User login
Neurology Reviews covers innovative and emerging news in neurology and neuroscience every month, with a focus on practical approaches to treating Parkinson's disease, epilepsy, headache, stroke, multiple sclerosis, Alzheimer's disease, and other neurologic disorders.
PML
Progressive multifocal leukoencephalopathy
Rituxan
The leading independent newspaper covering neurology news and commentary.
Modifiable Risk Factors for Young-Onset Dementia Flagged
TOPLINE:
In addition to better known risk factors such as diabetes, stroke, heart disease, and depression, findings of a large study suggested vitamin D deficiency, elevated C-reactive protein (CRP) levels, and social isolation increase the risk for young-onset dementia (YOD).
METHODOLOGY:
- The study included 356,052 participants younger than 65 years (mean baseline age, 54.6 years) without dementia from the UK Biobank, an ongoing prospective cohort study.
- Participants underwent a comprehensive baseline assessment, provided biological samples, completed touch screen questionnaires, and underwent a physical examination.
- Researchers identified incident all-cause YOD cases from hospital inpatient registers or death register linkage.
- The researchers detected 39 potential risk factors and grouped them into domains of sociodemographic, genetic, lifestyle, environmental, vitamin D and CRP levels, cardiometabolic, psychiatric, and other factors.
- Researchers analyzed incidence rates of YOD for 5-year age bands starting at age 40 years and separately for men and women.
TAKEAWAY:
- During a mean follow-up of 8.12 years, there were 485 incident YOD cases (incidence rate of 16.8 per 100,000 person-years; 95% CI 15.4-18.3).
- The final analysis identified 15 risk factors associated with significantly higher incidence of YOD, including traditional factors like stroke (hazard ratio [HR], 2.07), heart disease (HR, 1.61), diabetes (HR, 1.65), and depression (HR, 3.25) but also less-recognized risk factors like vitamin D deficiency (< 10 ng/mL; HR, 1.59), high CRP levels (> 1 mg/dL; HR, 1.54), and social isolation (infrequent visits to friends or family; HR, 1.53), with lower socioeconomic status (HR, 1.82), having two apolipoprotein E epsilon-4 alleles (HR, 1.87), orthostatic hypotension, which the authors said may be an early sign of Parkinson dementia or Lewy body dementia (HR, 4.20), and hearing impairment (HR, 1.56) also increasing risk.
- Interestingly, some alcohol use seemed to be protective (moderate or heavy alcohol use had a lower association with YOD than alcohol abstinence, possibly due to the “healthy drinker effect” where people who drink are healthier than abstainers who may have illnesses preventing them from drinking, said the authors), as was higher education level and higher than normative handgrip strength (less strength is a proxy for physical frailty).
- Men with diabetes had higher YOD risk than those without diabetes, while there was no association with diabetes in women; on the other hand, women with high CRP levels had greater YOD risk than those with low levels, while there was no association with CRP in men.
IN PRACTICE:
“While further exploration of these risk factors is necessary to identify potential underlying mechanisms, addressing these modifiable factors may prove effective in mitigating the risk of developing YOD and can be readily integrated in current dementia prevention initiatives,” the investigators wrote.
SOURCE:
The study was led by Stevie Hendriks, PhD, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands. It was published online in JAMA Neurology.
LIMITATIONS:
The study was observational and so can’t infer causality. Several factors were based on self-reported data, which might be a source of response bias. Factors not considered in the study, for example, family history of dementia and drug (other than alcohol) use disorder, may have confounded associations. Some factors including orthostatic hypotension had few exposed cases, leading to decreased power to detect associations. Hospital and death records may not have captured all YOD cases. The UK Biobank is overrepresented by healthy and White participants, so results may not be generalizable to other racial and ethnic groups. The analyses only focused on all-cause dementia.
DISCLOSURES:
The study was supported by Alzheimer Netherlands. Hendriks has no relevant conflicts of interest; see paper for disclosures of other authors.
A version of this article appeared on Medscape.com.
TOPLINE:
In addition to better known risk factors such as diabetes, stroke, heart disease, and depression, findings of a large study suggested vitamin D deficiency, elevated C-reactive protein (CRP) levels, and social isolation increase the risk for young-onset dementia (YOD).
METHODOLOGY:
- The study included 356,052 participants younger than 65 years (mean baseline age, 54.6 years) without dementia from the UK Biobank, an ongoing prospective cohort study.
- Participants underwent a comprehensive baseline assessment, provided biological samples, completed touch screen questionnaires, and underwent a physical examination.
- Researchers identified incident all-cause YOD cases from hospital inpatient registers or death register linkage.
- The researchers detected 39 potential risk factors and grouped them into domains of sociodemographic, genetic, lifestyle, environmental, vitamin D and CRP levels, cardiometabolic, psychiatric, and other factors.
- Researchers analyzed incidence rates of YOD for 5-year age bands starting at age 40 years and separately for men and women.
TAKEAWAY:
- During a mean follow-up of 8.12 years, there were 485 incident YOD cases (incidence rate of 16.8 per 100,000 person-years; 95% CI 15.4-18.3).
- The final analysis identified 15 risk factors associated with significantly higher incidence of YOD, including traditional factors like stroke (hazard ratio [HR], 2.07), heart disease (HR, 1.61), diabetes (HR, 1.65), and depression (HR, 3.25) but also less-recognized risk factors like vitamin D deficiency (< 10 ng/mL; HR, 1.59), high CRP levels (> 1 mg/dL; HR, 1.54), and social isolation (infrequent visits to friends or family; HR, 1.53), with lower socioeconomic status (HR, 1.82), having two apolipoprotein E epsilon-4 alleles (HR, 1.87), orthostatic hypotension, which the authors said may be an early sign of Parkinson dementia or Lewy body dementia (HR, 4.20), and hearing impairment (HR, 1.56) also increasing risk.
- Interestingly, some alcohol use seemed to be protective (moderate or heavy alcohol use had a lower association with YOD than alcohol abstinence, possibly due to the “healthy drinker effect” where people who drink are healthier than abstainers who may have illnesses preventing them from drinking, said the authors), as was higher education level and higher than normative handgrip strength (less strength is a proxy for physical frailty).
- Men with diabetes had higher YOD risk than those without diabetes, while there was no association with diabetes in women; on the other hand, women with high CRP levels had greater YOD risk than those with low levels, while there was no association with CRP in men.
IN PRACTICE:
“While further exploration of these risk factors is necessary to identify potential underlying mechanisms, addressing these modifiable factors may prove effective in mitigating the risk of developing YOD and can be readily integrated in current dementia prevention initiatives,” the investigators wrote.
SOURCE:
The study was led by Stevie Hendriks, PhD, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands. It was published online in JAMA Neurology.
LIMITATIONS:
The study was observational and so can’t infer causality. Several factors were based on self-reported data, which might be a source of response bias. Factors not considered in the study, for example, family history of dementia and drug (other than alcohol) use disorder, may have confounded associations. Some factors including orthostatic hypotension had few exposed cases, leading to decreased power to detect associations. Hospital and death records may not have captured all YOD cases. The UK Biobank is overrepresented by healthy and White participants, so results may not be generalizable to other racial and ethnic groups. The analyses only focused on all-cause dementia.
DISCLOSURES:
The study was supported by Alzheimer Netherlands. Hendriks has no relevant conflicts of interest; see paper for disclosures of other authors.
A version of this article appeared on Medscape.com.
TOPLINE:
In addition to better known risk factors such as diabetes, stroke, heart disease, and depression, findings of a large study suggested vitamin D deficiency, elevated C-reactive protein (CRP) levels, and social isolation increase the risk for young-onset dementia (YOD).
METHODOLOGY:
- The study included 356,052 participants younger than 65 years (mean baseline age, 54.6 years) without dementia from the UK Biobank, an ongoing prospective cohort study.
- Participants underwent a comprehensive baseline assessment, provided biological samples, completed touch screen questionnaires, and underwent a physical examination.
- Researchers identified incident all-cause YOD cases from hospital inpatient registers or death register linkage.
- The researchers detected 39 potential risk factors and grouped them into domains of sociodemographic, genetic, lifestyle, environmental, vitamin D and CRP levels, cardiometabolic, psychiatric, and other factors.
- Researchers analyzed incidence rates of YOD for 5-year age bands starting at age 40 years and separately for men and women.
TAKEAWAY:
- During a mean follow-up of 8.12 years, there were 485 incident YOD cases (incidence rate of 16.8 per 100,000 person-years; 95% CI 15.4-18.3).
- The final analysis identified 15 risk factors associated with significantly higher incidence of YOD, including traditional factors like stroke (hazard ratio [HR], 2.07), heart disease (HR, 1.61), diabetes (HR, 1.65), and depression (HR, 3.25) but also less-recognized risk factors like vitamin D deficiency (< 10 ng/mL; HR, 1.59), high CRP levels (> 1 mg/dL; HR, 1.54), and social isolation (infrequent visits to friends or family; HR, 1.53), with lower socioeconomic status (HR, 1.82), having two apolipoprotein E epsilon-4 alleles (HR, 1.87), orthostatic hypotension, which the authors said may be an early sign of Parkinson dementia or Lewy body dementia (HR, 4.20), and hearing impairment (HR, 1.56) also increasing risk.
- Interestingly, some alcohol use seemed to be protective (moderate or heavy alcohol use had a lower association with YOD than alcohol abstinence, possibly due to the “healthy drinker effect” where people who drink are healthier than abstainers who may have illnesses preventing them from drinking, said the authors), as was higher education level and higher than normative handgrip strength (less strength is a proxy for physical frailty).
- Men with diabetes had higher YOD risk than those without diabetes, while there was no association with diabetes in women; on the other hand, women with high CRP levels had greater YOD risk than those with low levels, while there was no association with CRP in men.
IN PRACTICE:
“While further exploration of these risk factors is necessary to identify potential underlying mechanisms, addressing these modifiable factors may prove effective in mitigating the risk of developing YOD and can be readily integrated in current dementia prevention initiatives,” the investigators wrote.
SOURCE:
The study was led by Stevie Hendriks, PhD, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands. It was published online in JAMA Neurology.
LIMITATIONS:
The study was observational and so can’t infer causality. Several factors were based on self-reported data, which might be a source of response bias. Factors not considered in the study, for example, family history of dementia and drug (other than alcohol) use disorder, may have confounded associations. Some factors including orthostatic hypotension had few exposed cases, leading to decreased power to detect associations. Hospital and death records may not have captured all YOD cases. The UK Biobank is overrepresented by healthy and White participants, so results may not be generalizable to other racial and ethnic groups. The analyses only focused on all-cause dementia.
DISCLOSURES:
The study was supported by Alzheimer Netherlands. Hendriks has no relevant conflicts of interest; see paper for disclosures of other authors.
A version of this article appeared on Medscape.com.
African Psychedelic Tied to ‘Remarkable’ Improvement in TBI-Related Psych Symptoms, Functional Disability
The plant-based psychoactive compound ibogaine, combined with magnesium to protect the heart, is linked to improvement in severe psychiatric symptoms including depression, anxiety, and functioning in veterans with traumatic brain injury (TBI), early results from a small study showed.
“The most unique findings we observed are the improvements in disability and cognition. At the start of the study, participants had mild to moderate levels of disability. However, a month after treatment, their average disability rating indicated no disability and cognitive testing indicated improvements in concentration and memory,” study investigator Nolan Williams, MD, Stanford University, Stanford, California, told this news organization.
Also noteworthy were improvements across all participants in posttraumatic stress disorder (PTSD), depression, and anxiety — effects that lasted for at least 1 month after treatment, he said.
“These results are remarkable and exceeded our expectations. There is no drug today that can broadly relieve functional and neuropsychiatric symptoms of TBI as we observed with ibogaine,” Dr. Williams added.
The study was published online on January 5, 2024, in Nature Medicine.
‘The Storm Lifted’
Ibogaine is derived from the root bark of the Tabernanthe iboga shrub and related plants and is traditionally used in African spiritual and healing ceremonies.
It is known to interact with multiple neurotransmitter systems and has been studied primarily as a treatment of substance use disorders (SUDs). Some studies of ibogaine for SUDs have also noted improvements in self-reported measures of mood.
In the United States, ibogaine is classified as a Schedule I substance, but legal ibogaine treatments are offered in clinics in Canada and Mexico.
Dr. Williams noted that a handful of US veterans who went to Mexico for ibogaine treatment anecdotally reported improvements a variety of aspects of their lives.
The goal of the current study was to characterize those improvements with structured clinical and neurobiological assessments.
Participants included 30 US Special Operations Forces veterans (SOVs) with predominantly mild TBI from combat/blast exposures and psychiatric symptoms and functional limitations. All of them had independently scheduled themselves for treatment with magnesium and ibogaine at a clinic in Mexico.
Before treatment, the veterans had an average disability rating of 30.2 on the World Health Organization Disability Assessment Scale 2.0, equivalent to mild to moderate disability. One month after ibogaine treatment, that rating improved to 5.1, indicating no disability, the researchers reported.
One month after treatment, participants also experienced average reductions of 88% in PTSD symptoms, 87% in depression symptoms, and 81% in anxiety symptoms relative to before treatment.
Neuropsychological testing revealed improved concentration, information processing, memory, and impulsivity. There was also a substantial reduction in suicidal ideation.
“Before the treatment, I was living life in a blizzard with zero visibility and a cold, hopeless, listless feeling. After ibogaine, the storm lifted,” Sean, a 51-year-old veteran from Arizona with six combat deployments who participated in the study, said in a Stanford news release.
There were no serious side effects of ibogaine, and no instances of heart problems associated with the treatment.
Although the study findings are promising, additional research is needed to address some clear limitations, the researchers noted.
“Most importantly, the study was not controlled and so the relative contribution of any therapeutic benefits from non-ibogaine elements of the experience, such as complementary treatments, group activities, coaching, international travel, expectancy, or other nonspecific effects, cannot be determined,” they wrote.
In addition, follow-up was limited to 1 month, and longer-term data are needed to determine durability of the effects.
“We plan to study this compound further, as well as launch future studies to continue to understand how this drug can be used to treat TBI and possibly as a broader neuro-rehab drug. We will work towards a US-based set of trials to confirm efficacy with a multisite design,” said Dr. Williams.
Promising, but Very Preliminary
Commenting on the study for this news organization, Ramon Diaz-Arrastia, MD, PhD, professor of neurology and director of the Clinical TBI Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, said the results are “promising, but very preliminary.”
Dr. Diaz-Arrastia noted that this was an open-label, nonrandomized study, early phase 2a study with “highly subjective outcome measures and the likelihood of it being a placebo effect is very high.”
Nonetheless, “there is a lot of interest in these ‘psychedelic’ alkaloids, and ibogaine is a good candidate for further study,” Dr. Diaz-Arrastia said.
Also providing perspective, Alan K. Davis, PhD, director of the Center for Psychedelic Drug Research and Education, Ohio State University, Columbus, said “mounting evidence supports the importance of studying this treatment in rigorous clinical trials in the US.”
Dr. Davis and colleagues recently observed that treatment with two naturally occurring psychedelics — ibogaine and 5-MeO-DMT — was associated with reduced depressive and anxiety symptoms in trauma-exposed SOVs, as previously reported by this news organization.
This new study “basically is a replication of what we’ve already published on this topic, and we published data from much larger samples and longer follow up,” said Dr. Davis.
Dr. Davis said it’s “important for the public to know that there are important and serious risks associated with ibogaine therapy, including the possibility of cardiac problems and death. These risks are compounded when people are in clinics or settings where proper screening and medical oversight are not completed.”
“Furthermore, the long-term effectiveness of this treatment is not well established. It may only help in the short term for most people. For many, ongoing clinical aftercare therapy and other forms of treatment may be needed,” Dr. Davis noted.
The study was independently funded by philanthropic gifts from Steve and Genevieve Jurvetson and another anonymous donor. Williams is an inventor on a patent application related to the safety of MISTIC administration as described in the paper and a separate patent related to the use of ibogaine to treat disorders associated with brain aging. Dr. Davis is a board member at Source Resource Foundation and a lead trainer at Fluence. Dr. Diaz-Arrastia has no relevant disclosures.
A version of this article appeared on Medscape.com.
The plant-based psychoactive compound ibogaine, combined with magnesium to protect the heart, is linked to improvement in severe psychiatric symptoms including depression, anxiety, and functioning in veterans with traumatic brain injury (TBI), early results from a small study showed.
“The most unique findings we observed are the improvements in disability and cognition. At the start of the study, participants had mild to moderate levels of disability. However, a month after treatment, their average disability rating indicated no disability and cognitive testing indicated improvements in concentration and memory,” study investigator Nolan Williams, MD, Stanford University, Stanford, California, told this news organization.
Also noteworthy were improvements across all participants in posttraumatic stress disorder (PTSD), depression, and anxiety — effects that lasted for at least 1 month after treatment, he said.
“These results are remarkable and exceeded our expectations. There is no drug today that can broadly relieve functional and neuropsychiatric symptoms of TBI as we observed with ibogaine,” Dr. Williams added.
The study was published online on January 5, 2024, in Nature Medicine.
‘The Storm Lifted’
Ibogaine is derived from the root bark of the Tabernanthe iboga shrub and related plants and is traditionally used in African spiritual and healing ceremonies.
It is known to interact with multiple neurotransmitter systems and has been studied primarily as a treatment of substance use disorders (SUDs). Some studies of ibogaine for SUDs have also noted improvements in self-reported measures of mood.
In the United States, ibogaine is classified as a Schedule I substance, but legal ibogaine treatments are offered in clinics in Canada and Mexico.
Dr. Williams noted that a handful of US veterans who went to Mexico for ibogaine treatment anecdotally reported improvements a variety of aspects of their lives.
The goal of the current study was to characterize those improvements with structured clinical and neurobiological assessments.
Participants included 30 US Special Operations Forces veterans (SOVs) with predominantly mild TBI from combat/blast exposures and psychiatric symptoms and functional limitations. All of them had independently scheduled themselves for treatment with magnesium and ibogaine at a clinic in Mexico.
Before treatment, the veterans had an average disability rating of 30.2 on the World Health Organization Disability Assessment Scale 2.0, equivalent to mild to moderate disability. One month after ibogaine treatment, that rating improved to 5.1, indicating no disability, the researchers reported.
One month after treatment, participants also experienced average reductions of 88% in PTSD symptoms, 87% in depression symptoms, and 81% in anxiety symptoms relative to before treatment.
Neuropsychological testing revealed improved concentration, information processing, memory, and impulsivity. There was also a substantial reduction in suicidal ideation.
“Before the treatment, I was living life in a blizzard with zero visibility and a cold, hopeless, listless feeling. After ibogaine, the storm lifted,” Sean, a 51-year-old veteran from Arizona with six combat deployments who participated in the study, said in a Stanford news release.
There were no serious side effects of ibogaine, and no instances of heart problems associated with the treatment.
Although the study findings are promising, additional research is needed to address some clear limitations, the researchers noted.
“Most importantly, the study was not controlled and so the relative contribution of any therapeutic benefits from non-ibogaine elements of the experience, such as complementary treatments, group activities, coaching, international travel, expectancy, or other nonspecific effects, cannot be determined,” they wrote.
In addition, follow-up was limited to 1 month, and longer-term data are needed to determine durability of the effects.
“We plan to study this compound further, as well as launch future studies to continue to understand how this drug can be used to treat TBI and possibly as a broader neuro-rehab drug. We will work towards a US-based set of trials to confirm efficacy with a multisite design,” said Dr. Williams.
Promising, but Very Preliminary
Commenting on the study for this news organization, Ramon Diaz-Arrastia, MD, PhD, professor of neurology and director of the Clinical TBI Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, said the results are “promising, but very preliminary.”
Dr. Diaz-Arrastia noted that this was an open-label, nonrandomized study, early phase 2a study with “highly subjective outcome measures and the likelihood of it being a placebo effect is very high.”
Nonetheless, “there is a lot of interest in these ‘psychedelic’ alkaloids, and ibogaine is a good candidate for further study,” Dr. Diaz-Arrastia said.
Also providing perspective, Alan K. Davis, PhD, director of the Center for Psychedelic Drug Research and Education, Ohio State University, Columbus, said “mounting evidence supports the importance of studying this treatment in rigorous clinical trials in the US.”
Dr. Davis and colleagues recently observed that treatment with two naturally occurring psychedelics — ibogaine and 5-MeO-DMT — was associated with reduced depressive and anxiety symptoms in trauma-exposed SOVs, as previously reported by this news organization.
This new study “basically is a replication of what we’ve already published on this topic, and we published data from much larger samples and longer follow up,” said Dr. Davis.
Dr. Davis said it’s “important for the public to know that there are important and serious risks associated with ibogaine therapy, including the possibility of cardiac problems and death. These risks are compounded when people are in clinics or settings where proper screening and medical oversight are not completed.”
“Furthermore, the long-term effectiveness of this treatment is not well established. It may only help in the short term for most people. For many, ongoing clinical aftercare therapy and other forms of treatment may be needed,” Dr. Davis noted.
The study was independently funded by philanthropic gifts from Steve and Genevieve Jurvetson and another anonymous donor. Williams is an inventor on a patent application related to the safety of MISTIC administration as described in the paper and a separate patent related to the use of ibogaine to treat disorders associated with brain aging. Dr. Davis is a board member at Source Resource Foundation and a lead trainer at Fluence. Dr. Diaz-Arrastia has no relevant disclosures.
A version of this article appeared on Medscape.com.
The plant-based psychoactive compound ibogaine, combined with magnesium to protect the heart, is linked to improvement in severe psychiatric symptoms including depression, anxiety, and functioning in veterans with traumatic brain injury (TBI), early results from a small study showed.
“The most unique findings we observed are the improvements in disability and cognition. At the start of the study, participants had mild to moderate levels of disability. However, a month after treatment, their average disability rating indicated no disability and cognitive testing indicated improvements in concentration and memory,” study investigator Nolan Williams, MD, Stanford University, Stanford, California, told this news organization.
Also noteworthy were improvements across all participants in posttraumatic stress disorder (PTSD), depression, and anxiety — effects that lasted for at least 1 month after treatment, he said.
“These results are remarkable and exceeded our expectations. There is no drug today that can broadly relieve functional and neuropsychiatric symptoms of TBI as we observed with ibogaine,” Dr. Williams added.
The study was published online on January 5, 2024, in Nature Medicine.
‘The Storm Lifted’
Ibogaine is derived from the root bark of the Tabernanthe iboga shrub and related plants and is traditionally used in African spiritual and healing ceremonies.
It is known to interact with multiple neurotransmitter systems and has been studied primarily as a treatment of substance use disorders (SUDs). Some studies of ibogaine for SUDs have also noted improvements in self-reported measures of mood.
In the United States, ibogaine is classified as a Schedule I substance, but legal ibogaine treatments are offered in clinics in Canada and Mexico.
Dr. Williams noted that a handful of US veterans who went to Mexico for ibogaine treatment anecdotally reported improvements a variety of aspects of their lives.
The goal of the current study was to characterize those improvements with structured clinical and neurobiological assessments.
Participants included 30 US Special Operations Forces veterans (SOVs) with predominantly mild TBI from combat/blast exposures and psychiatric symptoms and functional limitations. All of them had independently scheduled themselves for treatment with magnesium and ibogaine at a clinic in Mexico.
Before treatment, the veterans had an average disability rating of 30.2 on the World Health Organization Disability Assessment Scale 2.0, equivalent to mild to moderate disability. One month after ibogaine treatment, that rating improved to 5.1, indicating no disability, the researchers reported.
One month after treatment, participants also experienced average reductions of 88% in PTSD symptoms, 87% in depression symptoms, and 81% in anxiety symptoms relative to before treatment.
Neuropsychological testing revealed improved concentration, information processing, memory, and impulsivity. There was also a substantial reduction in suicidal ideation.
“Before the treatment, I was living life in a blizzard with zero visibility and a cold, hopeless, listless feeling. After ibogaine, the storm lifted,” Sean, a 51-year-old veteran from Arizona with six combat deployments who participated in the study, said in a Stanford news release.
There were no serious side effects of ibogaine, and no instances of heart problems associated with the treatment.
Although the study findings are promising, additional research is needed to address some clear limitations, the researchers noted.
“Most importantly, the study was not controlled and so the relative contribution of any therapeutic benefits from non-ibogaine elements of the experience, such as complementary treatments, group activities, coaching, international travel, expectancy, or other nonspecific effects, cannot be determined,” they wrote.
In addition, follow-up was limited to 1 month, and longer-term data are needed to determine durability of the effects.
“We plan to study this compound further, as well as launch future studies to continue to understand how this drug can be used to treat TBI and possibly as a broader neuro-rehab drug. We will work towards a US-based set of trials to confirm efficacy with a multisite design,” said Dr. Williams.
Promising, but Very Preliminary
Commenting on the study for this news organization, Ramon Diaz-Arrastia, MD, PhD, professor of neurology and director of the Clinical TBI Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, said the results are “promising, but very preliminary.”
Dr. Diaz-Arrastia noted that this was an open-label, nonrandomized study, early phase 2a study with “highly subjective outcome measures and the likelihood of it being a placebo effect is very high.”
Nonetheless, “there is a lot of interest in these ‘psychedelic’ alkaloids, and ibogaine is a good candidate for further study,” Dr. Diaz-Arrastia said.
Also providing perspective, Alan K. Davis, PhD, director of the Center for Psychedelic Drug Research and Education, Ohio State University, Columbus, said “mounting evidence supports the importance of studying this treatment in rigorous clinical trials in the US.”
Dr. Davis and colleagues recently observed that treatment with two naturally occurring psychedelics — ibogaine and 5-MeO-DMT — was associated with reduced depressive and anxiety symptoms in trauma-exposed SOVs, as previously reported by this news organization.
This new study “basically is a replication of what we’ve already published on this topic, and we published data from much larger samples and longer follow up,” said Dr. Davis.
Dr. Davis said it’s “important for the public to know that there are important and serious risks associated with ibogaine therapy, including the possibility of cardiac problems and death. These risks are compounded when people are in clinics or settings where proper screening and medical oversight are not completed.”
“Furthermore, the long-term effectiveness of this treatment is not well established. It may only help in the short term for most people. For many, ongoing clinical aftercare therapy and other forms of treatment may be needed,” Dr. Davis noted.
The study was independently funded by philanthropic gifts from Steve and Genevieve Jurvetson and another anonymous donor. Williams is an inventor on a patent application related to the safety of MISTIC administration as described in the paper and a separate patent related to the use of ibogaine to treat disorders associated with brain aging. Dr. Davis is a board member at Source Resource Foundation and a lead trainer at Fluence. Dr. Diaz-Arrastia has no relevant disclosures.
A version of this article appeared on Medscape.com.
FROM NATURE MEDICINE
Alzheimer’s and Epilepsy: Can Shared Molecular Mechanisms Reveal New Opportunities for Epilepsy?
ORLANDO — “
,” said Delia Marias Talos, MD, at a session of the annual meeting of the American Epilepsy Society (AES).A Closer Look at the Brain
“Phosphorylated tau correlates with cognitive function and executive function recorded presurgery, but it looks like the generative changes are more associated with temporal lobe and aging.”
Alzheimer’s disease is a degenerative condition marked by progressive memory deficits and cognitive decline noted by amyloid plaques and a formation of neurofibrillary tangles resulting from tau hyperphosphorylation.
Epilepsy, on the other hand, is a multifactorial condition with causes ranging from metabolic disorders, structural defects, infections, genetic mutations, and autoimmune disorders. In addition, nearly 50% of all epileptic seizures are idiopathic in nature.
Dr. Talos, professor of neurology at the University of Pennsylvania Perlman School of Medicine in Philadelphia, and her team did not see neurofibrillary tangles in the presurgical brains of epilepsy patients they studied; however, they saw tau plaques. In the future, they seek to investigate the features that distinguish epilepsy from Alzheimer’s disease.
Toxic fragments are probably there because amyloid precursor protein is highly upregulated, she told conference attendees. “We hypothesized that amyloid plaque is cleared but not impaired in epilepsy.”
The prognosis looks comparatively worse for patients who have Alzheimer’s disease and comorbid epilepsy than for patients who have only epilepsy. In addition, Dr. Talos stated that seizures appear to have an additive effort on Alzheimer’s disease.
Fyn-disruptive Therapy
Marson Putra, MD, PhD, a neuroscientist and postdoctoral researcher at Iowa State in Ames, Iowa, presented on the potential impact of a novel fyn-tau interaction as an unexplored target for epileptogensis and epilepsy.
Dr. Putra studied whether fyn-tau interactions exist in epilepsy. In both Alzheimer’s disease and epilepsy, Fyn belongs to the Src family of nonreceptor tyrosine kinases (SFKs), which are involved in cell proliferation and migration. Fyn contains an SH3 domain, which serves as a target for tau’s proline-rich (PxxP) motif. Fyn phosphorylates tau, specifically at tyrosine residue Y18, making fyn-disruptive therapy worth exploring.
Dr. Putra shared several currently proposed mechanisms of action regarding the pathogenesis of the tau plaque. In the first theory, the tau protein assumes a closed conformation in its normal state, thereby concealing the PxxP motif. However, in the second theory, pathogenesis causes the tau protein to assume an open conformation in the disease state, exposing pAT8 sites and making them available to fyn phosphorylation. In the second scenario, which involves Alzheimer’s disease, the fyn-tau interaction still occurs in open conformation state and is thought to occur in the postsynaptic terminal of the dendritic spine.
To investigate the proposed disease-causing mechanisms, Dr. Putra and her team studied status epilepticus in a rodent model of status epilepticus (SE). They used proximity ligation assay to measure interactions between Fyn and tau. They found AT8 and Y18 Fyn and N-methyl-D-aspartate (NMDA) receptor activation in a rat model and increased Fyn interaction. In addition, neuronal nitric oxide synthase levels were elevated 24 hours post-status. When investigating the fyn activity and interactions in the human brain, they found fyn phosphorylation – something that had never been reported before.
From there, Dr. Putra’s team sought to answer whether manipulating fyn-tau interactions could modify epilepsy. To do so, they conducted an experiment using the pharmacological Fyn inhibitor sarcatinib (SAR) and found it modified dysregulated postsynaptic proteins 24 hours post-SE in rat models. Longer exposure also bore a positive effect on epileptic rats.
After treating epileptic rats with SAR for 7 weeks, Dr. Putra found that SAR therapy reduces convulsive seizures during 7 weeks post-SE in rats. Recruiting pharmacological Fyn inhibition sufficiently decreased Fyn-tau interaction, NR-PSD95 complex, and convulsive seizures in chronic epilepsy.
Ultimately, her findings showed that SE exacerbates fyn-tau interactions, with chronic epilepsy modeling showing sustained elevation. In addition, fyn-tau interactions mediate and sustain neuronal hyperexcitability in the epileptic population.
“The impact on clinical care will be bidirectional relevant therapeutic targets in epilepsy and Alzheimer’s disease,” Dr. Putra told the audience.
Trends in epilepsy comorbidity and mortality
The final presenter, University of Washington researcher Aaron del Pozo, PhD, explained the impact of early-onset Alzheimer’s disease on overall outcomes and epilepsy.
“Early-onset Alzheimer’s disease carries a high seizure risk that affects quality of life as well as mortality,” Dr. del Pozo said.
According to data published in the British Medical Journal in 2020, the number of patients with epilepsy who had degenerative disease of the central nervous system or vascular dementia and delirium increased by approximately 210% from 1999 to 2017. Cerebral palsy trailed in second place with malignant neoplasms increasing by 50%. Cerebrovascular disease–related death in the epileptic population showed nearly negligible change, and ischemic heart disease and epilepsy decreased by approximately 25% and 15%, respectively. In addition, patients who have both epilepsy and Alzheimer’s disease are less likely to survive than patients who develop epilepsy after Alzheimer’s disease.
“We found that having epilepsy alone has decreased mortality, but having it in addition to other generative diseases of the central nervous system has a 200% increase in mortality,” Dr. del Pozo said.
ORLANDO — “
,” said Delia Marias Talos, MD, at a session of the annual meeting of the American Epilepsy Society (AES).A Closer Look at the Brain
“Phosphorylated tau correlates with cognitive function and executive function recorded presurgery, but it looks like the generative changes are more associated with temporal lobe and aging.”
Alzheimer’s disease is a degenerative condition marked by progressive memory deficits and cognitive decline noted by amyloid plaques and a formation of neurofibrillary tangles resulting from tau hyperphosphorylation.
Epilepsy, on the other hand, is a multifactorial condition with causes ranging from metabolic disorders, structural defects, infections, genetic mutations, and autoimmune disorders. In addition, nearly 50% of all epileptic seizures are idiopathic in nature.
Dr. Talos, professor of neurology at the University of Pennsylvania Perlman School of Medicine in Philadelphia, and her team did not see neurofibrillary tangles in the presurgical brains of epilepsy patients they studied; however, they saw tau plaques. In the future, they seek to investigate the features that distinguish epilepsy from Alzheimer’s disease.
Toxic fragments are probably there because amyloid precursor protein is highly upregulated, she told conference attendees. “We hypothesized that amyloid plaque is cleared but not impaired in epilepsy.”
The prognosis looks comparatively worse for patients who have Alzheimer’s disease and comorbid epilepsy than for patients who have only epilepsy. In addition, Dr. Talos stated that seizures appear to have an additive effort on Alzheimer’s disease.
Fyn-disruptive Therapy
Marson Putra, MD, PhD, a neuroscientist and postdoctoral researcher at Iowa State in Ames, Iowa, presented on the potential impact of a novel fyn-tau interaction as an unexplored target for epileptogensis and epilepsy.
Dr. Putra studied whether fyn-tau interactions exist in epilepsy. In both Alzheimer’s disease and epilepsy, Fyn belongs to the Src family of nonreceptor tyrosine kinases (SFKs), which are involved in cell proliferation and migration. Fyn contains an SH3 domain, which serves as a target for tau’s proline-rich (PxxP) motif. Fyn phosphorylates tau, specifically at tyrosine residue Y18, making fyn-disruptive therapy worth exploring.
Dr. Putra shared several currently proposed mechanisms of action regarding the pathogenesis of the tau plaque. In the first theory, the tau protein assumes a closed conformation in its normal state, thereby concealing the PxxP motif. However, in the second theory, pathogenesis causes the tau protein to assume an open conformation in the disease state, exposing pAT8 sites and making them available to fyn phosphorylation. In the second scenario, which involves Alzheimer’s disease, the fyn-tau interaction still occurs in open conformation state and is thought to occur in the postsynaptic terminal of the dendritic spine.
To investigate the proposed disease-causing mechanisms, Dr. Putra and her team studied status epilepticus in a rodent model of status epilepticus (SE). They used proximity ligation assay to measure interactions between Fyn and tau. They found AT8 and Y18 Fyn and N-methyl-D-aspartate (NMDA) receptor activation in a rat model and increased Fyn interaction. In addition, neuronal nitric oxide synthase levels were elevated 24 hours post-status. When investigating the fyn activity and interactions in the human brain, they found fyn phosphorylation – something that had never been reported before.
From there, Dr. Putra’s team sought to answer whether manipulating fyn-tau interactions could modify epilepsy. To do so, they conducted an experiment using the pharmacological Fyn inhibitor sarcatinib (SAR) and found it modified dysregulated postsynaptic proteins 24 hours post-SE in rat models. Longer exposure also bore a positive effect on epileptic rats.
After treating epileptic rats with SAR for 7 weeks, Dr. Putra found that SAR therapy reduces convulsive seizures during 7 weeks post-SE in rats. Recruiting pharmacological Fyn inhibition sufficiently decreased Fyn-tau interaction, NR-PSD95 complex, and convulsive seizures in chronic epilepsy.
Ultimately, her findings showed that SE exacerbates fyn-tau interactions, with chronic epilepsy modeling showing sustained elevation. In addition, fyn-tau interactions mediate and sustain neuronal hyperexcitability in the epileptic population.
“The impact on clinical care will be bidirectional relevant therapeutic targets in epilepsy and Alzheimer’s disease,” Dr. Putra told the audience.
Trends in epilepsy comorbidity and mortality
The final presenter, University of Washington researcher Aaron del Pozo, PhD, explained the impact of early-onset Alzheimer’s disease on overall outcomes and epilepsy.
“Early-onset Alzheimer’s disease carries a high seizure risk that affects quality of life as well as mortality,” Dr. del Pozo said.
According to data published in the British Medical Journal in 2020, the number of patients with epilepsy who had degenerative disease of the central nervous system or vascular dementia and delirium increased by approximately 210% from 1999 to 2017. Cerebral palsy trailed in second place with malignant neoplasms increasing by 50%. Cerebrovascular disease–related death in the epileptic population showed nearly negligible change, and ischemic heart disease and epilepsy decreased by approximately 25% and 15%, respectively. In addition, patients who have both epilepsy and Alzheimer’s disease are less likely to survive than patients who develop epilepsy after Alzheimer’s disease.
“We found that having epilepsy alone has decreased mortality, but having it in addition to other generative diseases of the central nervous system has a 200% increase in mortality,” Dr. del Pozo said.
ORLANDO — “
,” said Delia Marias Talos, MD, at a session of the annual meeting of the American Epilepsy Society (AES).A Closer Look at the Brain
“Phosphorylated tau correlates with cognitive function and executive function recorded presurgery, but it looks like the generative changes are more associated with temporal lobe and aging.”
Alzheimer’s disease is a degenerative condition marked by progressive memory deficits and cognitive decline noted by amyloid plaques and a formation of neurofibrillary tangles resulting from tau hyperphosphorylation.
Epilepsy, on the other hand, is a multifactorial condition with causes ranging from metabolic disorders, structural defects, infections, genetic mutations, and autoimmune disorders. In addition, nearly 50% of all epileptic seizures are idiopathic in nature.
Dr. Talos, professor of neurology at the University of Pennsylvania Perlman School of Medicine in Philadelphia, and her team did not see neurofibrillary tangles in the presurgical brains of epilepsy patients they studied; however, they saw tau plaques. In the future, they seek to investigate the features that distinguish epilepsy from Alzheimer’s disease.
Toxic fragments are probably there because amyloid precursor protein is highly upregulated, she told conference attendees. “We hypothesized that amyloid plaque is cleared but not impaired in epilepsy.”
The prognosis looks comparatively worse for patients who have Alzheimer’s disease and comorbid epilepsy than for patients who have only epilepsy. In addition, Dr. Talos stated that seizures appear to have an additive effort on Alzheimer’s disease.
Fyn-disruptive Therapy
Marson Putra, MD, PhD, a neuroscientist and postdoctoral researcher at Iowa State in Ames, Iowa, presented on the potential impact of a novel fyn-tau interaction as an unexplored target for epileptogensis and epilepsy.
Dr. Putra studied whether fyn-tau interactions exist in epilepsy. In both Alzheimer’s disease and epilepsy, Fyn belongs to the Src family of nonreceptor tyrosine kinases (SFKs), which are involved in cell proliferation and migration. Fyn contains an SH3 domain, which serves as a target for tau’s proline-rich (PxxP) motif. Fyn phosphorylates tau, specifically at tyrosine residue Y18, making fyn-disruptive therapy worth exploring.
Dr. Putra shared several currently proposed mechanisms of action regarding the pathogenesis of the tau plaque. In the first theory, the tau protein assumes a closed conformation in its normal state, thereby concealing the PxxP motif. However, in the second theory, pathogenesis causes the tau protein to assume an open conformation in the disease state, exposing pAT8 sites and making them available to fyn phosphorylation. In the second scenario, which involves Alzheimer’s disease, the fyn-tau interaction still occurs in open conformation state and is thought to occur in the postsynaptic terminal of the dendritic spine.
To investigate the proposed disease-causing mechanisms, Dr. Putra and her team studied status epilepticus in a rodent model of status epilepticus (SE). They used proximity ligation assay to measure interactions between Fyn and tau. They found AT8 and Y18 Fyn and N-methyl-D-aspartate (NMDA) receptor activation in a rat model and increased Fyn interaction. In addition, neuronal nitric oxide synthase levels were elevated 24 hours post-status. When investigating the fyn activity and interactions in the human brain, they found fyn phosphorylation – something that had never been reported before.
From there, Dr. Putra’s team sought to answer whether manipulating fyn-tau interactions could modify epilepsy. To do so, they conducted an experiment using the pharmacological Fyn inhibitor sarcatinib (SAR) and found it modified dysregulated postsynaptic proteins 24 hours post-SE in rat models. Longer exposure also bore a positive effect on epileptic rats.
After treating epileptic rats with SAR for 7 weeks, Dr. Putra found that SAR therapy reduces convulsive seizures during 7 weeks post-SE in rats. Recruiting pharmacological Fyn inhibition sufficiently decreased Fyn-tau interaction, NR-PSD95 complex, and convulsive seizures in chronic epilepsy.
Ultimately, her findings showed that SE exacerbates fyn-tau interactions, with chronic epilepsy modeling showing sustained elevation. In addition, fyn-tau interactions mediate and sustain neuronal hyperexcitability in the epileptic population.
“The impact on clinical care will be bidirectional relevant therapeutic targets in epilepsy and Alzheimer’s disease,” Dr. Putra told the audience.
Trends in epilepsy comorbidity and mortality
The final presenter, University of Washington researcher Aaron del Pozo, PhD, explained the impact of early-onset Alzheimer’s disease on overall outcomes and epilepsy.
“Early-onset Alzheimer’s disease carries a high seizure risk that affects quality of life as well as mortality,” Dr. del Pozo said.
According to data published in the British Medical Journal in 2020, the number of patients with epilepsy who had degenerative disease of the central nervous system or vascular dementia and delirium increased by approximately 210% from 1999 to 2017. Cerebral palsy trailed in second place with malignant neoplasms increasing by 50%. Cerebrovascular disease–related death in the epileptic population showed nearly negligible change, and ischemic heart disease and epilepsy decreased by approximately 25% and 15%, respectively. In addition, patients who have both epilepsy and Alzheimer’s disease are less likely to survive than patients who develop epilepsy after Alzheimer’s disease.
“We found that having epilepsy alone has decreased mortality, but having it in addition to other generative diseases of the central nervous system has a 200% increase in mortality,” Dr. del Pozo said.
FROM AES 2023
Noninvasive Brain Stimulation a Breakthrough for Hypnotherapy?
Less than 2 minutes of transcranial magnetic stimulation (TMS) targeting specific areas of the brain can boost an individual’s ability to be hypnotized, in new findings that could increase the efficacy of therapeutic hypnosis and expand the pool of patients who can benefit from it.
“We were able to increase hypnotizability, a neuropsychological trait previously shown to be as stable as IQ in adulthood,” said co-senior author David Spiegel, MD, professor of psychiatry and behavioral sciences, Stanford University, Palo Alto, California.
“Our findings would allow us to combine neurostimulation with hypnosis to expand the number of people able to benefit from hypnosis and enhance their responsiveness to treatment,” Dr. Spiegel added.
The study was published online on January 4, 2024, in Nature Mental Health.
A Breakthrough for Hypnotherapy?
About two thirds of the general adult population are estimated to be at least somewhat hypnotizable, and 15% are highly hypnotizable.
Through brain imaging, the Stanford team found that high hypnotizability is associated with greater functional connectivity between the left dorsolateral prefrontal cortex (DLPFC) and the dorsal anterior cingulate cortex.
In the double-blind study, they randomly assigned 80 patients (mean age, 48 years; 94% women) with fibromyalgia syndrome to active, or sham, continuous theta-burst stimulation over a personalized neuroimaging-derived left DLPFC target — a technique known as Stanford Hypnosis Integrated with Functional Connectivity-targeted Transcranial Stimulation (SHIFT). Individuals who were naturally highly hypnotizable were excluded.
“A novel aspect of this trial is that we used the person’s own brain networks, based on brain imaging, to target the right spot,” Co-senior author Nolan Williams, MD, with Stanford University, California, said in a news release.
The team chose patients with chronic pain because hypnosis has been shown to be a “highly effective analgesic that has a far better risk/benefit ratio than widely overutilized opioids that have serious fatal overdose potential,” Spiegel told this news organization.
The pre-to-post SHIFT change in hypnotic induction profile scores, a standardized measure of hypnotizability, was significantly greater in the active vs sham group after just 92 seconds of stimulation (P = .046).
Only the active SHIFT group showed a significant increase in hypnotizability following stimulation, an effect that lasted for about 1 hour.
“Increasing hypnotizability in people who are low-to-medium hypnotizable individuals could improve both the efficacy and effectiveness of therapeutic hypnosis as a clinical intervention,” the researchers wrote.
They note that because this was a “mechanistic study,” it did not explore the impact of increased hypnotizability on disease symptoms. They also note that further studies are needed to assess the dose-response relationships of SHIFT.
Transformative Research
“This line of research is fascinating,” Shaheen Lakhan, MD, PhD, neurologist, and researcher in Boston, told this news organization.
“We are nearing an era of personalized, noninvasive brain modulation. The ability to individually modulate the DLPFC opens new possibilities for brain health beyond hypnotizability for fibromyalgia,” said Dr. Lakhan, who wasn’t involved in the study.
“The DLPFC is involved in executive functions (and disorders) like attention (ADHD), emotional regulation (depression), motivation (schizophrenia), and impulse control (addiction),” he noted.
“Soon we may no longer need large expensive devices like transcranial magnetic stimulators as in this research study. Smartphones could deliver tailored digital therapeutics by engaging specific brain circuits,” Dr. Lakhan predicted.
“Imagine using an app to receive treatment customized to your unique brain and needs — all without anything implanted and delivered anywhere. The potential to precisely modulate the brain’s wiring to enhance cognition and mental health, without surgery or physical constraints, is incredibly promising. The possibilities are intriguing and could truly transform how we address brain diseases,” he added.
The study was supported by a grant from the National Center for Complementary and Integrative Health (NCCIH), part of the National Institutes of Health (NIH). Dr. Williams is a named inventor on Stanford-owned intellectual property relating to accelerated TMS pulse pattern sequences and neuroimaging-based TMS targeting; has served on scientific advisory boards for Otsuka, NeuraWell, Magnus Medical, and Nooma as a paid advisor; and holds equity/stock options in Magnus Medical, NeuraWell, and Nooma. Dr. Spiegel is a cofounder of Reveri Health, Inc., an interactive hypnosis app (not utilized in the current study).
A version of this article appeared on Medscape.com.
Less than 2 minutes of transcranial magnetic stimulation (TMS) targeting specific areas of the brain can boost an individual’s ability to be hypnotized, in new findings that could increase the efficacy of therapeutic hypnosis and expand the pool of patients who can benefit from it.
“We were able to increase hypnotizability, a neuropsychological trait previously shown to be as stable as IQ in adulthood,” said co-senior author David Spiegel, MD, professor of psychiatry and behavioral sciences, Stanford University, Palo Alto, California.
“Our findings would allow us to combine neurostimulation with hypnosis to expand the number of people able to benefit from hypnosis and enhance their responsiveness to treatment,” Dr. Spiegel added.
The study was published online on January 4, 2024, in Nature Mental Health.
A Breakthrough for Hypnotherapy?
About two thirds of the general adult population are estimated to be at least somewhat hypnotizable, and 15% are highly hypnotizable.
Through brain imaging, the Stanford team found that high hypnotizability is associated with greater functional connectivity between the left dorsolateral prefrontal cortex (DLPFC) and the dorsal anterior cingulate cortex.
In the double-blind study, they randomly assigned 80 patients (mean age, 48 years; 94% women) with fibromyalgia syndrome to active, or sham, continuous theta-burst stimulation over a personalized neuroimaging-derived left DLPFC target — a technique known as Stanford Hypnosis Integrated with Functional Connectivity-targeted Transcranial Stimulation (SHIFT). Individuals who were naturally highly hypnotizable were excluded.
“A novel aspect of this trial is that we used the person’s own brain networks, based on brain imaging, to target the right spot,” Co-senior author Nolan Williams, MD, with Stanford University, California, said in a news release.
The team chose patients with chronic pain because hypnosis has been shown to be a “highly effective analgesic that has a far better risk/benefit ratio than widely overutilized opioids that have serious fatal overdose potential,” Spiegel told this news organization.
The pre-to-post SHIFT change in hypnotic induction profile scores, a standardized measure of hypnotizability, was significantly greater in the active vs sham group after just 92 seconds of stimulation (P = .046).
Only the active SHIFT group showed a significant increase in hypnotizability following stimulation, an effect that lasted for about 1 hour.
“Increasing hypnotizability in people who are low-to-medium hypnotizable individuals could improve both the efficacy and effectiveness of therapeutic hypnosis as a clinical intervention,” the researchers wrote.
They note that because this was a “mechanistic study,” it did not explore the impact of increased hypnotizability on disease symptoms. They also note that further studies are needed to assess the dose-response relationships of SHIFT.
Transformative Research
“This line of research is fascinating,” Shaheen Lakhan, MD, PhD, neurologist, and researcher in Boston, told this news organization.
“We are nearing an era of personalized, noninvasive brain modulation. The ability to individually modulate the DLPFC opens new possibilities for brain health beyond hypnotizability for fibromyalgia,” said Dr. Lakhan, who wasn’t involved in the study.
“The DLPFC is involved in executive functions (and disorders) like attention (ADHD), emotional regulation (depression), motivation (schizophrenia), and impulse control (addiction),” he noted.
“Soon we may no longer need large expensive devices like transcranial magnetic stimulators as in this research study. Smartphones could deliver tailored digital therapeutics by engaging specific brain circuits,” Dr. Lakhan predicted.
“Imagine using an app to receive treatment customized to your unique brain and needs — all without anything implanted and delivered anywhere. The potential to precisely modulate the brain’s wiring to enhance cognition and mental health, without surgery or physical constraints, is incredibly promising. The possibilities are intriguing and could truly transform how we address brain diseases,” he added.
The study was supported by a grant from the National Center for Complementary and Integrative Health (NCCIH), part of the National Institutes of Health (NIH). Dr. Williams is a named inventor on Stanford-owned intellectual property relating to accelerated TMS pulse pattern sequences and neuroimaging-based TMS targeting; has served on scientific advisory boards for Otsuka, NeuraWell, Magnus Medical, and Nooma as a paid advisor; and holds equity/stock options in Magnus Medical, NeuraWell, and Nooma. Dr. Spiegel is a cofounder of Reveri Health, Inc., an interactive hypnosis app (not utilized in the current study).
A version of this article appeared on Medscape.com.
Less than 2 minutes of transcranial magnetic stimulation (TMS) targeting specific areas of the brain can boost an individual’s ability to be hypnotized, in new findings that could increase the efficacy of therapeutic hypnosis and expand the pool of patients who can benefit from it.
“We were able to increase hypnotizability, a neuropsychological trait previously shown to be as stable as IQ in adulthood,” said co-senior author David Spiegel, MD, professor of psychiatry and behavioral sciences, Stanford University, Palo Alto, California.
“Our findings would allow us to combine neurostimulation with hypnosis to expand the number of people able to benefit from hypnosis and enhance their responsiveness to treatment,” Dr. Spiegel added.
The study was published online on January 4, 2024, in Nature Mental Health.
A Breakthrough for Hypnotherapy?
About two thirds of the general adult population are estimated to be at least somewhat hypnotizable, and 15% are highly hypnotizable.
Through brain imaging, the Stanford team found that high hypnotizability is associated with greater functional connectivity between the left dorsolateral prefrontal cortex (DLPFC) and the dorsal anterior cingulate cortex.
In the double-blind study, they randomly assigned 80 patients (mean age, 48 years; 94% women) with fibromyalgia syndrome to active, or sham, continuous theta-burst stimulation over a personalized neuroimaging-derived left DLPFC target — a technique known as Stanford Hypnosis Integrated with Functional Connectivity-targeted Transcranial Stimulation (SHIFT). Individuals who were naturally highly hypnotizable were excluded.
“A novel aspect of this trial is that we used the person’s own brain networks, based on brain imaging, to target the right spot,” Co-senior author Nolan Williams, MD, with Stanford University, California, said in a news release.
The team chose patients with chronic pain because hypnosis has been shown to be a “highly effective analgesic that has a far better risk/benefit ratio than widely overutilized opioids that have serious fatal overdose potential,” Spiegel told this news organization.
The pre-to-post SHIFT change in hypnotic induction profile scores, a standardized measure of hypnotizability, was significantly greater in the active vs sham group after just 92 seconds of stimulation (P = .046).
Only the active SHIFT group showed a significant increase in hypnotizability following stimulation, an effect that lasted for about 1 hour.
“Increasing hypnotizability in people who are low-to-medium hypnotizable individuals could improve both the efficacy and effectiveness of therapeutic hypnosis as a clinical intervention,” the researchers wrote.
They note that because this was a “mechanistic study,” it did not explore the impact of increased hypnotizability on disease symptoms. They also note that further studies are needed to assess the dose-response relationships of SHIFT.
Transformative Research
“This line of research is fascinating,” Shaheen Lakhan, MD, PhD, neurologist, and researcher in Boston, told this news organization.
“We are nearing an era of personalized, noninvasive brain modulation. The ability to individually modulate the DLPFC opens new possibilities for brain health beyond hypnotizability for fibromyalgia,” said Dr. Lakhan, who wasn’t involved in the study.
“The DLPFC is involved in executive functions (and disorders) like attention (ADHD), emotional regulation (depression), motivation (schizophrenia), and impulse control (addiction),” he noted.
“Soon we may no longer need large expensive devices like transcranial magnetic stimulators as in this research study. Smartphones could deliver tailored digital therapeutics by engaging specific brain circuits,” Dr. Lakhan predicted.
“Imagine using an app to receive treatment customized to your unique brain and needs — all without anything implanted and delivered anywhere. The potential to precisely modulate the brain’s wiring to enhance cognition and mental health, without surgery or physical constraints, is incredibly promising. The possibilities are intriguing and could truly transform how we address brain diseases,” he added.
The study was supported by a grant from the National Center for Complementary and Integrative Health (NCCIH), part of the National Institutes of Health (NIH). Dr. Williams is a named inventor on Stanford-owned intellectual property relating to accelerated TMS pulse pattern sequences and neuroimaging-based TMS targeting; has served on scientific advisory boards for Otsuka, NeuraWell, Magnus Medical, and Nooma as a paid advisor; and holds equity/stock options in Magnus Medical, NeuraWell, and Nooma. Dr. Spiegel is a cofounder of Reveri Health, Inc., an interactive hypnosis app (not utilized in the current study).
A version of this article appeared on Medscape.com.
Despite Few CNS Gene Therapies for Epilepsy, New Research Offers Hope
ORLANDO — Scientists have made major strides in gene therapy, and experts convened to share their insights on gene therapy development and challenges at the annual meeting of the American Epilepsy Society during a session called “Recent Advances Gene Therapies for the Epilepsies: A Preclinical Perspective.”
Four types of gene therapy
Suzanne Paradis, PhD, cofounder and president of Severin Therapeutics Inc., initiated the session, giving the audience an overview of the four types of gene therapy — the first being gene replacements, where a copy of the gene is added back. The second type of therapy, transcriptional enhancement, entails upregulating an endogenous copy of the gene.
“Both gene replacement and transcriptional enhancement can prove effective in treating monogenetic genetic disorders,” she said.
The third type is transcriptional enhancement, which upregulates an endogenous copy of the gene.
Generalizable gene therapies, the fourth type of gene therapy, involve adding a gene that bypasses either or both ictogenesis and seizure propagation.
As it stands, of the nearly 30 gene therapies currently marketed for neurological disorders, only four are indicated for central nervous system (CNS) disorders. Of the four currently approved by the FDA for seizures, onasemnogene abeparvovec-xioi (Zolgensma) is the only one that truly targets the CNS.
“Developing treatment that targets the CNS requires several important considerations,” Dr. Paradis said. “These include the right model system, appropriate delivery method, a product that can cross the blood-brain barrier (BBB) and target neurons, and the durability of transgene expression.”
Epilepsy May Be Amenable to Gene Therapy
To illustrate these principles, Meghan Eller, a PhD candidate at the University of Texas Southwestern in Dallas, shared research on potential new gene therapies that might one day become effective options in treating CNS diseases.
She spoke on viral-mediated gene delivery, specifically by employing adeno-associated virus (AAV) treatment in this arena.
“We capitalized on the ability of viruses to infect genetic materials,” she told the audience. “Viruses are naturally designed to infect cells and deliver genetic material.”
The viruses have three components that make them attractive. One of three viruses is typically used for this work — adenoviruses, lentiviruses, or AAV. The virus type used may be dictated by the gene of interest, meaning whether the gene is expressed, knocked down, or edited. Lastly, several regulatory elements are required; these are the promoter, polyadenylation signal, and the regulatory binding sites necessary for transcription.
“More recent technologies are CRISPR for gene editing, and with promoter, we can control the specific cell type in which gene will be expressed,” Ms. Eller explained.
Regulatory binding sites within a binding site allow regulation within an endogenous transgene.
“AAV genome is naturally single-stranded, but we can introduce a mutation to form a self-complementary cassette,” she said.
Using AAV as a vector for gene delivery has several advantages. First and foremost, it is easy to engineer. Moreover, it can infect dividing and non-dividing cells. It also exhibits long-lasting expression and has a low immune response. In addition, the AAV virion particle has demonstrated activity on cells found in numerous organs, including those of the lymph nodes, adrenal glands, kidneys, various muscle tissue, retinal cells, and digestive system as well as the CNS.
Yet, for all its benefits, the AAV comes with some limitations. For example, it carries as preexisting immunity and exhibits lost expression in dividing cells.
Another important drawback is its package size constraints, as many genes do not fall within its 2.4 kb self-complementary of 4.8 kb single-stranded packaging capacity.
For her research, Ms. Eller and colleagues took into account several considerations for therapy development. The appropriate route helps ensure the therapy reaches critical regions of the brain and that there is adequate expression in the periphery. The immune response becomes important regarding the body’s reaction to non-self proteins — a property, which, at times, can be modified based on dose. Thirdly, expression level and cell type expression can affect the therapy’s activity. In addition, a small amount of the vector will be incorporated into the host DNA.
The fact that AAV can cross the BBB allows for intravenous delivery; however, it limits brain transduction.
“Gene therapy may not be as effective if the delivery window is missed or there is significant neuron loss,” Ms. Eller said.
She stressed the importance of determining the minimal dose necessary for therapeutic benefit to minimize dose-related toxicity. She also distinguished when and why one might choose one type of gene therapy over another, using gene addition to help illustrate her point.
“Gene addition is the most important approach when there is a monogenic gene,” she said. “SLC13A5 and SLC6A1 are examples where gene addition is effective.”
Modulation of ion channels can help the delivery of therapeutic. Such is the case for NaV1.1 and Kv1.1. Finally, AAV can enhance the delivery of therapeutic proteins, as seen with Sema4D and neuropeptide Y.
Ms. Eller explained how the path to developing a gene therapy as an investigational new drug mirrors those historically traveled in conventional drug development to some extent. Preclinical studies offer proof of concept by determining efficacy, dosing, and toxicity in small animals such as mice. From there, studies progress to the pre-IND state by exploring pharmacology and clinical trial design while further investigating toxicity. FDA and regulatory approval require addressing safety concerns and establishing therapeutic benefit, at which point the therapy progresses to the fourth and final stage: clinical trials. During this stage, investigators monitor dosage and safety while evaluating efficacy.Optimal transgene expression regulation requires scientists to create an environment that gives rise to the perfect level of transgene expression. Otherwise, too little protein will result in no therapeutic benefit, while too much protein can become toxic.
Ms. Eller presented her work on investigating whether the reduction of Scn8a is therapeutic, given that epileptogenic Scn8a mutations increase neuronal firing. She treated both the control and Scn8a mice with antisense oligonucleotides (ASO), which depresses neuronal activity. Upon comparing the effects in ASO-treated mice to control, she found that long-term downregulation of Scn8a (50%) prevents seizures and increases survival — regardless of whether ASO therapy was initiated before or during seizure onset.
Additional studies exploring novel and potential gene therapies for epilepsy are on the horizon.
Dr. Paradis is an employee of Severin Therapeutics Inc. Ms Eller has no relevant disclosures.
ORLANDO — Scientists have made major strides in gene therapy, and experts convened to share their insights on gene therapy development and challenges at the annual meeting of the American Epilepsy Society during a session called “Recent Advances Gene Therapies for the Epilepsies: A Preclinical Perspective.”
Four types of gene therapy
Suzanne Paradis, PhD, cofounder and president of Severin Therapeutics Inc., initiated the session, giving the audience an overview of the four types of gene therapy — the first being gene replacements, where a copy of the gene is added back. The second type of therapy, transcriptional enhancement, entails upregulating an endogenous copy of the gene.
“Both gene replacement and transcriptional enhancement can prove effective in treating monogenetic genetic disorders,” she said.
The third type is transcriptional enhancement, which upregulates an endogenous copy of the gene.
Generalizable gene therapies, the fourth type of gene therapy, involve adding a gene that bypasses either or both ictogenesis and seizure propagation.
As it stands, of the nearly 30 gene therapies currently marketed for neurological disorders, only four are indicated for central nervous system (CNS) disorders. Of the four currently approved by the FDA for seizures, onasemnogene abeparvovec-xioi (Zolgensma) is the only one that truly targets the CNS.
“Developing treatment that targets the CNS requires several important considerations,” Dr. Paradis said. “These include the right model system, appropriate delivery method, a product that can cross the blood-brain barrier (BBB) and target neurons, and the durability of transgene expression.”
Epilepsy May Be Amenable to Gene Therapy
To illustrate these principles, Meghan Eller, a PhD candidate at the University of Texas Southwestern in Dallas, shared research on potential new gene therapies that might one day become effective options in treating CNS diseases.
She spoke on viral-mediated gene delivery, specifically by employing adeno-associated virus (AAV) treatment in this arena.
“We capitalized on the ability of viruses to infect genetic materials,” she told the audience. “Viruses are naturally designed to infect cells and deliver genetic material.”
The viruses have three components that make them attractive. One of three viruses is typically used for this work — adenoviruses, lentiviruses, or AAV. The virus type used may be dictated by the gene of interest, meaning whether the gene is expressed, knocked down, or edited. Lastly, several regulatory elements are required; these are the promoter, polyadenylation signal, and the regulatory binding sites necessary for transcription.
“More recent technologies are CRISPR for gene editing, and with promoter, we can control the specific cell type in which gene will be expressed,” Ms. Eller explained.
Regulatory binding sites within a binding site allow regulation within an endogenous transgene.
“AAV genome is naturally single-stranded, but we can introduce a mutation to form a self-complementary cassette,” she said.
Using AAV as a vector for gene delivery has several advantages. First and foremost, it is easy to engineer. Moreover, it can infect dividing and non-dividing cells. It also exhibits long-lasting expression and has a low immune response. In addition, the AAV virion particle has demonstrated activity on cells found in numerous organs, including those of the lymph nodes, adrenal glands, kidneys, various muscle tissue, retinal cells, and digestive system as well as the CNS.
Yet, for all its benefits, the AAV comes with some limitations. For example, it carries as preexisting immunity and exhibits lost expression in dividing cells.
Another important drawback is its package size constraints, as many genes do not fall within its 2.4 kb self-complementary of 4.8 kb single-stranded packaging capacity.
For her research, Ms. Eller and colleagues took into account several considerations for therapy development. The appropriate route helps ensure the therapy reaches critical regions of the brain and that there is adequate expression in the periphery. The immune response becomes important regarding the body’s reaction to non-self proteins — a property, which, at times, can be modified based on dose. Thirdly, expression level and cell type expression can affect the therapy’s activity. In addition, a small amount of the vector will be incorporated into the host DNA.
The fact that AAV can cross the BBB allows for intravenous delivery; however, it limits brain transduction.
“Gene therapy may not be as effective if the delivery window is missed or there is significant neuron loss,” Ms. Eller said.
She stressed the importance of determining the minimal dose necessary for therapeutic benefit to minimize dose-related toxicity. She also distinguished when and why one might choose one type of gene therapy over another, using gene addition to help illustrate her point.
“Gene addition is the most important approach when there is a monogenic gene,” she said. “SLC13A5 and SLC6A1 are examples where gene addition is effective.”
Modulation of ion channels can help the delivery of therapeutic. Such is the case for NaV1.1 and Kv1.1. Finally, AAV can enhance the delivery of therapeutic proteins, as seen with Sema4D and neuropeptide Y.
Ms. Eller explained how the path to developing a gene therapy as an investigational new drug mirrors those historically traveled in conventional drug development to some extent. Preclinical studies offer proof of concept by determining efficacy, dosing, and toxicity in small animals such as mice. From there, studies progress to the pre-IND state by exploring pharmacology and clinical trial design while further investigating toxicity. FDA and regulatory approval require addressing safety concerns and establishing therapeutic benefit, at which point the therapy progresses to the fourth and final stage: clinical trials. During this stage, investigators monitor dosage and safety while evaluating efficacy.Optimal transgene expression regulation requires scientists to create an environment that gives rise to the perfect level of transgene expression. Otherwise, too little protein will result in no therapeutic benefit, while too much protein can become toxic.
Ms. Eller presented her work on investigating whether the reduction of Scn8a is therapeutic, given that epileptogenic Scn8a mutations increase neuronal firing. She treated both the control and Scn8a mice with antisense oligonucleotides (ASO), which depresses neuronal activity. Upon comparing the effects in ASO-treated mice to control, she found that long-term downregulation of Scn8a (50%) prevents seizures and increases survival — regardless of whether ASO therapy was initiated before or during seizure onset.
Additional studies exploring novel and potential gene therapies for epilepsy are on the horizon.
Dr. Paradis is an employee of Severin Therapeutics Inc. Ms Eller has no relevant disclosures.
ORLANDO — Scientists have made major strides in gene therapy, and experts convened to share their insights on gene therapy development and challenges at the annual meeting of the American Epilepsy Society during a session called “Recent Advances Gene Therapies for the Epilepsies: A Preclinical Perspective.”
Four types of gene therapy
Suzanne Paradis, PhD, cofounder and president of Severin Therapeutics Inc., initiated the session, giving the audience an overview of the four types of gene therapy — the first being gene replacements, where a copy of the gene is added back. The second type of therapy, transcriptional enhancement, entails upregulating an endogenous copy of the gene.
“Both gene replacement and transcriptional enhancement can prove effective in treating monogenetic genetic disorders,” she said.
The third type is transcriptional enhancement, which upregulates an endogenous copy of the gene.
Generalizable gene therapies, the fourth type of gene therapy, involve adding a gene that bypasses either or both ictogenesis and seizure propagation.
As it stands, of the nearly 30 gene therapies currently marketed for neurological disorders, only four are indicated for central nervous system (CNS) disorders. Of the four currently approved by the FDA for seizures, onasemnogene abeparvovec-xioi (Zolgensma) is the only one that truly targets the CNS.
“Developing treatment that targets the CNS requires several important considerations,” Dr. Paradis said. “These include the right model system, appropriate delivery method, a product that can cross the blood-brain barrier (BBB) and target neurons, and the durability of transgene expression.”
Epilepsy May Be Amenable to Gene Therapy
To illustrate these principles, Meghan Eller, a PhD candidate at the University of Texas Southwestern in Dallas, shared research on potential new gene therapies that might one day become effective options in treating CNS diseases.
She spoke on viral-mediated gene delivery, specifically by employing adeno-associated virus (AAV) treatment in this arena.
“We capitalized on the ability of viruses to infect genetic materials,” she told the audience. “Viruses are naturally designed to infect cells and deliver genetic material.”
The viruses have three components that make them attractive. One of three viruses is typically used for this work — adenoviruses, lentiviruses, or AAV. The virus type used may be dictated by the gene of interest, meaning whether the gene is expressed, knocked down, or edited. Lastly, several regulatory elements are required; these are the promoter, polyadenylation signal, and the regulatory binding sites necessary for transcription.
“More recent technologies are CRISPR for gene editing, and with promoter, we can control the specific cell type in which gene will be expressed,” Ms. Eller explained.
Regulatory binding sites within a binding site allow regulation within an endogenous transgene.
“AAV genome is naturally single-stranded, but we can introduce a mutation to form a self-complementary cassette,” she said.
Using AAV as a vector for gene delivery has several advantages. First and foremost, it is easy to engineer. Moreover, it can infect dividing and non-dividing cells. It also exhibits long-lasting expression and has a low immune response. In addition, the AAV virion particle has demonstrated activity on cells found in numerous organs, including those of the lymph nodes, adrenal glands, kidneys, various muscle tissue, retinal cells, and digestive system as well as the CNS.
Yet, for all its benefits, the AAV comes with some limitations. For example, it carries as preexisting immunity and exhibits lost expression in dividing cells.
Another important drawback is its package size constraints, as many genes do not fall within its 2.4 kb self-complementary of 4.8 kb single-stranded packaging capacity.
For her research, Ms. Eller and colleagues took into account several considerations for therapy development. The appropriate route helps ensure the therapy reaches critical regions of the brain and that there is adequate expression in the periphery. The immune response becomes important regarding the body’s reaction to non-self proteins — a property, which, at times, can be modified based on dose. Thirdly, expression level and cell type expression can affect the therapy’s activity. In addition, a small amount of the vector will be incorporated into the host DNA.
The fact that AAV can cross the BBB allows for intravenous delivery; however, it limits brain transduction.
“Gene therapy may not be as effective if the delivery window is missed or there is significant neuron loss,” Ms. Eller said.
She stressed the importance of determining the minimal dose necessary for therapeutic benefit to minimize dose-related toxicity. She also distinguished when and why one might choose one type of gene therapy over another, using gene addition to help illustrate her point.
“Gene addition is the most important approach when there is a monogenic gene,” she said. “SLC13A5 and SLC6A1 are examples where gene addition is effective.”
Modulation of ion channels can help the delivery of therapeutic. Such is the case for NaV1.1 and Kv1.1. Finally, AAV can enhance the delivery of therapeutic proteins, as seen with Sema4D and neuropeptide Y.
Ms. Eller explained how the path to developing a gene therapy as an investigational new drug mirrors those historically traveled in conventional drug development to some extent. Preclinical studies offer proof of concept by determining efficacy, dosing, and toxicity in small animals such as mice. From there, studies progress to the pre-IND state by exploring pharmacology and clinical trial design while further investigating toxicity. FDA and regulatory approval require addressing safety concerns and establishing therapeutic benefit, at which point the therapy progresses to the fourth and final stage: clinical trials. During this stage, investigators monitor dosage and safety while evaluating efficacy.Optimal transgene expression regulation requires scientists to create an environment that gives rise to the perfect level of transgene expression. Otherwise, too little protein will result in no therapeutic benefit, while too much protein can become toxic.
Ms. Eller presented her work on investigating whether the reduction of Scn8a is therapeutic, given that epileptogenic Scn8a mutations increase neuronal firing. She treated both the control and Scn8a mice with antisense oligonucleotides (ASO), which depresses neuronal activity. Upon comparing the effects in ASO-treated mice to control, she found that long-term downregulation of Scn8a (50%) prevents seizures and increases survival — regardless of whether ASO therapy was initiated before or during seizure onset.
Additional studies exploring novel and potential gene therapies for epilepsy are on the horizon.
Dr. Paradis is an employee of Severin Therapeutics Inc. Ms Eller has no relevant disclosures.
FROM AES 2023
Epilepsy Linked to Earlier, More Rapid, Cognitive Decline
ORLANDO — People with epilepsy are more likely to decline cognitively compared with those without epilepsy, new research suggests.
Results of the large, longitudinal study show that seizures predicted earlier conversion time from normal cognition to mild cognitive impairment (MCI) but were not associated with conversion from MCI to dementia.
“Modifiable cardiovascular risk factors such as hypertension and diabetes need to be treated more aggressively because they can impact cognition, but epilepsy is another risk factor that needs to be treated in a timely fashion because it appears to be also associated with cognitive impairment,” said study investigator Ifrah Zawar MD, assistant professor, Department of Neurology, University of Virginia in Charlottesville.
The study (abstract #2.172) was presented on December 2 at the American Epilepsy Society annual meeting.
An Understudied Issue
Comorbid seizures occur in up to 64% of those with dementia, and patients with dementia and epilepsy have a more aggressive disease course, faster cognitive decline, and more severe neuronal loss, Dr. Zawar told Medscape Medical News.
But the impact of seizures on the conversion of cognitively healthy to MCI and from MCI to dementia, after accounting for cardiovascular risk factors, has not been well studied.
Researchers analyzed longitudinal data of 13,726 patients, mean age about 70 years, who were cognitively healthy or had mild cognitive impairment (MCI). Participants were recruited from 39 Alzheimer’s Disease (AD) centers in the United States from 2005 to 2021.
Investigators categorized participants into three groups: active (having had seizures in the past year and/or requiring active treatment; N = 118), resolved (not on any treatment for the past year and not having seizures; N = 226), and no seizures (never having had seizures; N = 13,382).
The primary outcome was conversion from cognitively healthy to MCI/dementia and from MCI to dementia in those with and without active epilepsy and resolved epilepsy.
Factors associated with conversion from cognitively healthy to MCI among those with current or active epilepsy included older age (P <.001 for ages 60-80 years and P =.002 for age 80 years or older vs younger than 60 years), male sex (P <.001), lower education (P <.001), hypertension (P <.001), and diabetes (P <.001).
The hazard ratio (HR) for earlier conversion from healthy to worse cognition among those with active epilepsy was 1.76 (95% CI, 1.38-2.24; P <.001), even after accounting for risk factors.
Kaplan-Meier curves showed that the median time to convert from healthy cognition to MCI among people with active epilepsy was about 5 years compared with about 9 years for those with resolved epilepsy and 10.5 years for those without epilepsy.
The story was similar for faster conversion from MCI to dementia. Compared with having no epilepsy, the HR for faster conversion for active epilepsy was 1.44 (95% CI, 1.20-1.73; P <.001).
In addition, the median time to conversion from MCI to dementia was about 3 years for those with active epilepsy compared with about 5 years for those with resolved epilepsy and about 5 years for those without epilepsy.
“It’s important for physicians to understand that uncontrolled epilepsy or active epilepsy is going to impact patients’ cognition adversely, which in itself is associated with increased comorbidity and mortality,” said Dr. Zawar.
The mechanism driving the acceleration to worse cognition in people with epilepsy is “complicated and involves a multitude of factors,” she said.
The researchers did not specifically investigate how use of antiseizure medications correlated with cognitive outcomes, but Dr. Zawar believes that “epilepsy in itself impacts cognition.”
The researchers also didn’t have EEG data for study participants who were recruited from Alzheimer’s disease centers where EEGs aren’t routinely carried out, so such data for many patients may not necessarily exist, said Dr. Zawar.
Important Research
Commenting for this news organization, Bruce Hermann, PhD, professor emeritus, Department of Neurology, University of Wisconsin School of Medicine and Public Health, said that the study is important because of the, “tremendous interest and concern about aging with epilepsy.”
“We want to know how people with chronic epilepsy age cognitively and what’s the cognitive course of those who have late onset epilepsy, particularly those with unknown etiology,” he added.
Dr. Hermann noted that much of the research in this area has been relatively small and single-center investigations.
“These larger-scale investigations from outside the epilepsy community are so important because they have data on large numbers of subjects, they have cognitive data, and follow-ups over long periods of time, and they’re providing some really novel information,” Dr. Hermann said.
He added that terms used in the dementia world such as MCI and frank dementia are somewhat foreign to epileptologists. In addition, interventions to delay, treat, or prevent cognitive decline such as exercise, diet, social activity, and mental stimulation that are regularly discussed by dementia experts are underrepresented in the epilepsy world.
“The things they talk about in memory clinics in the aging world almost routinely have not penetrated to the epilepsy clinics for aging individuals and for the epilepsy community in general.”
The study used the Montreal Cognitive Assessment to identify cognitive decline. “It would be nice to see how these people look with traditional neuropsychological tests,” said Dr. Hermann.
He added that information on the impact of epilepsy on different MCI phenotypes, for example, pure memory impairment subtype; pure nonmemory subtype; and multiple domain subtype, would also be useful.
The study was supported by the AES and the Alzheimer’s Association.
Dr. Zawar and Dr. Hermann report no relevant disclosures.
A version of this article appeared on Medscape.com.
ORLANDO — People with epilepsy are more likely to decline cognitively compared with those without epilepsy, new research suggests.
Results of the large, longitudinal study show that seizures predicted earlier conversion time from normal cognition to mild cognitive impairment (MCI) but were not associated with conversion from MCI to dementia.
“Modifiable cardiovascular risk factors such as hypertension and diabetes need to be treated more aggressively because they can impact cognition, but epilepsy is another risk factor that needs to be treated in a timely fashion because it appears to be also associated with cognitive impairment,” said study investigator Ifrah Zawar MD, assistant professor, Department of Neurology, University of Virginia in Charlottesville.
The study (abstract #2.172) was presented on December 2 at the American Epilepsy Society annual meeting.
An Understudied Issue
Comorbid seizures occur in up to 64% of those with dementia, and patients with dementia and epilepsy have a more aggressive disease course, faster cognitive decline, and more severe neuronal loss, Dr. Zawar told Medscape Medical News.
But the impact of seizures on the conversion of cognitively healthy to MCI and from MCI to dementia, after accounting for cardiovascular risk factors, has not been well studied.
Researchers analyzed longitudinal data of 13,726 patients, mean age about 70 years, who were cognitively healthy or had mild cognitive impairment (MCI). Participants were recruited from 39 Alzheimer’s Disease (AD) centers in the United States from 2005 to 2021.
Investigators categorized participants into three groups: active (having had seizures in the past year and/or requiring active treatment; N = 118), resolved (not on any treatment for the past year and not having seizures; N = 226), and no seizures (never having had seizures; N = 13,382).
The primary outcome was conversion from cognitively healthy to MCI/dementia and from MCI to dementia in those with and without active epilepsy and resolved epilepsy.
Factors associated with conversion from cognitively healthy to MCI among those with current or active epilepsy included older age (P <.001 for ages 60-80 years and P =.002 for age 80 years or older vs younger than 60 years), male sex (P <.001), lower education (P <.001), hypertension (P <.001), and diabetes (P <.001).
The hazard ratio (HR) for earlier conversion from healthy to worse cognition among those with active epilepsy was 1.76 (95% CI, 1.38-2.24; P <.001), even after accounting for risk factors.
Kaplan-Meier curves showed that the median time to convert from healthy cognition to MCI among people with active epilepsy was about 5 years compared with about 9 years for those with resolved epilepsy and 10.5 years for those without epilepsy.
The story was similar for faster conversion from MCI to dementia. Compared with having no epilepsy, the HR for faster conversion for active epilepsy was 1.44 (95% CI, 1.20-1.73; P <.001).
In addition, the median time to conversion from MCI to dementia was about 3 years for those with active epilepsy compared with about 5 years for those with resolved epilepsy and about 5 years for those without epilepsy.
“It’s important for physicians to understand that uncontrolled epilepsy or active epilepsy is going to impact patients’ cognition adversely, which in itself is associated with increased comorbidity and mortality,” said Dr. Zawar.
The mechanism driving the acceleration to worse cognition in people with epilepsy is “complicated and involves a multitude of factors,” she said.
The researchers did not specifically investigate how use of antiseizure medications correlated with cognitive outcomes, but Dr. Zawar believes that “epilepsy in itself impacts cognition.”
The researchers also didn’t have EEG data for study participants who were recruited from Alzheimer’s disease centers where EEGs aren’t routinely carried out, so such data for many patients may not necessarily exist, said Dr. Zawar.
Important Research
Commenting for this news organization, Bruce Hermann, PhD, professor emeritus, Department of Neurology, University of Wisconsin School of Medicine and Public Health, said that the study is important because of the, “tremendous interest and concern about aging with epilepsy.”
“We want to know how people with chronic epilepsy age cognitively and what’s the cognitive course of those who have late onset epilepsy, particularly those with unknown etiology,” he added.
Dr. Hermann noted that much of the research in this area has been relatively small and single-center investigations.
“These larger-scale investigations from outside the epilepsy community are so important because they have data on large numbers of subjects, they have cognitive data, and follow-ups over long periods of time, and they’re providing some really novel information,” Dr. Hermann said.
He added that terms used in the dementia world such as MCI and frank dementia are somewhat foreign to epileptologists. In addition, interventions to delay, treat, or prevent cognitive decline such as exercise, diet, social activity, and mental stimulation that are regularly discussed by dementia experts are underrepresented in the epilepsy world.
“The things they talk about in memory clinics in the aging world almost routinely have not penetrated to the epilepsy clinics for aging individuals and for the epilepsy community in general.”
The study used the Montreal Cognitive Assessment to identify cognitive decline. “It would be nice to see how these people look with traditional neuropsychological tests,” said Dr. Hermann.
He added that information on the impact of epilepsy on different MCI phenotypes, for example, pure memory impairment subtype; pure nonmemory subtype; and multiple domain subtype, would also be useful.
The study was supported by the AES and the Alzheimer’s Association.
Dr. Zawar and Dr. Hermann report no relevant disclosures.
A version of this article appeared on Medscape.com.
ORLANDO — People with epilepsy are more likely to decline cognitively compared with those without epilepsy, new research suggests.
Results of the large, longitudinal study show that seizures predicted earlier conversion time from normal cognition to mild cognitive impairment (MCI) but were not associated with conversion from MCI to dementia.
“Modifiable cardiovascular risk factors such as hypertension and diabetes need to be treated more aggressively because they can impact cognition, but epilepsy is another risk factor that needs to be treated in a timely fashion because it appears to be also associated with cognitive impairment,” said study investigator Ifrah Zawar MD, assistant professor, Department of Neurology, University of Virginia in Charlottesville.
The study (abstract #2.172) was presented on December 2 at the American Epilepsy Society annual meeting.
An Understudied Issue
Comorbid seizures occur in up to 64% of those with dementia, and patients with dementia and epilepsy have a more aggressive disease course, faster cognitive decline, and more severe neuronal loss, Dr. Zawar told Medscape Medical News.
But the impact of seizures on the conversion of cognitively healthy to MCI and from MCI to dementia, after accounting for cardiovascular risk factors, has not been well studied.
Researchers analyzed longitudinal data of 13,726 patients, mean age about 70 years, who were cognitively healthy or had mild cognitive impairment (MCI). Participants were recruited from 39 Alzheimer’s Disease (AD) centers in the United States from 2005 to 2021.
Investigators categorized participants into three groups: active (having had seizures in the past year and/or requiring active treatment; N = 118), resolved (not on any treatment for the past year and not having seizures; N = 226), and no seizures (never having had seizures; N = 13,382).
The primary outcome was conversion from cognitively healthy to MCI/dementia and from MCI to dementia in those with and without active epilepsy and resolved epilepsy.
Factors associated with conversion from cognitively healthy to MCI among those with current or active epilepsy included older age (P <.001 for ages 60-80 years and P =.002 for age 80 years or older vs younger than 60 years), male sex (P <.001), lower education (P <.001), hypertension (P <.001), and diabetes (P <.001).
The hazard ratio (HR) for earlier conversion from healthy to worse cognition among those with active epilepsy was 1.76 (95% CI, 1.38-2.24; P <.001), even after accounting for risk factors.
Kaplan-Meier curves showed that the median time to convert from healthy cognition to MCI among people with active epilepsy was about 5 years compared with about 9 years for those with resolved epilepsy and 10.5 years for those without epilepsy.
The story was similar for faster conversion from MCI to dementia. Compared with having no epilepsy, the HR for faster conversion for active epilepsy was 1.44 (95% CI, 1.20-1.73; P <.001).
In addition, the median time to conversion from MCI to dementia was about 3 years for those with active epilepsy compared with about 5 years for those with resolved epilepsy and about 5 years for those without epilepsy.
“It’s important for physicians to understand that uncontrolled epilepsy or active epilepsy is going to impact patients’ cognition adversely, which in itself is associated with increased comorbidity and mortality,” said Dr. Zawar.
The mechanism driving the acceleration to worse cognition in people with epilepsy is “complicated and involves a multitude of factors,” she said.
The researchers did not specifically investigate how use of antiseizure medications correlated with cognitive outcomes, but Dr. Zawar believes that “epilepsy in itself impacts cognition.”
The researchers also didn’t have EEG data for study participants who were recruited from Alzheimer’s disease centers where EEGs aren’t routinely carried out, so such data for many patients may not necessarily exist, said Dr. Zawar.
Important Research
Commenting for this news organization, Bruce Hermann, PhD, professor emeritus, Department of Neurology, University of Wisconsin School of Medicine and Public Health, said that the study is important because of the, “tremendous interest and concern about aging with epilepsy.”
“We want to know how people with chronic epilepsy age cognitively and what’s the cognitive course of those who have late onset epilepsy, particularly those with unknown etiology,” he added.
Dr. Hermann noted that much of the research in this area has been relatively small and single-center investigations.
“These larger-scale investigations from outside the epilepsy community are so important because they have data on large numbers of subjects, they have cognitive data, and follow-ups over long periods of time, and they’re providing some really novel information,” Dr. Hermann said.
He added that terms used in the dementia world such as MCI and frank dementia are somewhat foreign to epileptologists. In addition, interventions to delay, treat, or prevent cognitive decline such as exercise, diet, social activity, and mental stimulation that are regularly discussed by dementia experts are underrepresented in the epilepsy world.
“The things they talk about in memory clinics in the aging world almost routinely have not penetrated to the epilepsy clinics for aging individuals and for the epilepsy community in general.”
The study used the Montreal Cognitive Assessment to identify cognitive decline. “It would be nice to see how these people look with traditional neuropsychological tests,” said Dr. Hermann.
He added that information on the impact of epilepsy on different MCI phenotypes, for example, pure memory impairment subtype; pure nonmemory subtype; and multiple domain subtype, would also be useful.
The study was supported by the AES and the Alzheimer’s Association.
Dr. Zawar and Dr. Hermann report no relevant disclosures.
A version of this article appeared on Medscape.com.
FROM AES 2023
Anticoagulants Safe With Enzyme-Inducing Meds for Epilepsy
ORLANDO — Combining an enzyme-inducing antiseizure medication with a direct-acting oral anticoagulant (DOAC) does not significantly increase the risk of thromboembolic events in patients with epilepsy, preliminary results of a new study show.
These new data are important, “particularly when we’re talking about a more global perspective, given the vital role of enzyme-inducing antiseizure medications in epilepsy care across many middle- and low-income countries where they may be the only readily available treatment options,” said study investigator Emily K. Acton, PhD candidate in epidemiology and a medical student, University of Pennsylvania Perelman School of Medicine, Philadelphia, and University of Illinois College of Medicine, Chicago.
The findings also suggest that use of enzyme-inducing antiseizure medication with DOACs may be associated with a reduction in major bleeding events, although Ms. Acton stressed this requires more research.
The findings were presented at the American Epilepsy Society annual meeting.
Important Implications
Enzyme-inducing antiseizure medications may induce key drug metabolizing enzymes that result in wide-ranging interactions, Ms. Acton told this news organization. “But, in many cases, the clinical significance of these pharmacokinetic interactions is not completely understood.”
This has important implications for managing anticoagulation, said Ms. Acton. “The ease of DOAC use, and growing evidence of the drugs’ safety and efficacy compared to vitamin K antagonists, has led to widespread shifts in clinical practice towards DOACs.”
Due to the relative novelty of DOACs, their interaction profiles have been less than complete, she explained. Evidence that enzyme-inducing antiseizure medications may reduce absorption and accelerate metabolism of DOACs, potentially lowering DOAC levels and elevating thromboembolism risk, comes mainly from in vitro and animal studies.
“Research in humans is lacking and complicated in interpretation by inconsistent findings and methodological limitations,” she said.
The investigators wanted to address the “clinical uncertainty” surrounding the real-world relevance of enzyme-inducing antiseizure medications and DOAC interactions but conducting a randomized trial “would be neither feasible nor ethical,” said Ms. Acton.
Using healthcare claims data from October 2010 to September 2021, the researchers conducted an active comparator, new-user cohort study among a nationally representative sample of adults with epilepsy who had been co-prescribed these drugs.
They compared thromboembolic and major bleeding event rates between exposure to DOACs with enzyme-inducing antiseizure medications vs exposure to DOACs with non-enzyme inducing antiseizure medications.
Enzyme-inducing antiseizure medications included in the study were carbamazepine, oxcarbazepine, phenobarbital, phenytoin, primidone, and topiramate. Non-enzyme-inducing antiseizure medications included gabapentin, lacosamide, lamotrigine, levetiracetam, and pregabalin.
The researchers used data-adaptive high-dimensional propensity score matching to control for “hundreds and hundreds” of observed confounders, and proxies for unobserved confounders, said Ms. Acton. They identified outcomes based on validated diagnostic coding algorithms for thromboembolic and major bleeding events and estimated adjusted hazard ratios (aHRs) using Cox proportional hazard models with robust variance estimators to account for clustering within matched pairs.
Reduced Risk of Major Bleeding
Outcomes were analyzed in three separate cohorts. These included patients on DOACs for any indication (indication-agnostic); those on DOACs for atrial fibrillation (AF); and those taking DOACs for deep vein thrombus/pulmonary embolism (DVT/PE).
In the indication-agnostic analysis, the investigators examined thromboembolic events among 5989 episodes in patients taking both DOACs and enzyme-inducing antiseizure medications, compared witha reference group of 14,671 episodes in patients taking DOACs and non-enzyme-inducing antiseizure medications.
The reference group was generally older and had a greater prevalence of a number of major comorbidities compared with the exposed group, noted Ms. Acton.
For the indication-agnostic analysis, the aHR was 1.11 (95% CI 0.89-1.39). Results were similar for the AF indication (aHR 1.10; 95% CI 0.82-1.46) and for the DVT/PE indication (aHR 1.11; 95% CI 0.81-1.51).
“This research provides large-scale, real-world evidence enzyme-inducing antiseizure medication use alongside DOACs does not significantly elevate risk of thromboembolic events among a nationally representative epilepsy population,” said Ms. Acton.
However, “it’s always important to consider risk factors for thromboembolic and bleeding events at the level of the individual patient,” she added.
With respect to major bleeding events, there was a slightly reduced risk in the exposed group, specifically in the analysis of subjects with atrial fibrillation, where the aHR was 0.63 (95% CI 0.44-0.89).
“A potential explanation may be pharmacokinetic interaction with enzyme-inducing antiseizure medications occurring to a degree that lowers DOAC levels without necessarily negating therapeutic effects,” said Ms. Acton.
However, she cautioned that more research is needed.
As for the differential potency among the various enzyme-inducing antiseizure medications studied, Ms. Acton said results from a secondary analysis in the atrial fibrillation assessment that removed the potentially less potent enzyme inducers, oxcarbazepine and topiramate, didn’t significantly change the study results.
‘Really Great News’
Commenting on the findings for this news organization, epilepsy expert Daniel M. Goldenholz, MD, PhD, assistant professor of Neurology, Harvard Beth Israel Deaconess Medical Center, Boston, Massachusetts, said the finding of no meaningful difference between DOAC plus enzyme-inducing medications vs DOACs plus non-enzyme-inducing medications is encouraging.
“This study asks a very important question at the population level and appropriately tries to control for present and hidden factors using a propensity matching approach,” he said.
The fact that the data support no difference in terms of thromboembolic events “is really great news” for patients taking an enzyme-inducing antiseizure medication who need to use a DOAC, he said.
While some patients or clinicians might consider transitioning off an enzyme-inducing antiseizure medication, this can lead to new side effects and potentially higher drug costs. “Knowing that a transition may be unnecessary is exciting,” said Dr. Goldenholz.
However, he’s concerned the 1.5-year observation period may not be long enough to see a true effect of these drug combinations.
He also noted that due to the “theoretical higher risk,” patients combining DOACs with enzyme-inducing drugs typically need extra monitoring, which may be less practical outside the US. This suggests “the result may not necessarily generalize outside high-income countries,” he said.
Dr. Goldenholz emphasized that the data are preliminary. “As always, I look forward to a full peer-reviewed study before forming final conclusions.”
The study was supported by the US Department of Health and Human Services’ National Institute of Neurological Disorders and Stroke.
Ms. Acton and Dr. Goldenholz report no relevant financial relationships.
A version of this article appeared on Medscape.com.
ORLANDO — Combining an enzyme-inducing antiseizure medication with a direct-acting oral anticoagulant (DOAC) does not significantly increase the risk of thromboembolic events in patients with epilepsy, preliminary results of a new study show.
These new data are important, “particularly when we’re talking about a more global perspective, given the vital role of enzyme-inducing antiseizure medications in epilepsy care across many middle- and low-income countries where they may be the only readily available treatment options,” said study investigator Emily K. Acton, PhD candidate in epidemiology and a medical student, University of Pennsylvania Perelman School of Medicine, Philadelphia, and University of Illinois College of Medicine, Chicago.
The findings also suggest that use of enzyme-inducing antiseizure medication with DOACs may be associated with a reduction in major bleeding events, although Ms. Acton stressed this requires more research.
The findings were presented at the American Epilepsy Society annual meeting.
Important Implications
Enzyme-inducing antiseizure medications may induce key drug metabolizing enzymes that result in wide-ranging interactions, Ms. Acton told this news organization. “But, in many cases, the clinical significance of these pharmacokinetic interactions is not completely understood.”
This has important implications for managing anticoagulation, said Ms. Acton. “The ease of DOAC use, and growing evidence of the drugs’ safety and efficacy compared to vitamin K antagonists, has led to widespread shifts in clinical practice towards DOACs.”
Due to the relative novelty of DOACs, their interaction profiles have been less than complete, she explained. Evidence that enzyme-inducing antiseizure medications may reduce absorption and accelerate metabolism of DOACs, potentially lowering DOAC levels and elevating thromboembolism risk, comes mainly from in vitro and animal studies.
“Research in humans is lacking and complicated in interpretation by inconsistent findings and methodological limitations,” she said.
The investigators wanted to address the “clinical uncertainty” surrounding the real-world relevance of enzyme-inducing antiseizure medications and DOAC interactions but conducting a randomized trial “would be neither feasible nor ethical,” said Ms. Acton.
Using healthcare claims data from October 2010 to September 2021, the researchers conducted an active comparator, new-user cohort study among a nationally representative sample of adults with epilepsy who had been co-prescribed these drugs.
They compared thromboembolic and major bleeding event rates between exposure to DOACs with enzyme-inducing antiseizure medications vs exposure to DOACs with non-enzyme inducing antiseizure medications.
Enzyme-inducing antiseizure medications included in the study were carbamazepine, oxcarbazepine, phenobarbital, phenytoin, primidone, and topiramate. Non-enzyme-inducing antiseizure medications included gabapentin, lacosamide, lamotrigine, levetiracetam, and pregabalin.
The researchers used data-adaptive high-dimensional propensity score matching to control for “hundreds and hundreds” of observed confounders, and proxies for unobserved confounders, said Ms. Acton. They identified outcomes based on validated diagnostic coding algorithms for thromboembolic and major bleeding events and estimated adjusted hazard ratios (aHRs) using Cox proportional hazard models with robust variance estimators to account for clustering within matched pairs.
Reduced Risk of Major Bleeding
Outcomes were analyzed in three separate cohorts. These included patients on DOACs for any indication (indication-agnostic); those on DOACs for atrial fibrillation (AF); and those taking DOACs for deep vein thrombus/pulmonary embolism (DVT/PE).
In the indication-agnostic analysis, the investigators examined thromboembolic events among 5989 episodes in patients taking both DOACs and enzyme-inducing antiseizure medications, compared witha reference group of 14,671 episodes in patients taking DOACs and non-enzyme-inducing antiseizure medications.
The reference group was generally older and had a greater prevalence of a number of major comorbidities compared with the exposed group, noted Ms. Acton.
For the indication-agnostic analysis, the aHR was 1.11 (95% CI 0.89-1.39). Results were similar for the AF indication (aHR 1.10; 95% CI 0.82-1.46) and for the DVT/PE indication (aHR 1.11; 95% CI 0.81-1.51).
“This research provides large-scale, real-world evidence enzyme-inducing antiseizure medication use alongside DOACs does not significantly elevate risk of thromboembolic events among a nationally representative epilepsy population,” said Ms. Acton.
However, “it’s always important to consider risk factors for thromboembolic and bleeding events at the level of the individual patient,” she added.
With respect to major bleeding events, there was a slightly reduced risk in the exposed group, specifically in the analysis of subjects with atrial fibrillation, where the aHR was 0.63 (95% CI 0.44-0.89).
“A potential explanation may be pharmacokinetic interaction with enzyme-inducing antiseizure medications occurring to a degree that lowers DOAC levels without necessarily negating therapeutic effects,” said Ms. Acton.
However, she cautioned that more research is needed.
As for the differential potency among the various enzyme-inducing antiseizure medications studied, Ms. Acton said results from a secondary analysis in the atrial fibrillation assessment that removed the potentially less potent enzyme inducers, oxcarbazepine and topiramate, didn’t significantly change the study results.
‘Really Great News’
Commenting on the findings for this news organization, epilepsy expert Daniel M. Goldenholz, MD, PhD, assistant professor of Neurology, Harvard Beth Israel Deaconess Medical Center, Boston, Massachusetts, said the finding of no meaningful difference between DOAC plus enzyme-inducing medications vs DOACs plus non-enzyme-inducing medications is encouraging.
“This study asks a very important question at the population level and appropriately tries to control for present and hidden factors using a propensity matching approach,” he said.
The fact that the data support no difference in terms of thromboembolic events “is really great news” for patients taking an enzyme-inducing antiseizure medication who need to use a DOAC, he said.
While some patients or clinicians might consider transitioning off an enzyme-inducing antiseizure medication, this can lead to new side effects and potentially higher drug costs. “Knowing that a transition may be unnecessary is exciting,” said Dr. Goldenholz.
However, he’s concerned the 1.5-year observation period may not be long enough to see a true effect of these drug combinations.
He also noted that due to the “theoretical higher risk,” patients combining DOACs with enzyme-inducing drugs typically need extra monitoring, which may be less practical outside the US. This suggests “the result may not necessarily generalize outside high-income countries,” he said.
Dr. Goldenholz emphasized that the data are preliminary. “As always, I look forward to a full peer-reviewed study before forming final conclusions.”
The study was supported by the US Department of Health and Human Services’ National Institute of Neurological Disorders and Stroke.
Ms. Acton and Dr. Goldenholz report no relevant financial relationships.
A version of this article appeared on Medscape.com.
ORLANDO — Combining an enzyme-inducing antiseizure medication with a direct-acting oral anticoagulant (DOAC) does not significantly increase the risk of thromboembolic events in patients with epilepsy, preliminary results of a new study show.
These new data are important, “particularly when we’re talking about a more global perspective, given the vital role of enzyme-inducing antiseizure medications in epilepsy care across many middle- and low-income countries where they may be the only readily available treatment options,” said study investigator Emily K. Acton, PhD candidate in epidemiology and a medical student, University of Pennsylvania Perelman School of Medicine, Philadelphia, and University of Illinois College of Medicine, Chicago.
The findings also suggest that use of enzyme-inducing antiseizure medication with DOACs may be associated with a reduction in major bleeding events, although Ms. Acton stressed this requires more research.
The findings were presented at the American Epilepsy Society annual meeting.
Important Implications
Enzyme-inducing antiseizure medications may induce key drug metabolizing enzymes that result in wide-ranging interactions, Ms. Acton told this news organization. “But, in many cases, the clinical significance of these pharmacokinetic interactions is not completely understood.”
This has important implications for managing anticoagulation, said Ms. Acton. “The ease of DOAC use, and growing evidence of the drugs’ safety and efficacy compared to vitamin K antagonists, has led to widespread shifts in clinical practice towards DOACs.”
Due to the relative novelty of DOACs, their interaction profiles have been less than complete, she explained. Evidence that enzyme-inducing antiseizure medications may reduce absorption and accelerate metabolism of DOACs, potentially lowering DOAC levels and elevating thromboembolism risk, comes mainly from in vitro and animal studies.
“Research in humans is lacking and complicated in interpretation by inconsistent findings and methodological limitations,” she said.
The investigators wanted to address the “clinical uncertainty” surrounding the real-world relevance of enzyme-inducing antiseizure medications and DOAC interactions but conducting a randomized trial “would be neither feasible nor ethical,” said Ms. Acton.
Using healthcare claims data from October 2010 to September 2021, the researchers conducted an active comparator, new-user cohort study among a nationally representative sample of adults with epilepsy who had been co-prescribed these drugs.
They compared thromboembolic and major bleeding event rates between exposure to DOACs with enzyme-inducing antiseizure medications vs exposure to DOACs with non-enzyme inducing antiseizure medications.
Enzyme-inducing antiseizure medications included in the study were carbamazepine, oxcarbazepine, phenobarbital, phenytoin, primidone, and topiramate. Non-enzyme-inducing antiseizure medications included gabapentin, lacosamide, lamotrigine, levetiracetam, and pregabalin.
The researchers used data-adaptive high-dimensional propensity score matching to control for “hundreds and hundreds” of observed confounders, and proxies for unobserved confounders, said Ms. Acton. They identified outcomes based on validated diagnostic coding algorithms for thromboembolic and major bleeding events and estimated adjusted hazard ratios (aHRs) using Cox proportional hazard models with robust variance estimators to account for clustering within matched pairs.
Reduced Risk of Major Bleeding
Outcomes were analyzed in three separate cohorts. These included patients on DOACs for any indication (indication-agnostic); those on DOACs for atrial fibrillation (AF); and those taking DOACs for deep vein thrombus/pulmonary embolism (DVT/PE).
In the indication-agnostic analysis, the investigators examined thromboembolic events among 5989 episodes in patients taking both DOACs and enzyme-inducing antiseizure medications, compared witha reference group of 14,671 episodes in patients taking DOACs and non-enzyme-inducing antiseizure medications.
The reference group was generally older and had a greater prevalence of a number of major comorbidities compared with the exposed group, noted Ms. Acton.
For the indication-agnostic analysis, the aHR was 1.11 (95% CI 0.89-1.39). Results were similar for the AF indication (aHR 1.10; 95% CI 0.82-1.46) and for the DVT/PE indication (aHR 1.11; 95% CI 0.81-1.51).
“This research provides large-scale, real-world evidence enzyme-inducing antiseizure medication use alongside DOACs does not significantly elevate risk of thromboembolic events among a nationally representative epilepsy population,” said Ms. Acton.
However, “it’s always important to consider risk factors for thromboembolic and bleeding events at the level of the individual patient,” she added.
With respect to major bleeding events, there was a slightly reduced risk in the exposed group, specifically in the analysis of subjects with atrial fibrillation, where the aHR was 0.63 (95% CI 0.44-0.89).
“A potential explanation may be pharmacokinetic interaction with enzyme-inducing antiseizure medications occurring to a degree that lowers DOAC levels without necessarily negating therapeutic effects,” said Ms. Acton.
However, she cautioned that more research is needed.
As for the differential potency among the various enzyme-inducing antiseizure medications studied, Ms. Acton said results from a secondary analysis in the atrial fibrillation assessment that removed the potentially less potent enzyme inducers, oxcarbazepine and topiramate, didn’t significantly change the study results.
‘Really Great News’
Commenting on the findings for this news organization, epilepsy expert Daniel M. Goldenholz, MD, PhD, assistant professor of Neurology, Harvard Beth Israel Deaconess Medical Center, Boston, Massachusetts, said the finding of no meaningful difference between DOAC plus enzyme-inducing medications vs DOACs plus non-enzyme-inducing medications is encouraging.
“This study asks a very important question at the population level and appropriately tries to control for present and hidden factors using a propensity matching approach,” he said.
The fact that the data support no difference in terms of thromboembolic events “is really great news” for patients taking an enzyme-inducing antiseizure medication who need to use a DOAC, he said.
While some patients or clinicians might consider transitioning off an enzyme-inducing antiseizure medication, this can lead to new side effects and potentially higher drug costs. “Knowing that a transition may be unnecessary is exciting,” said Dr. Goldenholz.
However, he’s concerned the 1.5-year observation period may not be long enough to see a true effect of these drug combinations.
He also noted that due to the “theoretical higher risk,” patients combining DOACs with enzyme-inducing drugs typically need extra monitoring, which may be less practical outside the US. This suggests “the result may not necessarily generalize outside high-income countries,” he said.
Dr. Goldenholz emphasized that the data are preliminary. “As always, I look forward to a full peer-reviewed study before forming final conclusions.”
The study was supported by the US Department of Health and Human Services’ National Institute of Neurological Disorders and Stroke.
Ms. Acton and Dr. Goldenholz report no relevant financial relationships.
A version of this article appeared on Medscape.com.
FROM AES 2023
Retinal Perfusion Is Reduced During Migraine Attacks
study was published online in Headache.
Together, these changes could one day represent migraine biomarkers, authors say. The“We’re always looking for a biological marker for migraine,” said Alan M. Rapoport, MD, a clinical professor of neurology in the David Geffen School of Medicine at the University of California Los Angeles and past president of the International Headache Society. Researchers have identified many parameters that make people more likely to experience migraine, he said, but there remains no smoking gun. “We do not yet have a diagnostic test.”
Investigators have long been examining ocular vascular supply, added Dr. Rapoport, who was not involved with the study, because the eyes, visual system of the brain, and migraine are closely related. “But no one has ever figured out that one could use anything related to the eye as a definitive diagnostic test. This study was interesting because researchers used a very advanced technique to see if there are changes in the vascular supply to the eyeball during migraine.”
During Attacks
Study investigators prospectively enrolled 37 patients diagnosed with migraine with aura (MA), 30 with migraine without aura (MO), and 20 healthy controls. All subjects underwent macular OCTA for interictal analysis. A total of 20 patients with migraine (12 with MA and 8 with MO) underwent repeat scans during migraine attacks, and 5 control patients had repeat scans.
Compared with interictal measurements, significant parafoveal reductions in vessel flux index, an indicator of retinal perfusion, occurred in both the MA and MO groups during migraine attacks: –7% (95% CI, –10% to –4%; P = .006) and –7% (95% CI, –10% to –3%; P = .016), respectively, versus controls (2%, 95% CI, –3% to 7%).
The fact that migraine attacks resulted in reduced blood supply to the retinal region responsible for central vision is intriguing, said Dr. Rapoport, because sufficient reductions in blood supply there could result in blurred vision or other visual difficulties that might be mistaken for a true aura. “Many patients describe blurred vision related to their migraine headaches which do not usually qualify for an aura diagnosis,” he said.
Diagnostic criteria for MA, which afflicts around one third of people with migraine, include visual aberrations lasting at least 5 minutes and no more than 60 minutes. Visual aberrations average about 20-25 minutes, said Dr. Rapoport. “And we don’t usually accept blurred vision.” For most people who experience ictal blurred vision, he added, the phenomenon only lasts a short time and is not considered an aura.
More typical visual manifestations of MA include zigzag lines in an overall crescent shape that may blink, have bright edges, grow and shrink in size, and/or move across the visual field; patients also may have blind spots or distortions (e.g. far away vision, smaller or larger vision, or kaleidoscopic fractured vision). Nevertheless, said Dr. Rapoport, the study may shed light on why some people experiencing a migraine attack may suffer a brief bout of blurred vision and mistakenly report experiencing an aura.
Between Attacks
Comparing the two migraine groups interictally showed statistically significant differences in macular structure and function. Compared with the MO cohort, the MA cohort had higher circularity (mean [SD] 0.686 [0.088] vs. 0.629 [0.120] MO, P = .004), as well as a 13% (SD ± 10%, P = .003) lower foveal vessel flux index. “Not only is perfusion lower in both types of migraine during the attack,” said Dr. Rapoport, “but between attacks, people with MA had a lower blood supply to the retina than those who had MO.”
Unilateral Migraine
In a subset of patients (14 with MA and 12 with MO) whose headaches occurred unilaterally, investigators found retinal vascular parameters consistent with greater perfusion in the ipsilateral eye versus the contralateral eye. The significance of these findings remains unclear, Dr. Rapoport said, because circulatory findings revealed by CAT or MRI scans of patients with unilateral headaches are often normal or involve complex changes or mild edema on the side of the headache. The visual cortex on either side receives input from both eyes, he added.
Study Limitations
Authors acknowledged several study shortcomings. Most notably, COVID-19 restrictions resulted in a small sample size, and several patients (excluded from analysis) failed to return for repeat scans during migraine attacks. The study included patients with migraine attacks of varying frequency, and a handful of patients used acute rescue medications before undergoing ictal scans.
“If a future study corrected all these shortcomings,” Dr. Rapoport said, “the results might be more impressive and even more significant.” Based on these results alone, he said, it would be premature to pronounce OCTA-derived measurements of retinal perfusion and related parameters as future migraine biomarkers.
“But it’s a good start. If this hasn’t been done before, in quite this way, this is a very interesting study which, when repeated, should lead to even more significant findings.”
For now, the paper should remind practicing neurologists to dig deeper when patients complain of visual problems during migraine attacks. “It might be blurred vision for just 3 minutes,” he said. “Some patients may be calling it an aura, or the doctor may be thinking it is an aura because they’re not digging for further information in the history. We may now have a window into decreased retinal perfusion during a migraine attack and why some patients have blurred vision.”
The study was funded by the Amgen and the Baldwin Foundation. Dr. Rapoport is editor-in-chief of Neurology Reviews but reports no relevant relationships with the funders of this research.
study was published online in Headache.
Together, these changes could one day represent migraine biomarkers, authors say. The“We’re always looking for a biological marker for migraine,” said Alan M. Rapoport, MD, a clinical professor of neurology in the David Geffen School of Medicine at the University of California Los Angeles and past president of the International Headache Society. Researchers have identified many parameters that make people more likely to experience migraine, he said, but there remains no smoking gun. “We do not yet have a diagnostic test.”
Investigators have long been examining ocular vascular supply, added Dr. Rapoport, who was not involved with the study, because the eyes, visual system of the brain, and migraine are closely related. “But no one has ever figured out that one could use anything related to the eye as a definitive diagnostic test. This study was interesting because researchers used a very advanced technique to see if there are changes in the vascular supply to the eyeball during migraine.”
During Attacks
Study investigators prospectively enrolled 37 patients diagnosed with migraine with aura (MA), 30 with migraine without aura (MO), and 20 healthy controls. All subjects underwent macular OCTA for interictal analysis. A total of 20 patients with migraine (12 with MA and 8 with MO) underwent repeat scans during migraine attacks, and 5 control patients had repeat scans.
Compared with interictal measurements, significant parafoveal reductions in vessel flux index, an indicator of retinal perfusion, occurred in both the MA and MO groups during migraine attacks: –7% (95% CI, –10% to –4%; P = .006) and –7% (95% CI, –10% to –3%; P = .016), respectively, versus controls (2%, 95% CI, –3% to 7%).
The fact that migraine attacks resulted in reduced blood supply to the retinal region responsible for central vision is intriguing, said Dr. Rapoport, because sufficient reductions in blood supply there could result in blurred vision or other visual difficulties that might be mistaken for a true aura. “Many patients describe blurred vision related to their migraine headaches which do not usually qualify for an aura diagnosis,” he said.
Diagnostic criteria for MA, which afflicts around one third of people with migraine, include visual aberrations lasting at least 5 minutes and no more than 60 minutes. Visual aberrations average about 20-25 minutes, said Dr. Rapoport. “And we don’t usually accept blurred vision.” For most people who experience ictal blurred vision, he added, the phenomenon only lasts a short time and is not considered an aura.
More typical visual manifestations of MA include zigzag lines in an overall crescent shape that may blink, have bright edges, grow and shrink in size, and/or move across the visual field; patients also may have blind spots or distortions (e.g. far away vision, smaller or larger vision, or kaleidoscopic fractured vision). Nevertheless, said Dr. Rapoport, the study may shed light on why some people experiencing a migraine attack may suffer a brief bout of blurred vision and mistakenly report experiencing an aura.
Between Attacks
Comparing the two migraine groups interictally showed statistically significant differences in macular structure and function. Compared with the MO cohort, the MA cohort had higher circularity (mean [SD] 0.686 [0.088] vs. 0.629 [0.120] MO, P = .004), as well as a 13% (SD ± 10%, P = .003) lower foveal vessel flux index. “Not only is perfusion lower in both types of migraine during the attack,” said Dr. Rapoport, “but between attacks, people with MA had a lower blood supply to the retina than those who had MO.”
Unilateral Migraine
In a subset of patients (14 with MA and 12 with MO) whose headaches occurred unilaterally, investigators found retinal vascular parameters consistent with greater perfusion in the ipsilateral eye versus the contralateral eye. The significance of these findings remains unclear, Dr. Rapoport said, because circulatory findings revealed by CAT or MRI scans of patients with unilateral headaches are often normal or involve complex changes or mild edema on the side of the headache. The visual cortex on either side receives input from both eyes, he added.
Study Limitations
Authors acknowledged several study shortcomings. Most notably, COVID-19 restrictions resulted in a small sample size, and several patients (excluded from analysis) failed to return for repeat scans during migraine attacks. The study included patients with migraine attacks of varying frequency, and a handful of patients used acute rescue medications before undergoing ictal scans.
“If a future study corrected all these shortcomings,” Dr. Rapoport said, “the results might be more impressive and even more significant.” Based on these results alone, he said, it would be premature to pronounce OCTA-derived measurements of retinal perfusion and related parameters as future migraine biomarkers.
“But it’s a good start. If this hasn’t been done before, in quite this way, this is a very interesting study which, when repeated, should lead to even more significant findings.”
For now, the paper should remind practicing neurologists to dig deeper when patients complain of visual problems during migraine attacks. “It might be blurred vision for just 3 minutes,” he said. “Some patients may be calling it an aura, or the doctor may be thinking it is an aura because they’re not digging for further information in the history. We may now have a window into decreased retinal perfusion during a migraine attack and why some patients have blurred vision.”
The study was funded by the Amgen and the Baldwin Foundation. Dr. Rapoport is editor-in-chief of Neurology Reviews but reports no relevant relationships with the funders of this research.
study was published online in Headache.
Together, these changes could one day represent migraine biomarkers, authors say. The“We’re always looking for a biological marker for migraine,” said Alan M. Rapoport, MD, a clinical professor of neurology in the David Geffen School of Medicine at the University of California Los Angeles and past president of the International Headache Society. Researchers have identified many parameters that make people more likely to experience migraine, he said, but there remains no smoking gun. “We do not yet have a diagnostic test.”
Investigators have long been examining ocular vascular supply, added Dr. Rapoport, who was not involved with the study, because the eyes, visual system of the brain, and migraine are closely related. “But no one has ever figured out that one could use anything related to the eye as a definitive diagnostic test. This study was interesting because researchers used a very advanced technique to see if there are changes in the vascular supply to the eyeball during migraine.”
During Attacks
Study investigators prospectively enrolled 37 patients diagnosed with migraine with aura (MA), 30 with migraine without aura (MO), and 20 healthy controls. All subjects underwent macular OCTA for interictal analysis. A total of 20 patients with migraine (12 with MA and 8 with MO) underwent repeat scans during migraine attacks, and 5 control patients had repeat scans.
Compared with interictal measurements, significant parafoveal reductions in vessel flux index, an indicator of retinal perfusion, occurred in both the MA and MO groups during migraine attacks: –7% (95% CI, –10% to –4%; P = .006) and –7% (95% CI, –10% to –3%; P = .016), respectively, versus controls (2%, 95% CI, –3% to 7%).
The fact that migraine attacks resulted in reduced blood supply to the retinal region responsible for central vision is intriguing, said Dr. Rapoport, because sufficient reductions in blood supply there could result in blurred vision or other visual difficulties that might be mistaken for a true aura. “Many patients describe blurred vision related to their migraine headaches which do not usually qualify for an aura diagnosis,” he said.
Diagnostic criteria for MA, which afflicts around one third of people with migraine, include visual aberrations lasting at least 5 minutes and no more than 60 minutes. Visual aberrations average about 20-25 minutes, said Dr. Rapoport. “And we don’t usually accept blurred vision.” For most people who experience ictal blurred vision, he added, the phenomenon only lasts a short time and is not considered an aura.
More typical visual manifestations of MA include zigzag lines in an overall crescent shape that may blink, have bright edges, grow and shrink in size, and/or move across the visual field; patients also may have blind spots or distortions (e.g. far away vision, smaller or larger vision, or kaleidoscopic fractured vision). Nevertheless, said Dr. Rapoport, the study may shed light on why some people experiencing a migraine attack may suffer a brief bout of blurred vision and mistakenly report experiencing an aura.
Between Attacks
Comparing the two migraine groups interictally showed statistically significant differences in macular structure and function. Compared with the MO cohort, the MA cohort had higher circularity (mean [SD] 0.686 [0.088] vs. 0.629 [0.120] MO, P = .004), as well as a 13% (SD ± 10%, P = .003) lower foveal vessel flux index. “Not only is perfusion lower in both types of migraine during the attack,” said Dr. Rapoport, “but between attacks, people with MA had a lower blood supply to the retina than those who had MO.”
Unilateral Migraine
In a subset of patients (14 with MA and 12 with MO) whose headaches occurred unilaterally, investigators found retinal vascular parameters consistent with greater perfusion in the ipsilateral eye versus the contralateral eye. The significance of these findings remains unclear, Dr. Rapoport said, because circulatory findings revealed by CAT or MRI scans of patients with unilateral headaches are often normal or involve complex changes or mild edema on the side of the headache. The visual cortex on either side receives input from both eyes, he added.
Study Limitations
Authors acknowledged several study shortcomings. Most notably, COVID-19 restrictions resulted in a small sample size, and several patients (excluded from analysis) failed to return for repeat scans during migraine attacks. The study included patients with migraine attacks of varying frequency, and a handful of patients used acute rescue medications before undergoing ictal scans.
“If a future study corrected all these shortcomings,” Dr. Rapoport said, “the results might be more impressive and even more significant.” Based on these results alone, he said, it would be premature to pronounce OCTA-derived measurements of retinal perfusion and related parameters as future migraine biomarkers.
“But it’s a good start. If this hasn’t been done before, in quite this way, this is a very interesting study which, when repeated, should lead to even more significant findings.”
For now, the paper should remind practicing neurologists to dig deeper when patients complain of visual problems during migraine attacks. “It might be blurred vision for just 3 minutes,” he said. “Some patients may be calling it an aura, or the doctor may be thinking it is an aura because they’re not digging for further information in the history. We may now have a window into decreased retinal perfusion during a migraine attack and why some patients have blurred vision.”
The study was funded by the Amgen and the Baldwin Foundation. Dr. Rapoport is editor-in-chief of Neurology Reviews but reports no relevant relationships with the funders of this research.
FROM HEADACHE
Taking Stock, With Gratitude
Christmas, like New Year’s Day, Thanksgiving, birthdays, and anniversaries, is one of those times that we use to mark where we were and how far we’ve come.
I’m in a mixed marriage, so we celebrate both Hanukkah and Christmas. Twenty-five years ago I was a newly minted attending neurologist, not even 6 months out of fellowship.
My wife was pregnant with our first child and had invited my Jewish family over for Christmas dinner. This was our first December in our first house and she wanted to do something special for them.
Being the low person on the totem pole, it was my first Christmas on call, covering for myself and two other neurologists.
So I was driving. A lot. My wife was on her own to get things ready, and I was hoping to be home for dinner.
It was, as always seems to be the case with holidays, quite busy. I was up long before dawn to start, driving a circular route to cover four hospitals scattered around Phoenix. At least the roads were empty.
At some point the planned pattern breaks down as new consults and urgent patient status changes happen. You try to start by going from A to B to C to D for rounds, but within a few hours I was going from A to B to C, then back to A, then D, then B, then A again, and so on. All the while I was returning patient calls. Wash, rinse, repeat.
At some point I dialed my wife to see how she was doing and she gave me a list of last-minute things she needed picked up (which included some dairy products and more Christmas lights for her tree). I found a small store that was still open. For the rest of my day on call a grocery bag full of dairy products was carried from hospital to hospital with me, being put in the doctor’s lounge refrigerator with my name on it (this is Phoenix, even in winter you can’t leave it in the car). This added another trip from C back to A when I realized I’d left the groceries there.
I got home a few minutes before my family came over, after 14-15 hours of driving between hospitals. I was putting up the new lights when they came in. Fortunately I wasn’t called back in that night, and turned things over to my call partners in the morning.
Now? Since early 2020 my hospital days are behind me. My kids have their own lives, jobs, and school, but still all came over to see us.
I didn’t have to leave the house. I spent most of the day in a robe and pajamas, working at my desk on this and that, sometimes wandering to another table to futz with my current jigsaw puzzle or chat with my kids or go soak in my hot tub.
In 1998 I weighed 50 pounds less (still working on losing it), had no kids, or dogs. Now I’m in another house, have three grown kids, and in the interim have enjoyed seven awesome dogs (currently only one). My wife still invited my family over for Christmas dinner, but now it’s my mom and uncle. My dad and aunt are gone.
The changes are mostly good, though, as with all passages of time there is sadness and loss. When all is said and done I wouldn’t have done much differently even if I could.
I’m lucky, and I know it. To quote Sheryl Crow, “It’s not having what you want, it’s wanting what you’ve got.”
Happy New Year to all.
Dr. Block has a solo neurology practice in Scottsdale, Ariz.
Christmas, like New Year’s Day, Thanksgiving, birthdays, and anniversaries, is one of those times that we use to mark where we were and how far we’ve come.
I’m in a mixed marriage, so we celebrate both Hanukkah and Christmas. Twenty-five years ago I was a newly minted attending neurologist, not even 6 months out of fellowship.
My wife was pregnant with our first child and had invited my Jewish family over for Christmas dinner. This was our first December in our first house and she wanted to do something special for them.
Being the low person on the totem pole, it was my first Christmas on call, covering for myself and two other neurologists.
So I was driving. A lot. My wife was on her own to get things ready, and I was hoping to be home for dinner.
It was, as always seems to be the case with holidays, quite busy. I was up long before dawn to start, driving a circular route to cover four hospitals scattered around Phoenix. At least the roads were empty.
At some point the planned pattern breaks down as new consults and urgent patient status changes happen. You try to start by going from A to B to C to D for rounds, but within a few hours I was going from A to B to C, then back to A, then D, then B, then A again, and so on. All the while I was returning patient calls. Wash, rinse, repeat.
At some point I dialed my wife to see how she was doing and she gave me a list of last-minute things she needed picked up (which included some dairy products and more Christmas lights for her tree). I found a small store that was still open. For the rest of my day on call a grocery bag full of dairy products was carried from hospital to hospital with me, being put in the doctor’s lounge refrigerator with my name on it (this is Phoenix, even in winter you can’t leave it in the car). This added another trip from C back to A when I realized I’d left the groceries there.
I got home a few minutes before my family came over, after 14-15 hours of driving between hospitals. I was putting up the new lights when they came in. Fortunately I wasn’t called back in that night, and turned things over to my call partners in the morning.
Now? Since early 2020 my hospital days are behind me. My kids have their own lives, jobs, and school, but still all came over to see us.
I didn’t have to leave the house. I spent most of the day in a robe and pajamas, working at my desk on this and that, sometimes wandering to another table to futz with my current jigsaw puzzle or chat with my kids or go soak in my hot tub.
In 1998 I weighed 50 pounds less (still working on losing it), had no kids, or dogs. Now I’m in another house, have three grown kids, and in the interim have enjoyed seven awesome dogs (currently only one). My wife still invited my family over for Christmas dinner, but now it’s my mom and uncle. My dad and aunt are gone.
The changes are mostly good, though, as with all passages of time there is sadness and loss. When all is said and done I wouldn’t have done much differently even if I could.
I’m lucky, and I know it. To quote Sheryl Crow, “It’s not having what you want, it’s wanting what you’ve got.”
Happy New Year to all.
Dr. Block has a solo neurology practice in Scottsdale, Ariz.
Christmas, like New Year’s Day, Thanksgiving, birthdays, and anniversaries, is one of those times that we use to mark where we were and how far we’ve come.
I’m in a mixed marriage, so we celebrate both Hanukkah and Christmas. Twenty-five years ago I was a newly minted attending neurologist, not even 6 months out of fellowship.
My wife was pregnant with our first child and had invited my Jewish family over for Christmas dinner. This was our first December in our first house and she wanted to do something special for them.
Being the low person on the totem pole, it was my first Christmas on call, covering for myself and two other neurologists.
So I was driving. A lot. My wife was on her own to get things ready, and I was hoping to be home for dinner.
It was, as always seems to be the case with holidays, quite busy. I was up long before dawn to start, driving a circular route to cover four hospitals scattered around Phoenix. At least the roads were empty.
At some point the planned pattern breaks down as new consults and urgent patient status changes happen. You try to start by going from A to B to C to D for rounds, but within a few hours I was going from A to B to C, then back to A, then D, then B, then A again, and so on. All the while I was returning patient calls. Wash, rinse, repeat.
At some point I dialed my wife to see how she was doing and she gave me a list of last-minute things she needed picked up (which included some dairy products and more Christmas lights for her tree). I found a small store that was still open. For the rest of my day on call a grocery bag full of dairy products was carried from hospital to hospital with me, being put in the doctor’s lounge refrigerator with my name on it (this is Phoenix, even in winter you can’t leave it in the car). This added another trip from C back to A when I realized I’d left the groceries there.
I got home a few minutes before my family came over, after 14-15 hours of driving between hospitals. I was putting up the new lights when they came in. Fortunately I wasn’t called back in that night, and turned things over to my call partners in the morning.
Now? Since early 2020 my hospital days are behind me. My kids have their own lives, jobs, and school, but still all came over to see us.
I didn’t have to leave the house. I spent most of the day in a robe and pajamas, working at my desk on this and that, sometimes wandering to another table to futz with my current jigsaw puzzle or chat with my kids or go soak in my hot tub.
In 1998 I weighed 50 pounds less (still working on losing it), had no kids, or dogs. Now I’m in another house, have three grown kids, and in the interim have enjoyed seven awesome dogs (currently only one). My wife still invited my family over for Christmas dinner, but now it’s my mom and uncle. My dad and aunt are gone.
The changes are mostly good, though, as with all passages of time there is sadness and loss. When all is said and done I wouldn’t have done much differently even if I could.
I’m lucky, and I know it. To quote Sheryl Crow, “It’s not having what you want, it’s wanting what you’ve got.”
Happy New Year to all.
Dr. Block has a solo neurology practice in Scottsdale, Ariz.
Comments Disputed on Negative Low-Dose Naltrexone Fibromyalgia Trial
Neuroinflammation expert Jarred Younger, PhD, disputes a recent study commentary calling for clinicians to stop prescribing low-dose naltrexone for people with fibromyalgia.
Naltrexone is a nonselective µ-opioid receptor antagonist approved by the US Food and Drug Administration (FDA) at doses of 50-100 mg/day to treat opioid and alcohol dependence. Lower doses, typically 1-5 mg, can produce an analgesic effect via antagonism of receptors on microglial cells that lead to neuroinflammation. The low-dose version, available at compounding pharmacies, is not FDA-approved, but for many years it has been used off-label to treat fibromyalgia and related conditions.
Results from earlier small clinical trials have conflicted, but two conducted by Dr. Younger using doses of 4.5 mg/day showed benefit in reducing pain and other fibromyalgia symptoms. However, a new study from Denmark on 6 mg low-dose naltrexone versus placebo among 99 women with fibromyalgia demonstrated no significant difference in the primary outcome of change in pain intensity from baseline to 12 weeks.
On the other hand, there was a significant improvement in memory, and there were no differences in adverse events or safety, the authors reported in The Lancet Rheumatology.
Nonetheless, an accompanying commentary called the study a “resoundingly negative trial” and advised that while off-label use of low-dose naltrexone could continue for patients already taking it, clinicians should not initiate it for patients who have not previously used it, pending additional data.
Dr. Younger, director of the Neuroinflammation, Pain and Fatigue Laboratory at the University of Alabama, Birmingham, was speaking on December 13, 2023, at a National Institutes of Health meeting about myalgic encephalomyelitis/chronic fatigue syndrome about the potential use of low-dose naltrexone for that patient population. He had checked the literature in preparation for his talk and saw the new study, which had just been published December 5, 2023.
During his talk, Dr. Younger said, “It looks like the study was very well done, and all the decisions made sense to me, so I don’t doubt the quality of their data or the statistics.”
But as for the commentary, he said, “I strongly disagree, and I believe the physicians at this conference strongly disagree with that as well. I know plenty of physicians who would say that is not good advice because this drug is so helpful for so many people.”
Indeed, Anthony L. Komaroff, MD, who heard Dr. Younger’s talk but hadn’t seen the new study, told this news organization that he is a “fan” of low-dose naltrexone based on his own experience with one patient who had a “clearly beneficial response” and that of other clinicians he’s spoken with about it. “My colleagues say it doesn’t work for everyone because the disease is so heterogeneous ... but it definitely works for some patients.”
Dr. Younger noted that the proportion of people in the Danish study who reported a clinically significant, that is 30% reduction, in pain scores was 45% versus 28% with placebo, not far from the 50% he found in his studies. “If they’d had 40 to 60 more people, they would have had statistically significant difference,” Dr. Younger said.
Indeed, the authors themselves pointed this out in their discussion, noting, “Our study was not powered to detect a significant difference regarding responder indices ... Subgroups of patients with fibromyalgia might respond differently to low-dose naltrexone treatment, and we intend to conduct a responder analysis based on levels of inflammatory biomarkers and specific biomarkers of glial activation, hypothesising that an inflammatory subgroup might benefit from the treatment. Results will be published in subsequent papers.”
The commentary authors responded to that, saying that they “appreciate” the intention to conduct that subgroup analysis, but that it is “probable that the current sample size will preclude robust statistical comparisons but could be a step to generate hypotheses.”
Those authors noted that a systematic review has described both pro-inflammatory (tumor necrosis factor, interleukin [IL]-6, and IL-8) and anti-inflammatory (IL-10) cytokines as peripheral inflammatory biomarkers in patients with fibromyalgia. “The specific peripheral biomarkers of glial activation are yet to be identified. The neuroinflammation hypothesis of fibromyalgia could be supported if a reduction of central nervous system inflammation would predict improvement of fibromyalgia symptoms. Subsequent work in this area is eagerly awaited.”
In the meantime, Dr. Younger said, “I do not think this should stop us from looking at low-dose naltrexone [or that] we shouldn’t try it. I’ve talked to over a thousand people over the last 10 years. It would be a very bad thing to give up on low-dose naltrexone now.”
Dr. Younger’s work is funded by the National Institutes of Health, Department of Defense, SolveME, the American Fibromyalgia Association, and ME Research UK. Komaroff has no disclosures.
A version of this article appeared on Medscape.com.
Neuroinflammation expert Jarred Younger, PhD, disputes a recent study commentary calling for clinicians to stop prescribing low-dose naltrexone for people with fibromyalgia.
Naltrexone is a nonselective µ-opioid receptor antagonist approved by the US Food and Drug Administration (FDA) at doses of 50-100 mg/day to treat opioid and alcohol dependence. Lower doses, typically 1-5 mg, can produce an analgesic effect via antagonism of receptors on microglial cells that lead to neuroinflammation. The low-dose version, available at compounding pharmacies, is not FDA-approved, but for many years it has been used off-label to treat fibromyalgia and related conditions.
Results from earlier small clinical trials have conflicted, but two conducted by Dr. Younger using doses of 4.5 mg/day showed benefit in reducing pain and other fibromyalgia symptoms. However, a new study from Denmark on 6 mg low-dose naltrexone versus placebo among 99 women with fibromyalgia demonstrated no significant difference in the primary outcome of change in pain intensity from baseline to 12 weeks.
On the other hand, there was a significant improvement in memory, and there were no differences in adverse events or safety, the authors reported in The Lancet Rheumatology.
Nonetheless, an accompanying commentary called the study a “resoundingly negative trial” and advised that while off-label use of low-dose naltrexone could continue for patients already taking it, clinicians should not initiate it for patients who have not previously used it, pending additional data.
Dr. Younger, director of the Neuroinflammation, Pain and Fatigue Laboratory at the University of Alabama, Birmingham, was speaking on December 13, 2023, at a National Institutes of Health meeting about myalgic encephalomyelitis/chronic fatigue syndrome about the potential use of low-dose naltrexone for that patient population. He had checked the literature in preparation for his talk and saw the new study, which had just been published December 5, 2023.
During his talk, Dr. Younger said, “It looks like the study was very well done, and all the decisions made sense to me, so I don’t doubt the quality of their data or the statistics.”
But as for the commentary, he said, “I strongly disagree, and I believe the physicians at this conference strongly disagree with that as well. I know plenty of physicians who would say that is not good advice because this drug is so helpful for so many people.”
Indeed, Anthony L. Komaroff, MD, who heard Dr. Younger’s talk but hadn’t seen the new study, told this news organization that he is a “fan” of low-dose naltrexone based on his own experience with one patient who had a “clearly beneficial response” and that of other clinicians he’s spoken with about it. “My colleagues say it doesn’t work for everyone because the disease is so heterogeneous ... but it definitely works for some patients.”
Dr. Younger noted that the proportion of people in the Danish study who reported a clinically significant, that is 30% reduction, in pain scores was 45% versus 28% with placebo, not far from the 50% he found in his studies. “If they’d had 40 to 60 more people, they would have had statistically significant difference,” Dr. Younger said.
Indeed, the authors themselves pointed this out in their discussion, noting, “Our study was not powered to detect a significant difference regarding responder indices ... Subgroups of patients with fibromyalgia might respond differently to low-dose naltrexone treatment, and we intend to conduct a responder analysis based on levels of inflammatory biomarkers and specific biomarkers of glial activation, hypothesising that an inflammatory subgroup might benefit from the treatment. Results will be published in subsequent papers.”
The commentary authors responded to that, saying that they “appreciate” the intention to conduct that subgroup analysis, but that it is “probable that the current sample size will preclude robust statistical comparisons but could be a step to generate hypotheses.”
Those authors noted that a systematic review has described both pro-inflammatory (tumor necrosis factor, interleukin [IL]-6, and IL-8) and anti-inflammatory (IL-10) cytokines as peripheral inflammatory biomarkers in patients with fibromyalgia. “The specific peripheral biomarkers of glial activation are yet to be identified. The neuroinflammation hypothesis of fibromyalgia could be supported if a reduction of central nervous system inflammation would predict improvement of fibromyalgia symptoms. Subsequent work in this area is eagerly awaited.”
In the meantime, Dr. Younger said, “I do not think this should stop us from looking at low-dose naltrexone [or that] we shouldn’t try it. I’ve talked to over a thousand people over the last 10 years. It would be a very bad thing to give up on low-dose naltrexone now.”
Dr. Younger’s work is funded by the National Institutes of Health, Department of Defense, SolveME, the American Fibromyalgia Association, and ME Research UK. Komaroff has no disclosures.
A version of this article appeared on Medscape.com.
Neuroinflammation expert Jarred Younger, PhD, disputes a recent study commentary calling for clinicians to stop prescribing low-dose naltrexone for people with fibromyalgia.
Naltrexone is a nonselective µ-opioid receptor antagonist approved by the US Food and Drug Administration (FDA) at doses of 50-100 mg/day to treat opioid and alcohol dependence. Lower doses, typically 1-5 mg, can produce an analgesic effect via antagonism of receptors on microglial cells that lead to neuroinflammation. The low-dose version, available at compounding pharmacies, is not FDA-approved, but for many years it has been used off-label to treat fibromyalgia and related conditions.
Results from earlier small clinical trials have conflicted, but two conducted by Dr. Younger using doses of 4.5 mg/day showed benefit in reducing pain and other fibromyalgia symptoms. However, a new study from Denmark on 6 mg low-dose naltrexone versus placebo among 99 women with fibromyalgia demonstrated no significant difference in the primary outcome of change in pain intensity from baseline to 12 weeks.
On the other hand, there was a significant improvement in memory, and there were no differences in adverse events or safety, the authors reported in The Lancet Rheumatology.
Nonetheless, an accompanying commentary called the study a “resoundingly negative trial” and advised that while off-label use of low-dose naltrexone could continue for patients already taking it, clinicians should not initiate it for patients who have not previously used it, pending additional data.
Dr. Younger, director of the Neuroinflammation, Pain and Fatigue Laboratory at the University of Alabama, Birmingham, was speaking on December 13, 2023, at a National Institutes of Health meeting about myalgic encephalomyelitis/chronic fatigue syndrome about the potential use of low-dose naltrexone for that patient population. He had checked the literature in preparation for his talk and saw the new study, which had just been published December 5, 2023.
During his talk, Dr. Younger said, “It looks like the study was very well done, and all the decisions made sense to me, so I don’t doubt the quality of their data or the statistics.”
But as for the commentary, he said, “I strongly disagree, and I believe the physicians at this conference strongly disagree with that as well. I know plenty of physicians who would say that is not good advice because this drug is so helpful for so many people.”
Indeed, Anthony L. Komaroff, MD, who heard Dr. Younger’s talk but hadn’t seen the new study, told this news organization that he is a “fan” of low-dose naltrexone based on his own experience with one patient who had a “clearly beneficial response” and that of other clinicians he’s spoken with about it. “My colleagues say it doesn’t work for everyone because the disease is so heterogeneous ... but it definitely works for some patients.”
Dr. Younger noted that the proportion of people in the Danish study who reported a clinically significant, that is 30% reduction, in pain scores was 45% versus 28% with placebo, not far from the 50% he found in his studies. “If they’d had 40 to 60 more people, they would have had statistically significant difference,” Dr. Younger said.
Indeed, the authors themselves pointed this out in their discussion, noting, “Our study was not powered to detect a significant difference regarding responder indices ... Subgroups of patients with fibromyalgia might respond differently to low-dose naltrexone treatment, and we intend to conduct a responder analysis based on levels of inflammatory biomarkers and specific biomarkers of glial activation, hypothesising that an inflammatory subgroup might benefit from the treatment. Results will be published in subsequent papers.”
The commentary authors responded to that, saying that they “appreciate” the intention to conduct that subgroup analysis, but that it is “probable that the current sample size will preclude robust statistical comparisons but could be a step to generate hypotheses.”
Those authors noted that a systematic review has described both pro-inflammatory (tumor necrosis factor, interleukin [IL]-6, and IL-8) and anti-inflammatory (IL-10) cytokines as peripheral inflammatory biomarkers in patients with fibromyalgia. “The specific peripheral biomarkers of glial activation are yet to be identified. The neuroinflammation hypothesis of fibromyalgia could be supported if a reduction of central nervous system inflammation would predict improvement of fibromyalgia symptoms. Subsequent work in this area is eagerly awaited.”
In the meantime, Dr. Younger said, “I do not think this should stop us from looking at low-dose naltrexone [or that] we shouldn’t try it. I’ve talked to over a thousand people over the last 10 years. It would be a very bad thing to give up on low-dose naltrexone now.”
Dr. Younger’s work is funded by the National Institutes of Health, Department of Defense, SolveME, the American Fibromyalgia Association, and ME Research UK. Komaroff has no disclosures.
A version of this article appeared on Medscape.com.