” Challener said.
Asked to comment, session moderator Matlock Jeffries, MD, director of the Arthritis Research Unit at the Oklahoma Medical Research Foundation, Oklahoma City, told this news organization that he agrees the data are generally reassuring. “If one of our patients gets cancer and their oncologist wants to use a checkpoint inhibitor, we’d obviously still monitor them for complications, but we wouldn’t automatically assume the combination of a checkpoint inhibitor and autoimmune disease would increase their mortality.”
No Difference in Mortality for Those With and Without Autoimmune Disease
Challener and colleagues used administrative health data from the TriNetX Diamond network of 92 US healthcare sites with 212 million patients. All patients included in the study were receiving anti-programmed death protein 1/programmed death ligand 1 to treat malignancies involving the skin, lung/bronchus, digestive organs, or urinary tract. The study population also had at least one rheumatologic, gastrointestinal, neurologic, dermatologic, or endocrine autoimmune disease.
Propensity score matching between those with and without autoimmune disease was performed for about 100 covariates. Prior to the matching, the autoimmune disease group had significantly higher rates of cardiovascular and other comorbidities. The matching yielded 23,714 individuals with autoimmune disease and the same number without who had similar demographics and comorbidity rates, as well as malignancy type, alcohol/tobacco use, and medication use.
At a median follow-up of 250 days, the risk for mortality prior to propensity matching was 40.0% in the autoimmune disease group and 38.1% for those without, a significant difference with hazard ratio 1.07 (95% CI, 1.05-1.10). But after the matching, the difference was no longer significant: 39.8% vs 40.2%, respectively (0.97, 0.94-1.00).
The Kaplan-Meier curves for survival probability for those with or without autoimmune disease were nearly superimposed, showing no difference up to 1600 days. An analysis of just the patients with rheumatic diseases yielded similar results, Challener said.
Some Caveats About the Data
Jeffries, who is also an associate professor of medicine at the University of Oklahoma Health Sciences Center, Oklahoma City, and the Oklahoma VA, said he would like to see additional data on outcomes, both for the autoimmune conditions and the cancers. Challener said there are plans to look at other hard endpoints such as myocardial infarction and end-stage renal disease, but that the database is limited.
Both Challener and Jeffries also cautioned that the reassurance may not apply to patients with active disease.
“One thing this research doesn’t address is whether active autoimmune disease might have a different outcome compared to more kind of quiet disease…. If you have a patient who has extremely active rheumatoid arthritis or extremely active giant cell arthritis, for instance, I think that could be more challenging. I would be frightened to put a patient with really active GCA on pembrolizumab or say that it’s safe without their disease being controlled. But for someone who has well-controlled disease or minimally active disease, this is very reassuring,” Challener told this news organization.
“I think this may also be important in that it’s a good argument to tell the drug companies to include autoimmune patients in these trials so we can get better data,” Jeffries said.
Challener and Jeffries had no relevant disclosures.
A version of this article appeared on Medscape.com.
FROM ACR 2024
How to Stop Bone Loss After Denosumab? No Easy Answers
Patients who discontinue treatment with the osteoporosis drug denosumab, despite transitioning to zoledronate, show significant losses in lumbar spine bone mineral density (BMD) within a year, according to the latest findings to show that the rapid rebound of bone loss after denosumab discontinuation is not easily prevented with other therapies — even bisphosphonates.
“When initiating denosumab for osteoporosis treatment, it is recommended to engage in thorough shared decision-making with the patient to ensure they understand the potential risks associated with discontinuing the medication,” senior author Shau-Huai Fu, MD, PhD, Department of Orthopedics, National Taiwan University Hospital Yunlin Branch, Douliu, told this news organization.
Furthermore, “integrating a case manager system is crucial to support long-term adherence and compliance,” he added.
The results are from the Denosumab Sequential Therapy prospective, open-label, parallel-group randomized clinical trial, published online in JAMA Network Open.
In the study, 101 patients were recruited between April 2019 and May 2021 at a referral center and two hospitals in Taiwan. The patients, including postmenopausal women and men over the age of 50, had been treated with regular denosumab for at least 2 years and had no previous exposure to other anti-osteoporosis medication.
They were randomized to treatment either with continuous denosumab at the standard dose of 60 mg twice yearly or to discontinue denosumab and receive the standard intravenous dose of the bisphosphonate zoledronate at 5 mg at the time when the next dose of denosumab would have been administered.
There were no differences between the two groups in serum bone turnover markers at baseline.
The current results, reflecting the first year of the 2-year study, show that, overall, those receiving zoledronate (n = 76), had a significant decrease in lumbar spine BMD, compared with a slight increase in the denosumab continuation group (–0.68% vs 1.30%, respectively; P = .03).
No significant differences were observed between the groups in terms of the study’s other measures of total hip BMD (median, 0% vs 1.12%; P = .24), and femoral neck BMD (median, 0.18% vs 0.17%; P = .71).
Additional findings from multivariable analyses in the study also supported results from previous studies showing that a longer duration of denosumab use is associated with a more substantial rebound effect: Among 15 of the denosumab users in the study who had ≥ 3 prior years of the drug, the reduction in lumbar spine BMD was even greater with zoledronate compared with denosumab continuation (–3.20% vs 1.30%; P = .003).
Though the lack of losses in the other measures of total hip and femoral neck BMD may seem encouraging, evidence from the bulk of other studies suggests cautious interpretation of those findings, Fu said.
“Although our study did not observe a noticeable decline in total hip or femoral neck BMD, other randomized controlled trials with longer durations of denosumab use have reported significant reductions in these areas,” Fu said. “Therefore, it cannot be assumed that non-lumbar spine regions are entirely safe.”
Fracture Risk Is the Overriding Concern
Meanwhile, the loss of lumbar spine BMD is of particular concern because of its role in what amounts to the broader, overriding concern of denosumab discontinuation — the risk for fracture, Fu noted.
“Real-world observations indicate that fractures caused by or associated with discontinuation of denosumab primarily occur in the spine,” he explained.
Previous research underscores the risk for fracture with denosumab discontinuation — and the greater risk with longer-term denosumab use, showing an 11.8% annual incidence of vertebral fracture after discontinuation of denosumab used for less than 2 years, increasing to 16.0% upon discontinuation after more than 2 years of treatment.
Randomized trials have shown sequential zoledronate to have some benefit in offsetting that risk, reducing first-year fracture risk by 3%-4% in some studies.
In the current study, 3 of 76 participants experienced a vertebral fracture in the first year of discontinuation, all involving women, including 2 who had been receiving denosumab for ≥ 4 years before medication transition.
If a transition to a bisphosphonate is anticipated, the collective findings suggest doing it as early on in denosumab treatment as possible, Fu and his colleagues noted in the study.
“When medication transition from denosumab is expected or when long-term denosumab treatment may not be suitable, earlier medication transition with potent sequential therapy should be considered,” they wrote.
Dosing Adjustments?
The findings add to the evidence that “patients who gain the most with denosumab are likely to lose the most with zoledronate,” Nelson Watts, MD, who authored an editorial accompanying the study, told this news organization.
Furthermore, “denosumab and other medications seem to do more [and faster] for BMD in the spine, so we expect more loss in the spine than in the hip,” said Watts, who is director of Mercy Health Osteoporosis and Bone Health Services, Bon Secours Mercy Health in Cincinnati, Ohio.
“Studies are needed but not yet done to see if a higher dose or more frequent zoledronate would be better for BMD than the ‘usual’ yearly dose,” Watts added.
The only published clinical recommendations on the matter are discussed in a position paper from the European Calcified Tissue Society (ECTS).
“Pending additional robust data, a pragmatic approach is to begin treatment with zoledronate 6 months after the last denosumab injection and monitor the effect with bone turnover markers, for example, 3 and 6 months after the zoledronate infusion,” they recommended.
In cases of increased bone turnover markers, including above the mean found in age- and sex-matched cohorts, “repeated infusion of zoledronate should be considered,” the society added.
If bone turnover markers are not available for monitoring the patients, “a pragmatic approach could be administrating a second infusion of zoledronate 6 months after the first infusion,” they wrote.
Clinicians Need to Be Proactive From the Start
Bente Langdahl, MD, of the Medical Department of Endocrinology, Aarhus University Hospital in Denmark, who was a coauthor on the ECTS position statement, told this news organization that clinicians should also be proactive on the other side of treatment — before it begins — to prevent problems with discontinuation.
“I think denosumab is a very good treatment for some patients with high fracture risk and very low BMD, but both patients and clinicians should know that this treatment is either lifelong or there needs to be a plan for discontinuation,” Langdahl said.
Langdahl noted that denosumab is coming off patent soon; hence, issues with cost could become more manageable.
But until then, “I think [cost] should be considered before starting treatment because if patients cannot afford denosumab, they should have been started on zoledronate from the beginning.”
Discontinuation Reasons Vary
Research indicates that, broadly, adherence to denosumab ranges from about 45% to 72% at 2 years, with some reasons for discontinuation including the need for dental treatment or cost, Fu and colleagues reported.
Fu added, however, that other reasons for discontinuing denosumab “are not due to ‘need’ but rather factors such as relocating, missing follow-up appointments, or poor adherence.”
Lorenz Hofbauer, MD, who is head of the Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III at the Technical University Medical Center in Dresden, Germany, noted that another issue contributing to some hesitation by patients about remaining on, or even initiating denosumab, is the known risk for osteonecrosis of the jaw (ONJ).
Though reported as being rare, research continuing to stir concern for ONJ with denosumab use includes one recent study of patients with breast cancer showing those treated with denosumab had a fivefold higher risk for ONJ vs those on bisphosphonates.
“About 20% of my patients have ONJ concerns or other questions, which may delay treatment with denosumab or other therapies,” Hofbauer told this news organization.
“There is a high need to discuss risk versus benefits toward a shared decision-making,” he said.
Conversely, however, Hofbauer noted that adherence to denosumab at his center is fairly high — at 90%, which he says is largely credited to an electronically supported recall system in place at the center.
Denosumab maker Amgen also offers patient reminders via email, text, or phone through its Bone Matters patient support system, which also provides access to a call center for questions or to update treatment appointment information.
In terms of the ongoing question of how to best prevent fracture risk when patients do wind up discontinuing denosumab, Watts concluded in his editorial that more robust studies are needed.
“The dilemma is what to do with longer-term users who stop, and the real question is not what happens to BMD, but what happens to fracture risk,” he wrote.
“It is unlikely that the fracture risk question can be answered due to ethical limitations, but finding the best option, [whether it is] oral or intravenous bisphosphonate, timing, dose, and frequency, to minimize bone loss and the rebound increase in bone resorption after stopping long-term denosumab requires larger and longer studies of better design.”
The authors had no disclosures to report. Watts has been an investigator, consultant, and speaker for Amgen outside of the published editorial. Hofbauer is on advisory boards for Alexion Pharmaceuticals, Amolyt Pharma, Amgen, and UCB. Langdahl has been a primary investigator on previous and ongoing clinical trials involving denosumab.
A version of this article appeared on Medscape.com.
Patients who discontinue treatment with the osteoporosis drug denosumab, despite transitioning to zoledronate, show significant losses in lumbar spine bone mineral density (BMD) within a year, according to the latest findings to show that the rapid rebound of bone loss after denosumab discontinuation is not easily prevented with other therapies — even bisphosphonates.
“When initiating denosumab for osteoporosis treatment, it is recommended to engage in thorough shared decision-making with the patient to ensure they understand the potential risks associated with discontinuing the medication,” senior author Shau-Huai Fu, MD, PhD, Department of Orthopedics, National Taiwan University Hospital Yunlin Branch, Douliu, told this news organization.
Furthermore, “integrating a case manager system is crucial to support long-term adherence and compliance,” he added.
The results are from the Denosumab Sequential Therapy prospective, open-label, parallel-group randomized clinical trial, published online in JAMA Network Open.
In the study, 101 patients were recruited between April 2019 and May 2021 at a referral center and two hospitals in Taiwan. The patients, including postmenopausal women and men over the age of 50, had been treated with regular denosumab for at least 2 years and had no previous exposure to other anti-osteoporosis medication.
They were randomized to treatment either with continuous denosumab at the standard dose of 60 mg twice yearly or to discontinue denosumab and receive the standard intravenous dose of the bisphosphonate zoledronate at 5 mg at the time when the next dose of denosumab would have been administered.
There were no differences between the two groups in serum bone turnover markers at baseline.
The current results, reflecting the first year of the 2-year study, show that, overall, those receiving zoledronate (n = 76), had a significant decrease in lumbar spine BMD, compared with a slight increase in the denosumab continuation group (–0.68% vs 1.30%, respectively; P = .03).
No significant differences were observed between the groups in terms of the study’s other measures of total hip BMD (median, 0% vs 1.12%; P = .24), and femoral neck BMD (median, 0.18% vs 0.17%; P = .71).
Additional findings from multivariable analyses in the study also supported results from previous studies showing that a longer duration of denosumab use is associated with a more substantial rebound effect: Among 15 of the denosumab users in the study who had ≥ 3 prior years of the drug, the reduction in lumbar spine BMD was even greater with zoledronate compared with denosumab continuation (–3.20% vs 1.30%; P = .003).
Though the lack of losses in the other measures of total hip and femoral neck BMD may seem encouraging, evidence from the bulk of other studies suggests cautious interpretation of those findings, Fu said.
“Although our study did not observe a noticeable decline in total hip or femoral neck BMD, other randomized controlled trials with longer durations of denosumab use have reported significant reductions in these areas,” Fu said. “Therefore, it cannot be assumed that non-lumbar spine regions are entirely safe.”
Fracture Risk Is the Overriding Concern
Meanwhile, the loss of lumbar spine BMD is of particular concern because of its role in what amounts to the broader, overriding concern of denosumab discontinuation — the risk for fracture, Fu noted.
“Real-world observations indicate that fractures caused by or associated with discontinuation of denosumab primarily occur in the spine,” he explained.
Previous research underscores the risk for fracture with denosumab discontinuation — and the greater risk with longer-term denosumab use, showing an 11.8% annual incidence of vertebral fracture after discontinuation of denosumab used for less than 2 years, increasing to 16.0% upon discontinuation after more than 2 years of treatment.
Randomized trials have shown sequential zoledronate to have some benefit in offsetting that risk, reducing first-year fracture risk by 3%-4% in some studies.
In the current study, 3 of 76 participants experienced a vertebral fracture in the first year of discontinuation, all involving women, including 2 who had been receiving denosumab for ≥ 4 years before medication transition.
If a transition to a bisphosphonate is anticipated, the collective findings suggest doing it as early on in denosumab treatment as possible, Fu and his colleagues noted in the study.
“When medication transition from denosumab is expected or when long-term denosumab treatment may not be suitable, earlier medication transition with potent sequential therapy should be considered,” they wrote.
Dosing Adjustments?
The findings add to the evidence that “patients who gain the most with denosumab are likely to lose the most with zoledronate,” Nelson Watts, MD, who authored an editorial accompanying the study, told this news organization.
Furthermore, “denosumab and other medications seem to do more [and faster] for BMD in the spine, so we expect more loss in the spine than in the hip,” said Watts, who is director of Mercy Health Osteoporosis and Bone Health Services, Bon Secours Mercy Health in Cincinnati, Ohio.
“Studies are needed but not yet done to see if a higher dose or more frequent zoledronate would be better for BMD than the ‘usual’ yearly dose,” Watts added.
The only published clinical recommendations on the matter are discussed in a position paper from the European Calcified Tissue Society (ECTS).
“Pending additional robust data, a pragmatic approach is to begin treatment with zoledronate 6 months after the last denosumab injection and monitor the effect with bone turnover markers, for example, 3 and 6 months after the zoledronate infusion,” they recommended.
In cases of increased bone turnover markers, including above the mean found in age- and sex-matched cohorts, “repeated infusion of zoledronate should be considered,” the society added.
If bone turnover markers are not available for monitoring the patients, “a pragmatic approach could be administrating a second infusion of zoledronate 6 months after the first infusion,” they wrote.
Clinicians Need to Be Proactive From the Start
Bente Langdahl, MD, of the Medical Department of Endocrinology, Aarhus University Hospital in Denmark, who was a coauthor on the ECTS position statement, told this news organization that clinicians should also be proactive on the other side of treatment — before it begins — to prevent problems with discontinuation.
“I think denosumab is a very good treatment for some patients with high fracture risk and very low BMD, but both patients and clinicians should know that this treatment is either lifelong or there needs to be a plan for discontinuation,” Langdahl said.
Langdahl noted that denosumab is coming off patent soon; hence, issues with cost could become more manageable.
But until then, “I think [cost] should be considered before starting treatment because if patients cannot afford denosumab, they should have been started on zoledronate from the beginning.”
Discontinuation Reasons Vary
Research indicates that, broadly, adherence to denosumab ranges from about 45% to 72% at 2 years, with some reasons for discontinuation including the need for dental treatment or cost, Fu and colleagues reported.
Fu added, however, that other reasons for discontinuing denosumab “are not due to ‘need’ but rather factors such as relocating, missing follow-up appointments, or poor adherence.”
Lorenz Hofbauer, MD, who is head of the Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III at the Technical University Medical Center in Dresden, Germany, noted that another issue contributing to some hesitation by patients about remaining on, or even initiating denosumab, is the known risk for osteonecrosis of the jaw (ONJ).
Though reported as being rare, research continuing to stir concern for ONJ with denosumab use includes one recent study of patients with breast cancer showing those treated with denosumab had a fivefold higher risk for ONJ vs those on bisphosphonates.
“About 20% of my patients have ONJ concerns or other questions, which may delay treatment with denosumab or other therapies,” Hofbauer told this news organization.
“There is a high need to discuss risk versus benefits toward a shared decision-making,” he said.
Conversely, however, Hofbauer noted that adherence to denosumab at his center is fairly high — at 90%, which he says is largely credited to an electronically supported recall system in place at the center.
Denosumab maker Amgen also offers patient reminders via email, text, or phone through its Bone Matters patient support system, which also provides access to a call center for questions or to update treatment appointment information.
In terms of the ongoing question of how to best prevent fracture risk when patients do wind up discontinuing denosumab, Watts concluded in his editorial that more robust studies are needed.
“The dilemma is what to do with longer-term users who stop, and the real question is not what happens to BMD, but what happens to fracture risk,” he wrote.
“It is unlikely that the fracture risk question can be answered due to ethical limitations, but finding the best option, [whether it is] oral or intravenous bisphosphonate, timing, dose, and frequency, to minimize bone loss and the rebound increase in bone resorption after stopping long-term denosumab requires larger and longer studies of better design.”
The authors had no disclosures to report. Watts has been an investigator, consultant, and speaker for Amgen outside of the published editorial. Hofbauer is on advisory boards for Alexion Pharmaceuticals, Amolyt Pharma, Amgen, and UCB. Langdahl has been a primary investigator on previous and ongoing clinical trials involving denosumab.
A version of this article appeared on Medscape.com.
Patients who discontinue treatment with the osteoporosis drug denosumab, despite transitioning to zoledronate, show significant losses in lumbar spine bone mineral density (BMD) within a year, according to the latest findings to show that the rapid rebound of bone loss after denosumab discontinuation is not easily prevented with other therapies — even bisphosphonates.
“When initiating denosumab for osteoporosis treatment, it is recommended to engage in thorough shared decision-making with the patient to ensure they understand the potential risks associated with discontinuing the medication,” senior author Shau-Huai Fu, MD, PhD, Department of Orthopedics, National Taiwan University Hospital Yunlin Branch, Douliu, told this news organization.
Furthermore, “integrating a case manager system is crucial to support long-term adherence and compliance,” he added.
The results are from the Denosumab Sequential Therapy prospective, open-label, parallel-group randomized clinical trial, published online in JAMA Network Open.
In the study, 101 patients were recruited between April 2019 and May 2021 at a referral center and two hospitals in Taiwan. The patients, including postmenopausal women and men over the age of 50, had been treated with regular denosumab for at least 2 years and had no previous exposure to other anti-osteoporosis medication.
They were randomized to treatment either with continuous denosumab at the standard dose of 60 mg twice yearly or to discontinue denosumab and receive the standard intravenous dose of the bisphosphonate zoledronate at 5 mg at the time when the next dose of denosumab would have been administered.
There were no differences between the two groups in serum bone turnover markers at baseline.
The current results, reflecting the first year of the 2-year study, show that, overall, those receiving zoledronate (n = 76), had a significant decrease in lumbar spine BMD, compared with a slight increase in the denosumab continuation group (–0.68% vs 1.30%, respectively; P = .03).
No significant differences were observed between the groups in terms of the study’s other measures of total hip BMD (median, 0% vs 1.12%; P = .24), and femoral neck BMD (median, 0.18% vs 0.17%; P = .71).
Additional findings from multivariable analyses in the study also supported results from previous studies showing that a longer duration of denosumab use is associated with a more substantial rebound effect: Among 15 of the denosumab users in the study who had ≥ 3 prior years of the drug, the reduction in lumbar spine BMD was even greater with zoledronate compared with denosumab continuation (–3.20% vs 1.30%; P = .003).
Though the lack of losses in the other measures of total hip and femoral neck BMD may seem encouraging, evidence from the bulk of other studies suggests cautious interpretation of those findings, Fu said.
“Although our study did not observe a noticeable decline in total hip or femoral neck BMD, other randomized controlled trials with longer durations of denosumab use have reported significant reductions in these areas,” Fu said. “Therefore, it cannot be assumed that non-lumbar spine regions are entirely safe.”
Fracture Risk Is the Overriding Concern
Meanwhile, the loss of lumbar spine BMD is of particular concern because of its role in what amounts to the broader, overriding concern of denosumab discontinuation — the risk for fracture, Fu noted.
“Real-world observations indicate that fractures caused by or associated with discontinuation of denosumab primarily occur in the spine,” he explained.
Previous research underscores the risk for fracture with denosumab discontinuation — and the greater risk with longer-term denosumab use, showing an 11.8% annual incidence of vertebral fracture after discontinuation of denosumab used for less than 2 years, increasing to 16.0% upon discontinuation after more than 2 years of treatment.
Randomized trials have shown sequential zoledronate to have some benefit in offsetting that risk, reducing first-year fracture risk by 3%-4% in some studies.
In the current study, 3 of 76 participants experienced a vertebral fracture in the first year of discontinuation, all involving women, including 2 who had been receiving denosumab for ≥ 4 years before medication transition.
If a transition to a bisphosphonate is anticipated, the collective findings suggest doing it as early on in denosumab treatment as possible, Fu and his colleagues noted in the study.
“When medication transition from denosumab is expected or when long-term denosumab treatment may not be suitable, earlier medication transition with potent sequential therapy should be considered,” they wrote.
Dosing Adjustments?
The findings add to the evidence that “patients who gain the most with denosumab are likely to lose the most with zoledronate,” Nelson Watts, MD, who authored an editorial accompanying the study, told this news organization.
Furthermore, “denosumab and other medications seem to do more [and faster] for BMD in the spine, so we expect more loss in the spine than in the hip,” said Watts, who is director of Mercy Health Osteoporosis and Bone Health Services, Bon Secours Mercy Health in Cincinnati, Ohio.
“Studies are needed but not yet done to see if a higher dose or more frequent zoledronate would be better for BMD than the ‘usual’ yearly dose,” Watts added.
The only published clinical recommendations on the matter are discussed in a position paper from the European Calcified Tissue Society (ECTS).
“Pending additional robust data, a pragmatic approach is to begin treatment with zoledronate 6 months after the last denosumab injection and monitor the effect with bone turnover markers, for example, 3 and 6 months after the zoledronate infusion,” they recommended.
In cases of increased bone turnover markers, including above the mean found in age- and sex-matched cohorts, “repeated infusion of zoledronate should be considered,” the society added.
If bone turnover markers are not available for monitoring the patients, “a pragmatic approach could be administrating a second infusion of zoledronate 6 months after the first infusion,” they wrote.
Clinicians Need to Be Proactive From the Start
Bente Langdahl, MD, of the Medical Department of Endocrinology, Aarhus University Hospital in Denmark, who was a coauthor on the ECTS position statement, told this news organization that clinicians should also be proactive on the other side of treatment — before it begins — to prevent problems with discontinuation.
“I think denosumab is a very good treatment for some patients with high fracture risk and very low BMD, but both patients and clinicians should know that this treatment is either lifelong or there needs to be a plan for discontinuation,” Langdahl said.
Langdahl noted that denosumab is coming off patent soon; hence, issues with cost could become more manageable.
But until then, “I think [cost] should be considered before starting treatment because if patients cannot afford denosumab, they should have been started on zoledronate from the beginning.”
Discontinuation Reasons Vary
Research indicates that, broadly, adherence to denosumab ranges from about 45% to 72% at 2 years, with some reasons for discontinuation including the need for dental treatment or cost, Fu and colleagues reported.
Fu added, however, that other reasons for discontinuing denosumab “are not due to ‘need’ but rather factors such as relocating, missing follow-up appointments, or poor adherence.”
Lorenz Hofbauer, MD, who is head of the Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III at the Technical University Medical Center in Dresden, Germany, noted that another issue contributing to some hesitation by patients about remaining on, or even initiating denosumab, is the known risk for osteonecrosis of the jaw (ONJ).
Though reported as being rare, research continuing to stir concern for ONJ with denosumab use includes one recent study of patients with breast cancer showing those treated with denosumab had a fivefold higher risk for ONJ vs those on bisphosphonates.
“About 20% of my patients have ONJ concerns or other questions, which may delay treatment with denosumab or other therapies,” Hofbauer told this news organization.
“There is a high need to discuss risk versus benefits toward a shared decision-making,” he said.
Conversely, however, Hofbauer noted that adherence to denosumab at his center is fairly high — at 90%, which he says is largely credited to an electronically supported recall system in place at the center.
Denosumab maker Amgen also offers patient reminders via email, text, or phone through its Bone Matters patient support system, which also provides access to a call center for questions or to update treatment appointment information.
In terms of the ongoing question of how to best prevent fracture risk when patients do wind up discontinuing denosumab, Watts concluded in his editorial that more robust studies are needed.
“The dilemma is what to do with longer-term users who stop, and the real question is not what happens to BMD, but what happens to fracture risk,” he wrote.
“It is unlikely that the fracture risk question can be answered due to ethical limitations, but finding the best option, [whether it is] oral or intravenous bisphosphonate, timing, dose, and frequency, to minimize bone loss and the rebound increase in bone resorption after stopping long-term denosumab requires larger and longer studies of better design.”
The authors had no disclosures to report. Watts has been an investigator, consultant, and speaker for Amgen outside of the published editorial. Hofbauer is on advisory boards for Alexion Pharmaceuticals, Amolyt Pharma, Amgen, and UCB. Langdahl has been a primary investigator on previous and ongoing clinical trials involving denosumab.
A version of this article appeared on Medscape.com.
FROM JAMA NETWORK OPEN
Successful Phase 3 Vagus Nerve Stimulation Trial May Open Up New Therapeutic Avenue in RA
WASHINGTON — An implantable vagus nerve stimulation (VNS) device effectively treats moderate to severe rheumatoid arthritis (RA) in patients who had previously failed at least one biologic or targeted synthetic disease-modifying antirheumatic drug (b/tsDMARD), according to results from a phase 3 trial.
Of the 242 patients in the RESET-RA study, all received the VNS device implant but were blinded as to whether the device was turned on. At 12 weeks, 35.2% of patients receiving daily stimulation achieved 20% improvement in American College of Rheumatology response criteria (ACR20) compared with 24.2% of those with an inactive device. The response was more pronounced among patients with exposure to only one prior b/tsDMARD. A greater proportion of patients in the overall treatment group also reached low disease activity or remission compared with those who did not receive stimulation.
The research was presented as a late-breaking poster at the ACR 2024 Annual Meeting.
“This is a particularly tough-to-treat patient population, since the patients enrolled were considered refractory to biologic therapy,” said Elena Schiopu, MD, professor of medicine in the Division of Rheumatology and director of clinical trials at the Medical College of Georgia at Augusta University. More than one third of patients in the study had tried three or more b/tsDMARDs prior to the study. “I’m pretty excited about these results,” she added. Schiopu was a RESET-RA institutional principal investigator and enrolled two patients in the trial.
These positive results are a first for VNS treatment in rheumatic diseases. Previous studies demonstrating the potential therapeutic effect of this implant approach have largely been open-label, proof-of-concept, or pilot studies. Noninvasive, wearable stimulation devices have also shown promise in open-label studies; however, a sham-controlled trial published in 2023 showed that transcutaneous vagus nerve stimulation on the ear was no more effective than placebo.
But How Does It Work?
The device, developed by SetPoint Medical in Valencia, California, is about the size of a multivitamin and implanted in an outpatient setting. During the 45-minute procedure, surgeons isolate the vagus nerve on the left side of the neck and place the nerve stimulator with a silicone positioning pod to hold it in place.
The device is programmed to deliver stimulation for 1 minute every day and needs charging for only 10 minutes once a week, which is done remotely with a necklace.
The device takes advantage of the vagus nerve’s anti-inflammatory properties, stimulating the nerve to help regulate an overactive immune system of someone with RA, explained David Chernoff, MD, Setpoint Medical’s chief medical officer.
“We’re recapitulating what nature has developed over millions of years, which is the nexus between the brain and the immune system, which happens to be mediated by the vagus nerve,” he told Medscape Medical News.
This novel VNS approach also does not have the same immunosuppressive safety concerns as drugs commonly used to treat RA, he said.
“We’re able to adjust the amount of inflammation, but we don’t cause the host defense issues” that are present with some of these drugs, he continued.
SetPoint Medical’s pilot study of the device in 14 patients showed promising results. Five of 10 patients randomly assigned to active VNS over 12 weeks showed clinical improvements, measured by 28-joint Disease Activity Score based on C-reactive protein (DAS28-CRP) and the Clinical Disease Activity Index. In the remaining four patients who received sham stimulation — where the device was implanted but not activated — there were no clinical disease improvements.
RESET-RA Details
The most recent, much larger phase 3 study enrolled patients from 41 sites in the United States. Patients were on average 56 years old and had a body mass index of 30; 86% were women. A total of 39% had previously tried one b/tsDMARD, 22% had tried two, and 39% had tried three or more. Patients, on average, had 15 tender joints and 10 swollen joints. Patients discontinued their prior b/tsDMARD before the procedure and remained on conventional DMARDS during the trial, including methotrexate, hydroxychloroquine, and sulfasalazine.
The researchers randomly assigned patients 1:1 to active (treatment) or nonactive (control) stimulation.
“The perception of stimulation varies from patient to patient, which itself is helpful in blinding as there is no expected perception of whether or how stimulation will be felt,” Chernoff explained. The 1-minute stimulation was scheduled in the early hours of the morning, when a patient typically would be asleep, he said.
Patients were excluded from the analysis if they were rescued by steroids or b/tsDMARDs through week 12. After week 12, the control group was switched to stimulation and efficacy was reassessed at week 24.
Higher ACR20 Response Rate, Lower Disease Activity
Beyond meeting the primary endpoint of ACR20 response, patients on the active stimulation group showed lower disease activity at week 12. Compared with 15.8% of patients in the control group, 27% of those in the treatment group achieved a DAS28-CRP ≤ 3.2.
The active stimulation was particularly effective in patients who had experience with only one prior b/tsDMARD. In this subset of patients, 44.2% in the treatment group achieved ACR20 compared with 19.0% in the control group.
During this sham-controlled trial period, 13.1% of patients in the treatment group and 18.3% of patients in the control group reported an adverse event (AE) related to the procedure or device, most commonly vocal cord paresis or dysphonia. In the treatment group, 8.2% reported stimulation-related AEs, most commonly mild/moderate pain that was managed by adjusting the stimulation level.
Serious adverse events (SAEs) were relatively rare, with four treatment-related SAEs across both study groups. No AEs led to study discontinuation through week 24.
The 12-week results mirror those of the initial Humira and Enbrel trials in the late 1990s and early 2000s, Schiopu said, although in those trials, the patients were naive to biologics, and some were naive to methotrexate. A more appropriate comparison, she said, would be biologic-experienced populations.
At week 24, the percentage of patients achieving ACR20 further increased to 51.5% in the treatment group and to 53.1% in the previous control group who were now crossed over to active stimulation. In this secondary period, patients could add any additional therapies like steroids or b/tsDMARDs. At 24 weeks, 81% of patients remained on stimulation without needing additional medication, beyond their continued background DMARDs.
The results also show “a continuum of improvement over time,” Schiopu said, where response rates climbed through week 24.
Schiopu is particularly excited about the potential to use this stimulation device in older patients, who have perhaps been on immunosuppressant drugs for decades.
“Aside from being chronically immunosuppressed, their immune system is more tired [due to age],” she said. With VNS therapies like SetPoint’s, “we could offer [these patients] a lesser immunosuppressive alternative that is still immune-modular enough to manage their RA.”
Schiopu is a consultant for Johnson & Johnson and reported receiving research funding for serving as an institutional principal investigator for SetPoint, Galapagos, Johnson & Johnson, Boehringer Ingelheim, Lilly, argenx, EMD Serono, Priovant, Novartis, Bristol Myers Squibb, Zena Pharmaceuticals, and Horizon/Amgen.
A version of this article appeared on Medscape.com.
WASHINGTON — An implantable vagus nerve stimulation (VNS) device effectively treats moderate to severe rheumatoid arthritis (RA) in patients who had previously failed at least one biologic or targeted synthetic disease-modifying antirheumatic drug (b/tsDMARD), according to results from a phase 3 trial.
Of the 242 patients in the RESET-RA study, all received the VNS device implant but were blinded as to whether the device was turned on. At 12 weeks, 35.2% of patients receiving daily stimulation achieved 20% improvement in American College of Rheumatology response criteria (ACR20) compared with 24.2% of those with an inactive device. The response was more pronounced among patients with exposure to only one prior b/tsDMARD. A greater proportion of patients in the overall treatment group also reached low disease activity or remission compared with those who did not receive stimulation.
The research was presented as a late-breaking poster at the ACR 2024 Annual Meeting.
“This is a particularly tough-to-treat patient population, since the patients enrolled were considered refractory to biologic therapy,” said Elena Schiopu, MD, professor of medicine in the Division of Rheumatology and director of clinical trials at the Medical College of Georgia at Augusta University. More than one third of patients in the study had tried three or more b/tsDMARDs prior to the study. “I’m pretty excited about these results,” she added. Schiopu was a RESET-RA institutional principal investigator and enrolled two patients in the trial.
These positive results are a first for VNS treatment in rheumatic diseases. Previous studies demonstrating the potential therapeutic effect of this implant approach have largely been open-label, proof-of-concept, or pilot studies. Noninvasive, wearable stimulation devices have also shown promise in open-label studies; however, a sham-controlled trial published in 2023 showed that transcutaneous vagus nerve stimulation on the ear was no more effective than placebo.
But How Does It Work?
The device, developed by SetPoint Medical in Valencia, California, is about the size of a multivitamin and implanted in an outpatient setting. During the 45-minute procedure, surgeons isolate the vagus nerve on the left side of the neck and place the nerve stimulator with a silicone positioning pod to hold it in place.
The device is programmed to deliver stimulation for 1 minute every day and needs charging for only 10 minutes once a week, which is done remotely with a necklace.
The device takes advantage of the vagus nerve’s anti-inflammatory properties, stimulating the nerve to help regulate an overactive immune system of someone with RA, explained David Chernoff, MD, Setpoint Medical’s chief medical officer.
“We’re recapitulating what nature has developed over millions of years, which is the nexus between the brain and the immune system, which happens to be mediated by the vagus nerve,” he told Medscape Medical News.
This novel VNS approach also does not have the same immunosuppressive safety concerns as drugs commonly used to treat RA, he said.
“We’re able to adjust the amount of inflammation, but we don’t cause the host defense issues” that are present with some of these drugs, he continued.
SetPoint Medical’s pilot study of the device in 14 patients showed promising results. Five of 10 patients randomly assigned to active VNS over 12 weeks showed clinical improvements, measured by 28-joint Disease Activity Score based on C-reactive protein (DAS28-CRP) and the Clinical Disease Activity Index. In the remaining four patients who received sham stimulation — where the device was implanted but not activated — there were no clinical disease improvements.
RESET-RA Details
The most recent, much larger phase 3 study enrolled patients from 41 sites in the United States. Patients were on average 56 years old and had a body mass index of 30; 86% were women. A total of 39% had previously tried one b/tsDMARD, 22% had tried two, and 39% had tried three or more. Patients, on average, had 15 tender joints and 10 swollen joints. Patients discontinued their prior b/tsDMARD before the procedure and remained on conventional DMARDS during the trial, including methotrexate, hydroxychloroquine, and sulfasalazine.
The researchers randomly assigned patients 1:1 to active (treatment) or nonactive (control) stimulation.
“The perception of stimulation varies from patient to patient, which itself is helpful in blinding as there is no expected perception of whether or how stimulation will be felt,” Chernoff explained. The 1-minute stimulation was scheduled in the early hours of the morning, when a patient typically would be asleep, he said.
Patients were excluded from the analysis if they were rescued by steroids or b/tsDMARDs through week 12. After week 12, the control group was switched to stimulation and efficacy was reassessed at week 24.
Higher ACR20 Response Rate, Lower Disease Activity
Beyond meeting the primary endpoint of ACR20 response, patients on the active stimulation group showed lower disease activity at week 12. Compared with 15.8% of patients in the control group, 27% of those in the treatment group achieved a DAS28-CRP ≤ 3.2.
The active stimulation was particularly effective in patients who had experience with only one prior b/tsDMARD. In this subset of patients, 44.2% in the treatment group achieved ACR20 compared with 19.0% in the control group.
During this sham-controlled trial period, 13.1% of patients in the treatment group and 18.3% of patients in the control group reported an adverse event (AE) related to the procedure or device, most commonly vocal cord paresis or dysphonia. In the treatment group, 8.2% reported stimulation-related AEs, most commonly mild/moderate pain that was managed by adjusting the stimulation level.
Serious adverse events (SAEs) were relatively rare, with four treatment-related SAEs across both study groups. No AEs led to study discontinuation through week 24.
The 12-week results mirror those of the initial Humira and Enbrel trials in the late 1990s and early 2000s, Schiopu said, although in those trials, the patients were naive to biologics, and some were naive to methotrexate. A more appropriate comparison, she said, would be biologic-experienced populations.
At week 24, the percentage of patients achieving ACR20 further increased to 51.5% in the treatment group and to 53.1% in the previous control group who were now crossed over to active stimulation. In this secondary period, patients could add any additional therapies like steroids or b/tsDMARDs. At 24 weeks, 81% of patients remained on stimulation without needing additional medication, beyond their continued background DMARDs.
The results also show “a continuum of improvement over time,” Schiopu said, where response rates climbed through week 24.
Schiopu is particularly excited about the potential to use this stimulation device in older patients, who have perhaps been on immunosuppressant drugs for decades.
“Aside from being chronically immunosuppressed, their immune system is more tired [due to age],” she said. With VNS therapies like SetPoint’s, “we could offer [these patients] a lesser immunosuppressive alternative that is still immune-modular enough to manage their RA.”
Schiopu is a consultant for Johnson & Johnson and reported receiving research funding for serving as an institutional principal investigator for SetPoint, Galapagos, Johnson & Johnson, Boehringer Ingelheim, Lilly, argenx, EMD Serono, Priovant, Novartis, Bristol Myers Squibb, Zena Pharmaceuticals, and Horizon/Amgen.
A version of this article appeared on Medscape.com.
WASHINGTON — An implantable vagus nerve stimulation (VNS) device effectively treats moderate to severe rheumatoid arthritis (RA) in patients who had previously failed at least one biologic or targeted synthetic disease-modifying antirheumatic drug (b/tsDMARD), according to results from a phase 3 trial.
Of the 242 patients in the RESET-RA study, all received the VNS device implant but were blinded as to whether the device was turned on. At 12 weeks, 35.2% of patients receiving daily stimulation achieved 20% improvement in American College of Rheumatology response criteria (ACR20) compared with 24.2% of those with an inactive device. The response was more pronounced among patients with exposure to only one prior b/tsDMARD. A greater proportion of patients in the overall treatment group also reached low disease activity or remission compared with those who did not receive stimulation.
The research was presented as a late-breaking poster at the ACR 2024 Annual Meeting.
“This is a particularly tough-to-treat patient population, since the patients enrolled were considered refractory to biologic therapy,” said Elena Schiopu, MD, professor of medicine in the Division of Rheumatology and director of clinical trials at the Medical College of Georgia at Augusta University. More than one third of patients in the study had tried three or more b/tsDMARDs prior to the study. “I’m pretty excited about these results,” she added. Schiopu was a RESET-RA institutional principal investigator and enrolled two patients in the trial.
These positive results are a first for VNS treatment in rheumatic diseases. Previous studies demonstrating the potential therapeutic effect of this implant approach have largely been open-label, proof-of-concept, or pilot studies. Noninvasive, wearable stimulation devices have also shown promise in open-label studies; however, a sham-controlled trial published in 2023 showed that transcutaneous vagus nerve stimulation on the ear was no more effective than placebo.
But How Does It Work?
The device, developed by SetPoint Medical in Valencia, California, is about the size of a multivitamin and implanted in an outpatient setting. During the 45-minute procedure, surgeons isolate the vagus nerve on the left side of the neck and place the nerve stimulator with a silicone positioning pod to hold it in place.
The device is programmed to deliver stimulation for 1 minute every day and needs charging for only 10 minutes once a week, which is done remotely with a necklace.
The device takes advantage of the vagus nerve’s anti-inflammatory properties, stimulating the nerve to help regulate an overactive immune system of someone with RA, explained David Chernoff, MD, Setpoint Medical’s chief medical officer.
“We’re recapitulating what nature has developed over millions of years, which is the nexus between the brain and the immune system, which happens to be mediated by the vagus nerve,” he told Medscape Medical News.
This novel VNS approach also does not have the same immunosuppressive safety concerns as drugs commonly used to treat RA, he said.
“We’re able to adjust the amount of inflammation, but we don’t cause the host defense issues” that are present with some of these drugs, he continued.
SetPoint Medical’s pilot study of the device in 14 patients showed promising results. Five of 10 patients randomly assigned to active VNS over 12 weeks showed clinical improvements, measured by 28-joint Disease Activity Score based on C-reactive protein (DAS28-CRP) and the Clinical Disease Activity Index. In the remaining four patients who received sham stimulation — where the device was implanted but not activated — there were no clinical disease improvements.
RESET-RA Details
The most recent, much larger phase 3 study enrolled patients from 41 sites in the United States. Patients were on average 56 years old and had a body mass index of 30; 86% were women. A total of 39% had previously tried one b/tsDMARD, 22% had tried two, and 39% had tried three or more. Patients, on average, had 15 tender joints and 10 swollen joints. Patients discontinued their prior b/tsDMARD before the procedure and remained on conventional DMARDS during the trial, including methotrexate, hydroxychloroquine, and sulfasalazine.
The researchers randomly assigned patients 1:1 to active (treatment) or nonactive (control) stimulation.
“The perception of stimulation varies from patient to patient, which itself is helpful in blinding as there is no expected perception of whether or how stimulation will be felt,” Chernoff explained. The 1-minute stimulation was scheduled in the early hours of the morning, when a patient typically would be asleep, he said.
Patients were excluded from the analysis if they were rescued by steroids or b/tsDMARDs through week 12. After week 12, the control group was switched to stimulation and efficacy was reassessed at week 24.
Higher ACR20 Response Rate, Lower Disease Activity
Beyond meeting the primary endpoint of ACR20 response, patients on the active stimulation group showed lower disease activity at week 12. Compared with 15.8% of patients in the control group, 27% of those in the treatment group achieved a DAS28-CRP ≤ 3.2.
The active stimulation was particularly effective in patients who had experience with only one prior b/tsDMARD. In this subset of patients, 44.2% in the treatment group achieved ACR20 compared with 19.0% in the control group.
During this sham-controlled trial period, 13.1% of patients in the treatment group and 18.3% of patients in the control group reported an adverse event (AE) related to the procedure or device, most commonly vocal cord paresis or dysphonia. In the treatment group, 8.2% reported stimulation-related AEs, most commonly mild/moderate pain that was managed by adjusting the stimulation level.
Serious adverse events (SAEs) were relatively rare, with four treatment-related SAEs across both study groups. No AEs led to study discontinuation through week 24.
The 12-week results mirror those of the initial Humira and Enbrel trials in the late 1990s and early 2000s, Schiopu said, although in those trials, the patients were naive to biologics, and some were naive to methotrexate. A more appropriate comparison, she said, would be biologic-experienced populations.
At week 24, the percentage of patients achieving ACR20 further increased to 51.5% in the treatment group and to 53.1% in the previous control group who were now crossed over to active stimulation. In this secondary period, patients could add any additional therapies like steroids or b/tsDMARDs. At 24 weeks, 81% of patients remained on stimulation without needing additional medication, beyond their continued background DMARDs.
The results also show “a continuum of improvement over time,” Schiopu said, where response rates climbed through week 24.
Schiopu is particularly excited about the potential to use this stimulation device in older patients, who have perhaps been on immunosuppressant drugs for decades.
“Aside from being chronically immunosuppressed, their immune system is more tired [due to age],” she said. With VNS therapies like SetPoint’s, “we could offer [these patients] a lesser immunosuppressive alternative that is still immune-modular enough to manage their RA.”
Schiopu is a consultant for Johnson & Johnson and reported receiving research funding for serving as an institutional principal investigator for SetPoint, Galapagos, Johnson & Johnson, Boehringer Ingelheim, Lilly, argenx, EMD Serono, Priovant, Novartis, Bristol Myers Squibb, Zena Pharmaceuticals, and Horizon/Amgen.
A version of this article appeared on Medscape.com.
FROM ACR 2024
We Haven’t Kicked Our Pandemic Drinking Habit
This transcript has been edited for clarity.
You’re stuck in your house. Work is closed or you’re working remotely. Your kids’ school is closed or is offering an hour or two a day of Zoom-based instruction. You have a bit of cabin fever which, you suppose, is better than the actual fever that comes with COVID infections, which are running rampant during the height of the pandemic. But still — it’s stressful. What do you do?
We all coped in our own way. We baked sourdough bread. We built that tree house we’d been meaning to build. We started podcasts. And ... we drank. Quite a bit, actually.
During the first year of the pandemic, alcohol sales increased 3%, the largest year-on-year increase in more than 50 years. There was also an increase in drunkenness across the board, though it was most pronounced in those who were already at risk from alcohol use disorder.
Alcohol-associated deaths increased by around 10% from 2019 to 2020. Obviously, this is a small percentage of COVID-associated deaths, but it is nothing to sneeze at.
But look, we were anxious. And say what you will about alcohol as a risk factor for liver disease, heart disease, and cancer — not to mention traffic accidents — it is an anxiolytic, at least in the short term.
But as the pandemic waned, as society reopened, as we got back to work and reintegrated into our social circles and escaped the confines of our houses and apartments, our drinking habits went back to normal, right?
Americans’ love affair with alcohol has been a torrid one, as this graph showing gallons of ethanol consumed per capita over time shows you.
What you see is a steady increase in alcohol consumption from the end of prohibition in 1933 to its peak in the heady days of the early 1980s, followed by a steady decline until the mid-1990s. Since then, there has been another increase with, as you will note, a notable uptick during the early part of the COVID pandemic.
What came across my desk this week was updated data, appearing in a research letter in Annals of Internal Medicine, that compared alcohol consumption in 2020 — the first year of the COVID pandemic — with that in 2022 (the latest available data). And it looks like not much has changed.
This was a population-based survey study leveraging the National Health Interview Survey, including around 80,000 respondents from 2018, 2020, and 2022.
They created two main categories of drinking: drinking any alcohol at all and heavy drinking.
In 2018, 66% of Americans reported drinking any alcohol. That had risen to 69% by 2020, and it stayed at that level even after the lockdown had ended, as you can see here. This may seem like a small increase, but this was a highly significant result. Translating into absolute numbers, it suggests that we have added between 3,328,000 and 10,660,000 net additional drinkers to the population over this time period.
This trend was seen across basically every demographic group, with some notably larger increases among Black and Hispanic individuals, and marginally higher rates among people under age 30.
But far be it from me to deny someone a tot of brandy on a cold winter’s night. More interesting is the rate of heavy alcohol use reported in the study. For context, the definitions of heavy alcohol use appear here. For men, it’s any one day with five or more drinks or 15 or more drinks per week. For women it’s four or more drinks on a given day or eight drinks or more per week.
The overall rate of heavy drinking was about 5.1% in 2018 before the start of the pandemic. That rose to more than 6% in 2020 and it rose a bit more into 2022. The net change here, on a population level, is from 1,430,000 to 3,926,000 new heavy drinkers. That’s a number that rises to the level of an actual public health issue.
Again, this trend was fairly broad across demographic groups. Although in this case, the changes were a bit larger among White people and those in the 40- to 49-year age group. This is my cohort, I guess. Cheers.
The information we have from this study is purely descriptive. It tells us that people are drinking more since the pandemic. It doesn’t tell us why, or the impact that this excess drinking will have on subsequent health outcomes, although other studies would suggest that it will contribute to certain chronic conditions, both physical and mental.
Maybe more important is that it reminds us that habits are sticky. Once we become accustomed to something — that glass of wine or two with dinner, and before bed — it has a tendency to stay with us. There’s an upside to that phenomenon as well, of course; it means that we can train good habits too. And those, once they become ingrained, can be just as hard to break. We just need to be mindful of the habits we pick. New Year 2025 is just around the corner. Start brainstorming those resolutions now.
Wilson is associate professor of medicine and public health and director of the Clinical and Translational Research Accelerator at Yale University, New Haven, Conn. He has disclosed no relevant financial relationships.
A version of this article appeared on Medscape.com.
This transcript has been edited for clarity.
You’re stuck in your house. Work is closed or you’re working remotely. Your kids’ school is closed or is offering an hour or two a day of Zoom-based instruction. You have a bit of cabin fever which, you suppose, is better than the actual fever that comes with COVID infections, which are running rampant during the height of the pandemic. But still — it’s stressful. What do you do?
We all coped in our own way. We baked sourdough bread. We built that tree house we’d been meaning to build. We started podcasts. And ... we drank. Quite a bit, actually.
During the first year of the pandemic, alcohol sales increased 3%, the largest year-on-year increase in more than 50 years. There was also an increase in drunkenness across the board, though it was most pronounced in those who were already at risk from alcohol use disorder.
Alcohol-associated deaths increased by around 10% from 2019 to 2020. Obviously, this is a small percentage of COVID-associated deaths, but it is nothing to sneeze at.
But look, we were anxious. And say what you will about alcohol as a risk factor for liver disease, heart disease, and cancer — not to mention traffic accidents — it is an anxiolytic, at least in the short term.
But as the pandemic waned, as society reopened, as we got back to work and reintegrated into our social circles and escaped the confines of our houses and apartments, our drinking habits went back to normal, right?
Americans’ love affair with alcohol has been a torrid one, as this graph showing gallons of ethanol consumed per capita over time shows you.
What you see is a steady increase in alcohol consumption from the end of prohibition in 1933 to its peak in the heady days of the early 1980s, followed by a steady decline until the mid-1990s. Since then, there has been another increase with, as you will note, a notable uptick during the early part of the COVID pandemic.
What came across my desk this week was updated data, appearing in a research letter in Annals of Internal Medicine, that compared alcohol consumption in 2020 — the first year of the COVID pandemic — with that in 2022 (the latest available data). And it looks like not much has changed.
This was a population-based survey study leveraging the National Health Interview Survey, including around 80,000 respondents from 2018, 2020, and 2022.
They created two main categories of drinking: drinking any alcohol at all and heavy drinking.
In 2018, 66% of Americans reported drinking any alcohol. That had risen to 69% by 2020, and it stayed at that level even after the lockdown had ended, as you can see here. This may seem like a small increase, but this was a highly significant result. Translating into absolute numbers, it suggests that we have added between 3,328,000 and 10,660,000 net additional drinkers to the population over this time period.
This trend was seen across basically every demographic group, with some notably larger increases among Black and Hispanic individuals, and marginally higher rates among people under age 30.
But far be it from me to deny someone a tot of brandy on a cold winter’s night. More interesting is the rate of heavy alcohol use reported in the study. For context, the definitions of heavy alcohol use appear here. For men, it’s any one day with five or more drinks or 15 or more drinks per week. For women it’s four or more drinks on a given day or eight drinks or more per week.
The overall rate of heavy drinking was about 5.1% in 2018 before the start of the pandemic. That rose to more than 6% in 2020 and it rose a bit more into 2022. The net change here, on a population level, is from 1,430,000 to 3,926,000 new heavy drinkers. That’s a number that rises to the level of an actual public health issue.
Again, this trend was fairly broad across demographic groups. Although in this case, the changes were a bit larger among White people and those in the 40- to 49-year age group. This is my cohort, I guess. Cheers.
The information we have from this study is purely descriptive. It tells us that people are drinking more since the pandemic. It doesn’t tell us why, or the impact that this excess drinking will have on subsequent health outcomes, although other studies would suggest that it will contribute to certain chronic conditions, both physical and mental.
Maybe more important is that it reminds us that habits are sticky. Once we become accustomed to something — that glass of wine or two with dinner, and before bed — it has a tendency to stay with us. There’s an upside to that phenomenon as well, of course; it means that we can train good habits too. And those, once they become ingrained, can be just as hard to break. We just need to be mindful of the habits we pick. New Year 2025 is just around the corner. Start brainstorming those resolutions now.
Wilson is associate professor of medicine and public health and director of the Clinical and Translational Research Accelerator at Yale University, New Haven, Conn. He has disclosed no relevant financial relationships.
A version of this article appeared on Medscape.com.
This transcript has been edited for clarity.
You’re stuck in your house. Work is closed or you’re working remotely. Your kids’ school is closed or is offering an hour or two a day of Zoom-based instruction. You have a bit of cabin fever which, you suppose, is better than the actual fever that comes with COVID infections, which are running rampant during the height of the pandemic. But still — it’s stressful. What do you do?
We all coped in our own way. We baked sourdough bread. We built that tree house we’d been meaning to build. We started podcasts. And ... we drank. Quite a bit, actually.
During the first year of the pandemic, alcohol sales increased 3%, the largest year-on-year increase in more than 50 years. There was also an increase in drunkenness across the board, though it was most pronounced in those who were already at risk from alcohol use disorder.
Alcohol-associated deaths increased by around 10% from 2019 to 2020. Obviously, this is a small percentage of COVID-associated deaths, but it is nothing to sneeze at.
But look, we were anxious. And say what you will about alcohol as a risk factor for liver disease, heart disease, and cancer — not to mention traffic accidents — it is an anxiolytic, at least in the short term.
But as the pandemic waned, as society reopened, as we got back to work and reintegrated into our social circles and escaped the confines of our houses and apartments, our drinking habits went back to normal, right?
Americans’ love affair with alcohol has been a torrid one, as this graph showing gallons of ethanol consumed per capita over time shows you.
What you see is a steady increase in alcohol consumption from the end of prohibition in 1933 to its peak in the heady days of the early 1980s, followed by a steady decline until the mid-1990s. Since then, there has been another increase with, as you will note, a notable uptick during the early part of the COVID pandemic.
What came across my desk this week was updated data, appearing in a research letter in Annals of Internal Medicine, that compared alcohol consumption in 2020 — the first year of the COVID pandemic — with that in 2022 (the latest available data). And it looks like not much has changed.
This was a population-based survey study leveraging the National Health Interview Survey, including around 80,000 respondents from 2018, 2020, and 2022.
They created two main categories of drinking: drinking any alcohol at all and heavy drinking.
In 2018, 66% of Americans reported drinking any alcohol. That had risen to 69% by 2020, and it stayed at that level even after the lockdown had ended, as you can see here. This may seem like a small increase, but this was a highly significant result. Translating into absolute numbers, it suggests that we have added between 3,328,000 and 10,660,000 net additional drinkers to the population over this time period.
This trend was seen across basically every demographic group, with some notably larger increases among Black and Hispanic individuals, and marginally higher rates among people under age 30.
But far be it from me to deny someone a tot of brandy on a cold winter’s night. More interesting is the rate of heavy alcohol use reported in the study. For context, the definitions of heavy alcohol use appear here. For men, it’s any one day with five or more drinks or 15 or more drinks per week. For women it’s four or more drinks on a given day or eight drinks or more per week.
The overall rate of heavy drinking was about 5.1% in 2018 before the start of the pandemic. That rose to more than 6% in 2020 and it rose a bit more into 2022. The net change here, on a population level, is from 1,430,000 to 3,926,000 new heavy drinkers. That’s a number that rises to the level of an actual public health issue.
Again, this trend was fairly broad across demographic groups. Although in this case, the changes were a bit larger among White people and those in the 40- to 49-year age group. This is my cohort, I guess. Cheers.
The information we have from this study is purely descriptive. It tells us that people are drinking more since the pandemic. It doesn’t tell us why, or the impact that this excess drinking will have on subsequent health outcomes, although other studies would suggest that it will contribute to certain chronic conditions, both physical and mental.
Maybe more important is that it reminds us that habits are sticky. Once we become accustomed to something — that glass of wine or two with dinner, and before bed — it has a tendency to stay with us. There’s an upside to that phenomenon as well, of course; it means that we can train good habits too. And those, once they become ingrained, can be just as hard to break. We just need to be mindful of the habits we pick. New Year 2025 is just around the corner. Start brainstorming those resolutions now.
Wilson is associate professor of medicine and public health and director of the Clinical and Translational Research Accelerator at Yale University, New Haven, Conn. He has disclosed no relevant financial relationships.
A version of this article appeared on Medscape.com.
Aliens, Ian McShane, and Heart Disease Risk
This transcript has been edited for clarity.
I was really struggling to think of a good analogy to explain the glaring problem of polygenic risk scores (PRS) this week. But I think I have it now. Go with me on this.
An alien spaceship parks itself, Independence Day style, above a local office building.
But unlike the aliens that gave such a hard time to Will Smith and Brent Spiner, these are benevolent, technologically superior guys. They shine a mysterious green light down on the building and then announce, maybe via telepathy, that 6% of the people in that building will have a heart attack in the next year.
They move on to the next building. “Five percent will have a heart attack in the next year.” And the next, 7%. And the next, 2%.
Let’s assume the aliens are entirely accurate. What do you do with this information?
Most of us would suggest that you find out who was in the buildings with the higher percentages. You check their cholesterol levels, get them to exercise more, do some stress tests, and so on.
But that said, you’d still be spending a lot of money on a bunch of people who were not going to have heart attacks. So, a crack team of spies — in my mind, this is definitely led by a grizzled Ian McShane — infiltrate the alien ship, steal this predictive ray gun, and start pointing it, not at buildings but at people.
In this scenario, one person could have a 10% chance of having a heart attack in the next year. Another person has a 50% chance. The aliens, seeing this, leave us one final message before flying into the great beyond: “No, you guys are doing it wrong.”
This week: The people and companies using an advanced predictive technology, PRS , wrong — and a study that shows just how problematic this is.
We all know that genes play a significant role in our health outcomes. Some diseases (Huntington disease, cystic fibrosis, sickle cell disease, hemochromatosis, and Duchenne muscular dystrophy, for example) are entirely driven by genetic mutations.
The vast majority of chronic diseases we face are not driven by genetics, but they may be enhanced by genetics. Coronary heart disease (CHD) is a prime example. There are clearly environmental risk factors, like smoking, that dramatically increase risk. But there are also genetic underpinnings; about half the risk for CHD comes from genetic variation, according to one study.
But in the case of those common diseases, it’s not one gene that leads to increased risk; it’s the aggregate effect of multiple risk genes, each contributing a small amount of risk to the final total.
The promise of PRS was based on this fact. Take the genome of an individual, identify all the risk genes, and integrate them into some final number that represents your genetic risk of developing CHD.
The way you derive a PRS is take a big group of people and sequence their genomes. Then, you see who develops the disease of interest — in this case, CHD. If the people who develop CHD are more likely to have a particular mutation, that mutation goes in the risk score. Risk scores can integrate tens, hundreds, even thousands of individual mutations to create that final score.
There are literally dozens of PRS for CHD. And there are companies that will calculate yours right now for a reasonable fee.
The accuracy of these scores is assessed at the population level. It’s the alien ray gun thing. Researchers apply the PRS to a big group of people and say 20% of them should develop CHD. If indeed 20% develop CHD, they say the score is accurate. And that’s true.
But what happens next is the problem. Companies and even doctors have been marketing PRS to individuals. And honestly, it sounds amazing. “We’ll use sophisticated techniques to analyze your genetic code and integrate the information to give you your personal risk for CHD.” Or dementia. Or other diseases. A lot of people would want to know this information.
It turns out, though, that this is where the system breaks down. And it is nicely illustrated by this study, appearing November 16 in JAMA.
The authors wanted to see how PRS, which are developed to predict disease in a group of people, work when applied to an individual.
They identified 48 previously published PRS for CHD. They applied those scores to more than 170,000 individuals across multiple genetic databases. And, by and large, the scores worked as advertised, at least across the entire group. The weighted accuracy of all 48 scores was around 78%. They aren’t perfect, of course. We wouldn’t expect them to be, since CHD is not entirely driven by genetics. But 78% accurate isn’t too bad.
But that accuracy is at the population level. At the level of the office building. At the individual level, it was a vastly different story.
This is best illustrated by this plot, which shows the score from 48 different PRS for CHD within the same person. A note here: It is arranged by the publication date of the risk score, but these were all assessed on a single blood sample at a single point in time in this study participant.
The individual scores are all over the map. Using one risk score gives an individual a risk that is near the 99th percentile — a ticking time bomb of CHD. Another score indicates a level of risk at the very bottom of the spectrum — highly reassuring. A bunch of scores fall somewhere in between. In other words, as a doctor, the risk I will discuss with this patient is more strongly determined by which PRS I happen to choose than by his actual genetic risk, whatever that is.
This may seem counterintuitive. All these risk scores were similarly accurate within a population; how can they all give different results to an individual? The answer is simpler than you may think. As long as a given score makes one extra good prediction for each extra bad prediction, its accuracy is not changed.
Let’s imagine we have a population of 40 people.
Risk score model 1 correctly classified 30 of them for 75% accuracy. Great.
Risk score model 2 also correctly classified 30 of our 40 individuals, for 75% accuracy. It’s just a different 30.
Risk score model 3 also correctly classified 30 of 40, but another different 30.
I’ve colored this to show you all the different overlaps. What you can see is that although each score has similar accuracy, the individual people have a bunch of different colors, indicating that some scores worked for them and some didn’t. That’s a real problem.
This has not stopped companies from advertising PRS for all sorts of diseases. Companies are even using PRS to decide which fetuses to implant during IVF therapy, which is a particularly egregiously wrong use of this technology that I have written about before.
How do you fix this? Our aliens tried to warn us. This is not how you are supposed to use this ray gun. You are supposed to use it to identify groups of people at higher risk to direct more resources to that group. That’s really all you can do.
It’s also possible that we need to match the risk score to the individual in a better way. This is likely driven by the fact that risk scores tend to work best in the populations in which they were developed, and many of them were developed in people of largely European ancestry.
It is worth noting that if a PRS had perfect accuracy at the population level, it would also necessarily have perfect accuracy at the individual level. But there aren’t any scores like that. It’s possible that combining various scores may increase the individual accuracy, but that hasn’t been demonstrated yet either.
Look, genetics is and will continue to play a major role in healthcare. At the same time, sequencing entire genomes is a technology that is ripe for hype and thus misuse. Or even abuse. Fundamentally, this JAMA study reminds us that accuracy in a population and accuracy in an individual are not the same. But more deeply, it reminds us that just because a technology is new or cool or expensive doesn’t mean it will work in the clinic.
Wilson is associate professor of medicine and public health and director of the Clinical and Translational Research Accelerator at Yale University, New Haven, Connecticut. He has disclosed no relevant financial relationships.
A version of this article appeared on Medscape.com.
This transcript has been edited for clarity.
I was really struggling to think of a good analogy to explain the glaring problem of polygenic risk scores (PRS) this week. But I think I have it now. Go with me on this.
An alien spaceship parks itself, Independence Day style, above a local office building.
But unlike the aliens that gave such a hard time to Will Smith and Brent Spiner, these are benevolent, technologically superior guys. They shine a mysterious green light down on the building and then announce, maybe via telepathy, that 6% of the people in that building will have a heart attack in the next year.
They move on to the next building. “Five percent will have a heart attack in the next year.” And the next, 7%. And the next, 2%.
Let’s assume the aliens are entirely accurate. What do you do with this information?
Most of us would suggest that you find out who was in the buildings with the higher percentages. You check their cholesterol levels, get them to exercise more, do some stress tests, and so on.
But that said, you’d still be spending a lot of money on a bunch of people who were not going to have heart attacks. So, a crack team of spies — in my mind, this is definitely led by a grizzled Ian McShane — infiltrate the alien ship, steal this predictive ray gun, and start pointing it, not at buildings but at people.
In this scenario, one person could have a 10% chance of having a heart attack in the next year. Another person has a 50% chance. The aliens, seeing this, leave us one final message before flying into the great beyond: “No, you guys are doing it wrong.”
This week: The people and companies using an advanced predictive technology, PRS , wrong — and a study that shows just how problematic this is.
We all know that genes play a significant role in our health outcomes. Some diseases (Huntington disease, cystic fibrosis, sickle cell disease, hemochromatosis, and Duchenne muscular dystrophy, for example) are entirely driven by genetic mutations.
The vast majority of chronic diseases we face are not driven by genetics, but they may be enhanced by genetics. Coronary heart disease (CHD) is a prime example. There are clearly environmental risk factors, like smoking, that dramatically increase risk. But there are also genetic underpinnings; about half the risk for CHD comes from genetic variation, according to one study.
But in the case of those common diseases, it’s not one gene that leads to increased risk; it’s the aggregate effect of multiple risk genes, each contributing a small amount of risk to the final total.
The promise of PRS was based on this fact. Take the genome of an individual, identify all the risk genes, and integrate them into some final number that represents your genetic risk of developing CHD.
The way you derive a PRS is take a big group of people and sequence their genomes. Then, you see who develops the disease of interest — in this case, CHD. If the people who develop CHD are more likely to have a particular mutation, that mutation goes in the risk score. Risk scores can integrate tens, hundreds, even thousands of individual mutations to create that final score.
There are literally dozens of PRS for CHD. And there are companies that will calculate yours right now for a reasonable fee.
The accuracy of these scores is assessed at the population level. It’s the alien ray gun thing. Researchers apply the PRS to a big group of people and say 20% of them should develop CHD. If indeed 20% develop CHD, they say the score is accurate. And that’s true.
But what happens next is the problem. Companies and even doctors have been marketing PRS to individuals. And honestly, it sounds amazing. “We’ll use sophisticated techniques to analyze your genetic code and integrate the information to give you your personal risk for CHD.” Or dementia. Or other diseases. A lot of people would want to know this information.
It turns out, though, that this is where the system breaks down. And it is nicely illustrated by this study, appearing November 16 in JAMA.
The authors wanted to see how PRS, which are developed to predict disease in a group of people, work when applied to an individual.
They identified 48 previously published PRS for CHD. They applied those scores to more than 170,000 individuals across multiple genetic databases. And, by and large, the scores worked as advertised, at least across the entire group. The weighted accuracy of all 48 scores was around 78%. They aren’t perfect, of course. We wouldn’t expect them to be, since CHD is not entirely driven by genetics. But 78% accurate isn’t too bad.
But that accuracy is at the population level. At the level of the office building. At the individual level, it was a vastly different story.
This is best illustrated by this plot, which shows the score from 48 different PRS for CHD within the same person. A note here: It is arranged by the publication date of the risk score, but these were all assessed on a single blood sample at a single point in time in this study participant.
The individual scores are all over the map. Using one risk score gives an individual a risk that is near the 99th percentile — a ticking time bomb of CHD. Another score indicates a level of risk at the very bottom of the spectrum — highly reassuring. A bunch of scores fall somewhere in between. In other words, as a doctor, the risk I will discuss with this patient is more strongly determined by which PRS I happen to choose than by his actual genetic risk, whatever that is.
This may seem counterintuitive. All these risk scores were similarly accurate within a population; how can they all give different results to an individual? The answer is simpler than you may think. As long as a given score makes one extra good prediction for each extra bad prediction, its accuracy is not changed.
Let’s imagine we have a population of 40 people.
Risk score model 1 correctly classified 30 of them for 75% accuracy. Great.
Risk score model 2 also correctly classified 30 of our 40 individuals, for 75% accuracy. It’s just a different 30.
Risk score model 3 also correctly classified 30 of 40, but another different 30.
I’ve colored this to show you all the different overlaps. What you can see is that although each score has similar accuracy, the individual people have a bunch of different colors, indicating that some scores worked for them and some didn’t. That’s a real problem.
This has not stopped companies from advertising PRS for all sorts of diseases. Companies are even using PRS to decide which fetuses to implant during IVF therapy, which is a particularly egregiously wrong use of this technology that I have written about before.
How do you fix this? Our aliens tried to warn us. This is not how you are supposed to use this ray gun. You are supposed to use it to identify groups of people at higher risk to direct more resources to that group. That’s really all you can do.
It’s also possible that we need to match the risk score to the individual in a better way. This is likely driven by the fact that risk scores tend to work best in the populations in which they were developed, and many of them were developed in people of largely European ancestry.
It is worth noting that if a PRS had perfect accuracy at the population level, it would also necessarily have perfect accuracy at the individual level. But there aren’t any scores like that. It’s possible that combining various scores may increase the individual accuracy, but that hasn’t been demonstrated yet either.
Look, genetics is and will continue to play a major role in healthcare. At the same time, sequencing entire genomes is a technology that is ripe for hype and thus misuse. Or even abuse. Fundamentally, this JAMA study reminds us that accuracy in a population and accuracy in an individual are not the same. But more deeply, it reminds us that just because a technology is new or cool or expensive doesn’t mean it will work in the clinic.
Wilson is associate professor of medicine and public health and director of the Clinical and Translational Research Accelerator at Yale University, New Haven, Connecticut. He has disclosed no relevant financial relationships.
A version of this article appeared on Medscape.com.
This transcript has been edited for clarity.
I was really struggling to think of a good analogy to explain the glaring problem of polygenic risk scores (PRS) this week. But I think I have it now. Go with me on this.
An alien spaceship parks itself, Independence Day style, above a local office building.
But unlike the aliens that gave such a hard time to Will Smith and Brent Spiner, these are benevolent, technologically superior guys. They shine a mysterious green light down on the building and then announce, maybe via telepathy, that 6% of the people in that building will have a heart attack in the next year.
They move on to the next building. “Five percent will have a heart attack in the next year.” And the next, 7%. And the next, 2%.
Let’s assume the aliens are entirely accurate. What do you do with this information?
Most of us would suggest that you find out who was in the buildings with the higher percentages. You check their cholesterol levels, get them to exercise more, do some stress tests, and so on.
But that said, you’d still be spending a lot of money on a bunch of people who were not going to have heart attacks. So, a crack team of spies — in my mind, this is definitely led by a grizzled Ian McShane — infiltrate the alien ship, steal this predictive ray gun, and start pointing it, not at buildings but at people.
In this scenario, one person could have a 10% chance of having a heart attack in the next year. Another person has a 50% chance. The aliens, seeing this, leave us one final message before flying into the great beyond: “No, you guys are doing it wrong.”
This week: The people and companies using an advanced predictive technology, PRS , wrong — and a study that shows just how problematic this is.
We all know that genes play a significant role in our health outcomes. Some diseases (Huntington disease, cystic fibrosis, sickle cell disease, hemochromatosis, and Duchenne muscular dystrophy, for example) are entirely driven by genetic mutations.
The vast majority of chronic diseases we face are not driven by genetics, but they may be enhanced by genetics. Coronary heart disease (CHD) is a prime example. There are clearly environmental risk factors, like smoking, that dramatically increase risk. But there are also genetic underpinnings; about half the risk for CHD comes from genetic variation, according to one study.
But in the case of those common diseases, it’s not one gene that leads to increased risk; it’s the aggregate effect of multiple risk genes, each contributing a small amount of risk to the final total.
The promise of PRS was based on this fact. Take the genome of an individual, identify all the risk genes, and integrate them into some final number that represents your genetic risk of developing CHD.
The way you derive a PRS is take a big group of people and sequence their genomes. Then, you see who develops the disease of interest — in this case, CHD. If the people who develop CHD are more likely to have a particular mutation, that mutation goes in the risk score. Risk scores can integrate tens, hundreds, even thousands of individual mutations to create that final score.
There are literally dozens of PRS for CHD. And there are companies that will calculate yours right now for a reasonable fee.
The accuracy of these scores is assessed at the population level. It’s the alien ray gun thing. Researchers apply the PRS to a big group of people and say 20% of them should develop CHD. If indeed 20% develop CHD, they say the score is accurate. And that’s true.
But what happens next is the problem. Companies and even doctors have been marketing PRS to individuals. And honestly, it sounds amazing. “We’ll use sophisticated techniques to analyze your genetic code and integrate the information to give you your personal risk for CHD.” Or dementia. Or other diseases. A lot of people would want to know this information.
It turns out, though, that this is where the system breaks down. And it is nicely illustrated by this study, appearing November 16 in JAMA.
The authors wanted to see how PRS, which are developed to predict disease in a group of people, work when applied to an individual.
They identified 48 previously published PRS for CHD. They applied those scores to more than 170,000 individuals across multiple genetic databases. And, by and large, the scores worked as advertised, at least across the entire group. The weighted accuracy of all 48 scores was around 78%. They aren’t perfect, of course. We wouldn’t expect them to be, since CHD is not entirely driven by genetics. But 78% accurate isn’t too bad.
But that accuracy is at the population level. At the level of the office building. At the individual level, it was a vastly different story.
This is best illustrated by this plot, which shows the score from 48 different PRS for CHD within the same person. A note here: It is arranged by the publication date of the risk score, but these were all assessed on a single blood sample at a single point in time in this study participant.
The individual scores are all over the map. Using one risk score gives an individual a risk that is near the 99th percentile — a ticking time bomb of CHD. Another score indicates a level of risk at the very bottom of the spectrum — highly reassuring. A bunch of scores fall somewhere in between. In other words, as a doctor, the risk I will discuss with this patient is more strongly determined by which PRS I happen to choose than by his actual genetic risk, whatever that is.
This may seem counterintuitive. All these risk scores were similarly accurate within a population; how can they all give different results to an individual? The answer is simpler than you may think. As long as a given score makes one extra good prediction for each extra bad prediction, its accuracy is not changed.
Let’s imagine we have a population of 40 people.
Risk score model 1 correctly classified 30 of them for 75% accuracy. Great.
Risk score model 2 also correctly classified 30 of our 40 individuals, for 75% accuracy. It’s just a different 30.
Risk score model 3 also correctly classified 30 of 40, but another different 30.
I’ve colored this to show you all the different overlaps. What you can see is that although each score has similar accuracy, the individual people have a bunch of different colors, indicating that some scores worked for them and some didn’t. That’s a real problem.
This has not stopped companies from advertising PRS for all sorts of diseases. Companies are even using PRS to decide which fetuses to implant during IVF therapy, which is a particularly egregiously wrong use of this technology that I have written about before.
How do you fix this? Our aliens tried to warn us. This is not how you are supposed to use this ray gun. You are supposed to use it to identify groups of people at higher risk to direct more resources to that group. That’s really all you can do.
It’s also possible that we need to match the risk score to the individual in a better way. This is likely driven by the fact that risk scores tend to work best in the populations in which they were developed, and many of them were developed in people of largely European ancestry.
It is worth noting that if a PRS had perfect accuracy at the population level, it would also necessarily have perfect accuracy at the individual level. But there aren’t any scores like that. It’s possible that combining various scores may increase the individual accuracy, but that hasn’t been demonstrated yet either.
Look, genetics is and will continue to play a major role in healthcare. At the same time, sequencing entire genomes is a technology that is ripe for hype and thus misuse. Or even abuse. Fundamentally, this JAMA study reminds us that accuracy in a population and accuracy in an individual are not the same. But more deeply, it reminds us that just because a technology is new or cool or expensive doesn’t mean it will work in the clinic.
Wilson is associate professor of medicine and public health and director of the Clinical and Translational Research Accelerator at Yale University, New Haven, Connecticut. He has disclosed no relevant financial relationships.
A version of this article appeared on Medscape.com.
Case Series Highlight Necrotic Wounds Associated with Xylazine-Tainted Fentanyl
TOPLINE:
including 9% that involved exposed deep structures such as bone or tendon.
METHODOLOGY:
- The alpha-2 agonist xylazine, a veterinary sedative, is increasingly detected in fentanyl used illicitly in the United States and may be causing necrotizing wounds in drug users.
- To characterize specific clinical features of xylazine-associated wounds, researchers conducted a case series at three academic medical hospitals in Philadelphia from April 2022 to February 2023.
- They included 29 patients with confirmed xylazine exposure and a chief complaint that was wound-related, seen as inpatients or in the emergency department.
TAKEAWAY:
- The 29 patients (mean age, 39.4 years; 52% men) had a total of 59 wounds, 90% were located on the arms and legs, and 69% were on the posterior upper or anterior lower extremities. Five wounds (9%) involved exposed deep structures such as the bone or tendon.
- Of the 57 wounds with available photographs, 60% had wound beds with predominantly devitalized tissue (eschar or slough), 11% were blisters, 9% had granulation tissue, and 21% had mixed tissue or other types of wound beds. Devitalized tissue was more commonly observed in medium or large wounds (odds ratio [OR], 5.2; P = .02) than in small wounds.
- As reported by patients, 48% were acute wounds, 20% were subacute, and 29% were chronic (present for 3 months or longer). Subacute and chronic wounds were often medium or large compared with acute wounds (OR, 48.5; P < .001) and contained devitalized tissue (OR, 9.5; P < .001).
- Of the 39 wounds with patient-reported etiology, 34 (87%) occurred at drug injection sites.
IN PRACTICE:
To the best of their knowledge, this is “the largest study of wounds among patients with confirmed exposure to xylazine and the first to systematically describe wound characteristics,” the authors wrote. The results, they concluded, “may help identify xylazine exposure and can guide research on the etiology and management of these wounds.”
SOURCE:
This study was conducted by Lydia Lutz, MD, Johns Hopkins University School of Medicine, Baltimore, Maryland, and coinvestigators and was published online in JAMA Dermatology.
LIMITATIONS:
This single-city, retrospective study limited generalizability, and the selection of the largest wounds may bias results. Additionally, chronicity data relied on patient recall, potentially introducing recall bias.
DISCLOSURES:
Two authors received support from the National Institute on Drug Abuse for the study. The authors declared no competing interests.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.
TOPLINE:
including 9% that involved exposed deep structures such as bone or tendon.
METHODOLOGY:
- The alpha-2 agonist xylazine, a veterinary sedative, is increasingly detected in fentanyl used illicitly in the United States and may be causing necrotizing wounds in drug users.
- To characterize specific clinical features of xylazine-associated wounds, researchers conducted a case series at three academic medical hospitals in Philadelphia from April 2022 to February 2023.
- They included 29 patients with confirmed xylazine exposure and a chief complaint that was wound-related, seen as inpatients or in the emergency department.
TAKEAWAY:
- The 29 patients (mean age, 39.4 years; 52% men) had a total of 59 wounds, 90% were located on the arms and legs, and 69% were on the posterior upper or anterior lower extremities. Five wounds (9%) involved exposed deep structures such as the bone or tendon.
- Of the 57 wounds with available photographs, 60% had wound beds with predominantly devitalized tissue (eschar or slough), 11% were blisters, 9% had granulation tissue, and 21% had mixed tissue or other types of wound beds. Devitalized tissue was more commonly observed in medium or large wounds (odds ratio [OR], 5.2; P = .02) than in small wounds.
- As reported by patients, 48% were acute wounds, 20% were subacute, and 29% were chronic (present for 3 months or longer). Subacute and chronic wounds were often medium or large compared with acute wounds (OR, 48.5; P < .001) and contained devitalized tissue (OR, 9.5; P < .001).
- Of the 39 wounds with patient-reported etiology, 34 (87%) occurred at drug injection sites.
IN PRACTICE:
To the best of their knowledge, this is “the largest study of wounds among patients with confirmed exposure to xylazine and the first to systematically describe wound characteristics,” the authors wrote. The results, they concluded, “may help identify xylazine exposure and can guide research on the etiology and management of these wounds.”
SOURCE:
This study was conducted by Lydia Lutz, MD, Johns Hopkins University School of Medicine, Baltimore, Maryland, and coinvestigators and was published online in JAMA Dermatology.
LIMITATIONS:
This single-city, retrospective study limited generalizability, and the selection of the largest wounds may bias results. Additionally, chronicity data relied on patient recall, potentially introducing recall bias.
DISCLOSURES:
Two authors received support from the National Institute on Drug Abuse for the study. The authors declared no competing interests.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.
TOPLINE:
including 9% that involved exposed deep structures such as bone or tendon.
METHODOLOGY:
- The alpha-2 agonist xylazine, a veterinary sedative, is increasingly detected in fentanyl used illicitly in the United States and may be causing necrotizing wounds in drug users.
- To characterize specific clinical features of xylazine-associated wounds, researchers conducted a case series at three academic medical hospitals in Philadelphia from April 2022 to February 2023.
- They included 29 patients with confirmed xylazine exposure and a chief complaint that was wound-related, seen as inpatients or in the emergency department.
TAKEAWAY:
- The 29 patients (mean age, 39.4 years; 52% men) had a total of 59 wounds, 90% were located on the arms and legs, and 69% were on the posterior upper or anterior lower extremities. Five wounds (9%) involved exposed deep structures such as the bone or tendon.
- Of the 57 wounds with available photographs, 60% had wound beds with predominantly devitalized tissue (eschar or slough), 11% were blisters, 9% had granulation tissue, and 21% had mixed tissue or other types of wound beds. Devitalized tissue was more commonly observed in medium or large wounds (odds ratio [OR], 5.2; P = .02) than in small wounds.
- As reported by patients, 48% were acute wounds, 20% were subacute, and 29% were chronic (present for 3 months or longer). Subacute and chronic wounds were often medium or large compared with acute wounds (OR, 48.5; P < .001) and contained devitalized tissue (OR, 9.5; P < .001).
- Of the 39 wounds with patient-reported etiology, 34 (87%) occurred at drug injection sites.
IN PRACTICE:
To the best of their knowledge, this is “the largest study of wounds among patients with confirmed exposure to xylazine and the first to systematically describe wound characteristics,” the authors wrote. The results, they concluded, “may help identify xylazine exposure and can guide research on the etiology and management of these wounds.”
SOURCE:
This study was conducted by Lydia Lutz, MD, Johns Hopkins University School of Medicine, Baltimore, Maryland, and coinvestigators and was published online in JAMA Dermatology.
LIMITATIONS:
This single-city, retrospective study limited generalizability, and the selection of the largest wounds may bias results. Additionally, chronicity data relied on patient recall, potentially introducing recall bias.
DISCLOSURES:
Two authors received support from the National Institute on Drug Abuse for the study. The authors declared no competing interests.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.
Two Brain Stim Methods Better Than One for Depression?
TOPLINE:
METHODOLOGY:
- Researchers conducted a double-blind, sham-controlled randomized clinical trial from 2021 to 2023 at three hospitals in China with 240 participants with MDD (mean age, 32.5 years; 58% women).
- Participants received active tDCS + active rTMS, sham tDCS + active rTMS, active tDCS + sham rTMS, or sham tDCS + sham rTMS with treatments administered five times per week for 2 weeks.
- tDCS was administered in 20-minute sessions using a 2-mA direct current stimulator, whereas rTMS involved 1600 pulses of 10-Hz stimulation targeting the left dorsolateral prefrontal cortex. Sham treatments used a pseudostimulation coil and only emitted sound.
- The primary outcome was change in the 24-item Hamilton Depression Rating Scale (HDRS-24) total score from baseline to week 2.
- Secondary outcomes included HDRS-24 total score change at week 4, remission rate (HDRS-24 total score ≤ 9), response rate (≥ 50% reduction in HDRS-24 total score), and adverse events.
TAKEAWAY:
- The active tDCS + active rTMS group demonstrated the greatest reduction in mean HDRS-24 score (18.33 ± 5.39) at week 2 compared with sham tDCS + active rTMS, active tDCS + sham rTMS, and sham tDCS + sham rTMS (P < .001).
- Response rates at week 2 were notably higher in the active tDCS + active rTMS group (85%) than in the active tDCS + sham rTMS (30%) and sham tDCS + sham rTMS groups (32%).
- The remission rate at week 4 reached 83% in the active tDCS + active rTMS group, which was significantly higher than the remission rates with the other interventions (P < .001).
- The treatments were well tolerated, with no serious adverse events, seizures, or manic symptoms reported across all intervention groups.
IN PRACTICE:
This trial “was the first to evaluate the safety, feasibility, and efficacy of combining tDCS and rTMS in treating depression. Future studies should focus on investigating the mechanism of this synergistic effect and improving the stimulation parameters to optimize the therapeutic effect,” the investigators wrote.
SOURCE:
This study was led by Dongsheng Zhou, MD, Ningbo Kangning Hospital, Ningbo, China. It was published online in JAMA Network Open.
LIMITATIONS:
The brief treatment duration involving 10 sessions may have been insufficient for tDCS and rTMS to demonstrate their full antidepressant potential. The inability to regulate participants’ antidepressant medications throughout the study period presented another limitation. Additionally, the lack of stratified randomization and adjustment for center effects may have introduced variability in the results.
DISCLOSURES:
This study received support from multiple grants, including from the Natural Science Foundation of Zhejiang Province, Basic Public Welfare Research Project of Zhejiang Province, Ningbo Medical and Health Brand Discipline, Ningbo Clinical Medical Research Centre for Mental Health, Ningbo Top Medical and Health Research Program, and the Zhejiang Medical and Health Science and Technology Plan Project. The authors reported no conflicts of interest.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.
TOPLINE:
METHODOLOGY:
- Researchers conducted a double-blind, sham-controlled randomized clinical trial from 2021 to 2023 at three hospitals in China with 240 participants with MDD (mean age, 32.5 years; 58% women).
- Participants received active tDCS + active rTMS, sham tDCS + active rTMS, active tDCS + sham rTMS, or sham tDCS + sham rTMS with treatments administered five times per week for 2 weeks.
- tDCS was administered in 20-minute sessions using a 2-mA direct current stimulator, whereas rTMS involved 1600 pulses of 10-Hz stimulation targeting the left dorsolateral prefrontal cortex. Sham treatments used a pseudostimulation coil and only emitted sound.
- The primary outcome was change in the 24-item Hamilton Depression Rating Scale (HDRS-24) total score from baseline to week 2.
- Secondary outcomes included HDRS-24 total score change at week 4, remission rate (HDRS-24 total score ≤ 9), response rate (≥ 50% reduction in HDRS-24 total score), and adverse events.
TAKEAWAY:
- The active tDCS + active rTMS group demonstrated the greatest reduction in mean HDRS-24 score (18.33 ± 5.39) at week 2 compared with sham tDCS + active rTMS, active tDCS + sham rTMS, and sham tDCS + sham rTMS (P < .001).
- Response rates at week 2 were notably higher in the active tDCS + active rTMS group (85%) than in the active tDCS + sham rTMS (30%) and sham tDCS + sham rTMS groups (32%).
- The remission rate at week 4 reached 83% in the active tDCS + active rTMS group, which was significantly higher than the remission rates with the other interventions (P < .001).
- The treatments were well tolerated, with no serious adverse events, seizures, or manic symptoms reported across all intervention groups.
IN PRACTICE:
This trial “was the first to evaluate the safety, feasibility, and efficacy of combining tDCS and rTMS in treating depression. Future studies should focus on investigating the mechanism of this synergistic effect and improving the stimulation parameters to optimize the therapeutic effect,” the investigators wrote.
SOURCE:
This study was led by Dongsheng Zhou, MD, Ningbo Kangning Hospital, Ningbo, China. It was published online in JAMA Network Open.
LIMITATIONS:
The brief treatment duration involving 10 sessions may have been insufficient for tDCS and rTMS to demonstrate their full antidepressant potential. The inability to regulate participants’ antidepressant medications throughout the study period presented another limitation. Additionally, the lack of stratified randomization and adjustment for center effects may have introduced variability in the results.
DISCLOSURES:
This study received support from multiple grants, including from the Natural Science Foundation of Zhejiang Province, Basic Public Welfare Research Project of Zhejiang Province, Ningbo Medical and Health Brand Discipline, Ningbo Clinical Medical Research Centre for Mental Health, Ningbo Top Medical and Health Research Program, and the Zhejiang Medical and Health Science and Technology Plan Project. The authors reported no conflicts of interest.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.
TOPLINE:
METHODOLOGY:
- Researchers conducted a double-blind, sham-controlled randomized clinical trial from 2021 to 2023 at three hospitals in China with 240 participants with MDD (mean age, 32.5 years; 58% women).
- Participants received active tDCS + active rTMS, sham tDCS + active rTMS, active tDCS + sham rTMS, or sham tDCS + sham rTMS with treatments administered five times per week for 2 weeks.
- tDCS was administered in 20-minute sessions using a 2-mA direct current stimulator, whereas rTMS involved 1600 pulses of 10-Hz stimulation targeting the left dorsolateral prefrontal cortex. Sham treatments used a pseudostimulation coil and only emitted sound.
- The primary outcome was change in the 24-item Hamilton Depression Rating Scale (HDRS-24) total score from baseline to week 2.
- Secondary outcomes included HDRS-24 total score change at week 4, remission rate (HDRS-24 total score ≤ 9), response rate (≥ 50% reduction in HDRS-24 total score), and adverse events.
TAKEAWAY:
- The active tDCS + active rTMS group demonstrated the greatest reduction in mean HDRS-24 score (18.33 ± 5.39) at week 2 compared with sham tDCS + active rTMS, active tDCS + sham rTMS, and sham tDCS + sham rTMS (P < .001).
- Response rates at week 2 were notably higher in the active tDCS + active rTMS group (85%) than in the active tDCS + sham rTMS (30%) and sham tDCS + sham rTMS groups (32%).
- The remission rate at week 4 reached 83% in the active tDCS + active rTMS group, which was significantly higher than the remission rates with the other interventions (P < .001).
- The treatments were well tolerated, with no serious adverse events, seizures, or manic symptoms reported across all intervention groups.
IN PRACTICE:
This trial “was the first to evaluate the safety, feasibility, and efficacy of combining tDCS and rTMS in treating depression. Future studies should focus on investigating the mechanism of this synergistic effect and improving the stimulation parameters to optimize the therapeutic effect,” the investigators wrote.
SOURCE:
This study was led by Dongsheng Zhou, MD, Ningbo Kangning Hospital, Ningbo, China. It was published online in JAMA Network Open.
LIMITATIONS:
The brief treatment duration involving 10 sessions may have been insufficient for tDCS and rTMS to demonstrate their full antidepressant potential. The inability to regulate participants’ antidepressant medications throughout the study period presented another limitation. Additionally, the lack of stratified randomization and adjustment for center effects may have introduced variability in the results.
DISCLOSURES:
This study received support from multiple grants, including from the Natural Science Foundation of Zhejiang Province, Basic Public Welfare Research Project of Zhejiang Province, Ningbo Medical and Health Brand Discipline, Ningbo Clinical Medical Research Centre for Mental Health, Ningbo Top Medical and Health Research Program, and the Zhejiang Medical and Health Science and Technology Plan Project. The authors reported no conflicts of interest.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.