Slot System
Featured Buckets
Featured Buckets Admin
Reverse Chronological Sort
Allow Teaser Image

Does Medicare Advantage Offer Higher-Value Chemotherapy?

Article Type
Changed
Thu, 09/26/2024 - 13:51

 

TOPLINE:

Medicare Advantage plans had lower adjusted total resource use than traditional Medicare for patients with cancer undergoing chemotherapy, with no difference in 18-month survival between the two groups.

METHODOLOGY:

  • Private Medicare Advantage plans enroll more than half of the Medicare population, but it is unknown if or how the cost restrictions they impose affect chemotherapy, which accounts for a large portion of cancer care costs.
  • Researchers conducted a cohort study using national Medicare data from January 2015 to December 2019 to look at Medicare Advantage enrollment and treatment patterns for patients with cancer receiving chemotherapy.
  • The study included 96,501 Medicare Advantage enrollees and 206,274 traditional Medicare beneficiaries who initiated chemotherapy between January 2016 and December 2019 (mean age, ~73 years; ~56% women; Hispanic individuals, 15% and 8%; Black individuals, 15% and 8%; and White individuals, 75% and 86%, respectively).
  • Resource use and care quality were measured during a 6-month period following chemotherapy initiation, and survival days were measured 18 months after beginning chemotherapy.
  • Resource use measures included hospital inpatient services, outpatient care, prescription drugs, hospice services, and chemotherapy services. Quality measures included chemotherapy-related emergency visits and hospital admissions, as well as avoidable emergency visits and preventable hospitalizations.

TAKEAWAY:

  • Medicare Advantage plans had lower resource use than traditional Medicare per enrollee with cancer undergoing chemotherapy ($8718 lower; 95% CI, $8343-$9094).
  • The lower resource use was largely caused by fewer chemotherapy visits and less expensive chemotherapy per visit in Medicare Advantage plans ($5032 lower; 95% CI, $4772-$5293).
  • Medicare Advantage enrollees had 2.5 percentage points fewer chemotherapy-related emergency department visits and 0.7 percentage points fewer chemotherapy-related hospitalizations than traditional Medicare beneficiaries.
  • There was no clinically meaningful difference in survival between Medicare Advantage and traditional Medicare beneficiaries during the 18 months following chemotherapy initiation.

IN PRACTICE:

“Our new finding is that MA [Medicare Advantage] plans had lower resource use than TM [traditional Medicare] among enrollees with cancer undergoing chemotherapy — a serious condition managed by specialists and requiring expensive treatments. This suggests that MA’s cost advantages over TM are not limited to conditions for which low-cost primary care management can avoid costly services,” the authors wrote.

SOURCE:

The study was led by Yamini Kalidindi, PhD, McDermott+ Consulting, Washington, DC. It was published online on September 20, 2024, in JAMA Network Open (doi: 10.1001/jamanetworkopen.2024.34707), with a commentary.

LIMITATIONS:

The study’s findings may be affected by unobserved patient characteristics despite the use of inverse-probability weighting. The exclusion of Medicare Advantage enrollees in contracts with incomplete encounter data limits the generalizability of the results. The study does not apply to beneficiaries without Part D drug coverage. Quality measures were limited to those available from claims and encounter data, lacking information on patients’ cancer stage. The 18-month measure of survival might not adequately capture survival differences associated with early-stage cancers. The study did not measure whether patient care followed recommended guidelines.

DISCLOSURES:

Various authors reported grants from the National Institute on Aging, the National Institutes of Health, The Commonwealth Fund, Arnold Ventures, the National Cancer Institute, the Department of Defense, and the National Institute of Health Care Management. Additional disclosures are noted in the original article.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Medicare Advantage plans had lower adjusted total resource use than traditional Medicare for patients with cancer undergoing chemotherapy, with no difference in 18-month survival between the two groups.

METHODOLOGY:

  • Private Medicare Advantage plans enroll more than half of the Medicare population, but it is unknown if or how the cost restrictions they impose affect chemotherapy, which accounts for a large portion of cancer care costs.
  • Researchers conducted a cohort study using national Medicare data from January 2015 to December 2019 to look at Medicare Advantage enrollment and treatment patterns for patients with cancer receiving chemotherapy.
  • The study included 96,501 Medicare Advantage enrollees and 206,274 traditional Medicare beneficiaries who initiated chemotherapy between January 2016 and December 2019 (mean age, ~73 years; ~56% women; Hispanic individuals, 15% and 8%; Black individuals, 15% and 8%; and White individuals, 75% and 86%, respectively).
  • Resource use and care quality were measured during a 6-month period following chemotherapy initiation, and survival days were measured 18 months after beginning chemotherapy.
  • Resource use measures included hospital inpatient services, outpatient care, prescription drugs, hospice services, and chemotherapy services. Quality measures included chemotherapy-related emergency visits and hospital admissions, as well as avoidable emergency visits and preventable hospitalizations.

TAKEAWAY:

  • Medicare Advantage plans had lower resource use than traditional Medicare per enrollee with cancer undergoing chemotherapy ($8718 lower; 95% CI, $8343-$9094).
  • The lower resource use was largely caused by fewer chemotherapy visits and less expensive chemotherapy per visit in Medicare Advantage plans ($5032 lower; 95% CI, $4772-$5293).
  • Medicare Advantage enrollees had 2.5 percentage points fewer chemotherapy-related emergency department visits and 0.7 percentage points fewer chemotherapy-related hospitalizations than traditional Medicare beneficiaries.
  • There was no clinically meaningful difference in survival between Medicare Advantage and traditional Medicare beneficiaries during the 18 months following chemotherapy initiation.

IN PRACTICE:

“Our new finding is that MA [Medicare Advantage] plans had lower resource use than TM [traditional Medicare] among enrollees with cancer undergoing chemotherapy — a serious condition managed by specialists and requiring expensive treatments. This suggests that MA’s cost advantages over TM are not limited to conditions for which low-cost primary care management can avoid costly services,” the authors wrote.

SOURCE:

The study was led by Yamini Kalidindi, PhD, McDermott+ Consulting, Washington, DC. It was published online on September 20, 2024, in JAMA Network Open (doi: 10.1001/jamanetworkopen.2024.34707), with a commentary.

LIMITATIONS:

The study’s findings may be affected by unobserved patient characteristics despite the use of inverse-probability weighting. The exclusion of Medicare Advantage enrollees in contracts with incomplete encounter data limits the generalizability of the results. The study does not apply to beneficiaries without Part D drug coverage. Quality measures were limited to those available from claims and encounter data, lacking information on patients’ cancer stage. The 18-month measure of survival might not adequately capture survival differences associated with early-stage cancers. The study did not measure whether patient care followed recommended guidelines.

DISCLOSURES:

Various authors reported grants from the National Institute on Aging, the National Institutes of Health, The Commonwealth Fund, Arnold Ventures, the National Cancer Institute, the Department of Defense, and the National Institute of Health Care Management. Additional disclosures are noted in the original article.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE:

Medicare Advantage plans had lower adjusted total resource use than traditional Medicare for patients with cancer undergoing chemotherapy, with no difference in 18-month survival between the two groups.

METHODOLOGY:

  • Private Medicare Advantage plans enroll more than half of the Medicare population, but it is unknown if or how the cost restrictions they impose affect chemotherapy, which accounts for a large portion of cancer care costs.
  • Researchers conducted a cohort study using national Medicare data from January 2015 to December 2019 to look at Medicare Advantage enrollment and treatment patterns for patients with cancer receiving chemotherapy.
  • The study included 96,501 Medicare Advantage enrollees and 206,274 traditional Medicare beneficiaries who initiated chemotherapy between January 2016 and December 2019 (mean age, ~73 years; ~56% women; Hispanic individuals, 15% and 8%; Black individuals, 15% and 8%; and White individuals, 75% and 86%, respectively).
  • Resource use and care quality were measured during a 6-month period following chemotherapy initiation, and survival days were measured 18 months after beginning chemotherapy.
  • Resource use measures included hospital inpatient services, outpatient care, prescription drugs, hospice services, and chemotherapy services. Quality measures included chemotherapy-related emergency visits and hospital admissions, as well as avoidable emergency visits and preventable hospitalizations.

TAKEAWAY:

  • Medicare Advantage plans had lower resource use than traditional Medicare per enrollee with cancer undergoing chemotherapy ($8718 lower; 95% CI, $8343-$9094).
  • The lower resource use was largely caused by fewer chemotherapy visits and less expensive chemotherapy per visit in Medicare Advantage plans ($5032 lower; 95% CI, $4772-$5293).
  • Medicare Advantage enrollees had 2.5 percentage points fewer chemotherapy-related emergency department visits and 0.7 percentage points fewer chemotherapy-related hospitalizations than traditional Medicare beneficiaries.
  • There was no clinically meaningful difference in survival between Medicare Advantage and traditional Medicare beneficiaries during the 18 months following chemotherapy initiation.

IN PRACTICE:

“Our new finding is that MA [Medicare Advantage] plans had lower resource use than TM [traditional Medicare] among enrollees with cancer undergoing chemotherapy — a serious condition managed by specialists and requiring expensive treatments. This suggests that MA’s cost advantages over TM are not limited to conditions for which low-cost primary care management can avoid costly services,” the authors wrote.

SOURCE:

The study was led by Yamini Kalidindi, PhD, McDermott+ Consulting, Washington, DC. It was published online on September 20, 2024, in JAMA Network Open (doi: 10.1001/jamanetworkopen.2024.34707), with a commentary.

LIMITATIONS:

The study’s findings may be affected by unobserved patient characteristics despite the use of inverse-probability weighting. The exclusion of Medicare Advantage enrollees in contracts with incomplete encounter data limits the generalizability of the results. The study does not apply to beneficiaries without Part D drug coverage. Quality measures were limited to those available from claims and encounter data, lacking information on patients’ cancer stage. The 18-month measure of survival might not adequately capture survival differences associated with early-stage cancers. The study did not measure whether patient care followed recommended guidelines.

DISCLOSURES:

Various authors reported grants from the National Institute on Aging, the National Institutes of Health, The Commonwealth Fund, Arnold Ventures, the National Cancer Institute, the Department of Defense, and the National Institute of Health Care Management. Additional disclosures are noted in the original article.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

AACR Cancer Progress Report: Big Strides and Big Gaps

Article Type
Changed
Thu, 09/26/2024 - 13:45

Despite the “remarkable progress” in cancer research and care, cancer remains “an ongoing public health challenge,” which requires significant attention and funding, according to the Cancer Progress Report 2024 from the American Association for Cancer Research (AACR).

The AACR’s 216-page report — an annual endeavor now in its 14th year — focused on the “tremendous” strides made in cancer care, prevention, and early detection and highlighted areas where more research and attention are warranted. 

One key area is funding. For the first time since 2016, federal funding for the National Institutes of Health (NIH) and National Cancer Institute (NCI) decreased in the past year. The cuts followed nearly a decade of funding increases that saw the NIH budget expand by nearly $15 billion, and that allowed for a “rapid pace and broad scope” of advances in cancer, AACR’s chief executive officer Margaret Foti, MD, PhD, said during a press briefing.

These recent cuts “threaten to curtail the medical progress seen in recent years and stymie future advancements,” said Dr. Foti, who called on Congress to commit to funding cancer research at significant and consistent levels to “maintain the momentum of progress against cancer.”
 

Inside the Report: Big Progress

Overall, advances in prevention, early detection, and treatment have helped catch more cancers earlier and save lives. 

According to the AACR report, the age-adjusted overall cancer death rate in the United States fell by 33% between 1991 and 2021, meaning about 4.1 million cancer deaths were averted. The overall cancer death rate for children and adolescents has declined by 24% in the past 2 decades. The 5-year relative survival rate for children diagnosed with cancer in the US has improved from 58% for those diagnosed in the mid-1970s to 85% for those diagnosed between 2013 and 2019.

The past fiscal year has seen many new approvals for cancer drugs, diagnostics, and screening tests. From July 1, 2023, to June 30, 2024, the Food and Drug Administration (FDA) approved 15 new anticancer therapeutics, as well as 15 new indications for previously approved agents, one new imaging agent, several artificial intelligence (AI) tools to improve early cancer detection and diagnosis, and two minimally invasive tests for assessing inherited cancer risk or early cancer detection, according to the report.

“Cancer diagnostics are becoming more sophisticated,” AACR president Patricia M. LoRusso, DO, PhD, said during the briefing. “New technologies, such as spatial transcriptomics, are helping us study tumors at a cellular level, and helping to unveil things that we did not initially even begin to understand or think of. AI-based approaches are beginning to transform cancer detection, diagnosis, clinical decision-making, and treatment response monitoring.” 

The report also highlights the significant progress in many childhood and adolescent/young adult cancers, Dr. LoRusso noted. These include FDA approvals for two new molecularly targeted therapeutics: tovorafenib for children with certain types of brain tumor and repotrectinib for children with a wide array of cancer types that have a specific genetic alteration known as NTRK gene fusion. It also includes an expanded approval for eflornithine to reduce the risk for relapse in children with high-risk neuroblastoma.

“Decades — decades — of basic research discoveries, have led to these clinical breakthroughs,” she stressed. “These gains against cancer are because of the rapid progress in our ability to decode the cancer genome, which has opened new and innovative avenues for drug development.”
 

 

 

The Gaps

Even with progress in cancer prevention, early detection, and treatment, cancer remains a significant issue.

“In 2024, it is estimated that more than 2 million new cases of cancer will be diagnosed in the United States. More than 611,000 people will die from the disease,” according to the report.

The 2024 report shows that incidence rates for some cancers are increasing in the United States, including vaccine-preventable cancers such as human papillomavirus (HPV)–associated oral cancers and, in young adults, cervical cancers. A recent analysis also found that overall cervical cancer incidence among women aged 30-34 years increased by 2.5% a year between 2012 and 2019.

Furthermore, despite clear evidence demonstrating that the HPV vaccine reduces cervical cancer incidence, uptake has remained poor, with only 38.6% of US children and adolescents aged 9-17 years receiving at least one dose of the vaccine in 2022.

Early-onset cancers are also increasing. Rates of breast, colorectal, and other cancers are on the rise in adults younger than 50 years, the report noted.

The report also pointed to data that 40% of all cancer cases in the United States can be attributed to preventable factors, such as smoking, excess body weight, and alcohol. However, our understanding of these risk factors has improved. Excessive levels of alcohol consumption have, for instance, been shown to increase the risk for six different types of cancer: certain types of head and neck cancer, esophageal squamous cell carcinoma, and breast, colorectal, liver, and stomach cancers.

Financial toxicity remains prevalent as well.

The report explains that financial hardship following a cancer diagnosis is widespread, and the effects can last for years. In fact, more than 40% of patients can spend their entire life savings within the first 2 years of cancer treatment. Among adult survivors of childhood cancers, 20.7% had trouble paying their medical bills, 29.9% said they had been sent to debt collection for unpaid bills, 14.1% had forgone medical care, and 26.8% could not afford nutritious meals.

For young cancer survivors, the lifetime costs associated with a diagnosis of cancer are substantial, reaching an average of $259,324 per person.

On a global level, it is estimated that from 2020 to 2050, the cumulative economic burden of cancer will be $25.2 trillion.
 

The Path Forward

Despite these challenges, Dr. LoRusso said, “it is unquestionable that we are in a time of unparalleled opportunities in cancer research.

“I am excited about what the future holds for cancer research, and especially for patient care,” she said. 

However, funding commitments are needed to avoid impeding this momentum and losing a “talented and creative young workforce” that has brought new ideas and new technologies to the table.

Continued robust funding will help “to markedly improve cancer care, increase cancer survivorship, spur economic growth, and maintain the United States’ position as the global leader in science and medical research,” she added.

The AACR report specifically calls on Congress to:

  • Appropriate at least $51.3 billion in fiscal year 2025 for the base budget of the NIH and at least $7.934 billion for the NCI.
  • Provide $3.6 billion in dedicated funding for Cancer Moonshot activities through fiscal year 2026 in addition to other funding, consistent with the President’s fiscal year 2025 budget.
  • Appropriate at least $472.4 million in fiscal year 2025 for the CDC’s Division of Cancer Prevention to support comprehensive cancer control, central cancer registries, and screening and awareness programs for specific cancers.
  • Allocate $55 million in funding for the Oncology Center of Excellence at FDA in fiscal year 2025 to provide regulators with the staff and tools necessary to conduct expedited review of cancer-related medical products.

By working together with Congress and other stakeholders, “we will be able to accelerate the pace of progress and make major strides toward the lifesaving goal of preventing and curing all cancers at the earliest possible time,” Dr. Foti said. “I believe if we do that ... one day we will win this war on cancer.”

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Despite the “remarkable progress” in cancer research and care, cancer remains “an ongoing public health challenge,” which requires significant attention and funding, according to the Cancer Progress Report 2024 from the American Association for Cancer Research (AACR).

The AACR’s 216-page report — an annual endeavor now in its 14th year — focused on the “tremendous” strides made in cancer care, prevention, and early detection and highlighted areas where more research and attention are warranted. 

One key area is funding. For the first time since 2016, federal funding for the National Institutes of Health (NIH) and National Cancer Institute (NCI) decreased in the past year. The cuts followed nearly a decade of funding increases that saw the NIH budget expand by nearly $15 billion, and that allowed for a “rapid pace and broad scope” of advances in cancer, AACR’s chief executive officer Margaret Foti, MD, PhD, said during a press briefing.

These recent cuts “threaten to curtail the medical progress seen in recent years and stymie future advancements,” said Dr. Foti, who called on Congress to commit to funding cancer research at significant and consistent levels to “maintain the momentum of progress against cancer.”
 

Inside the Report: Big Progress

Overall, advances in prevention, early detection, and treatment have helped catch more cancers earlier and save lives. 

According to the AACR report, the age-adjusted overall cancer death rate in the United States fell by 33% between 1991 and 2021, meaning about 4.1 million cancer deaths were averted. The overall cancer death rate for children and adolescents has declined by 24% in the past 2 decades. The 5-year relative survival rate for children diagnosed with cancer in the US has improved from 58% for those diagnosed in the mid-1970s to 85% for those diagnosed between 2013 and 2019.

The past fiscal year has seen many new approvals for cancer drugs, diagnostics, and screening tests. From July 1, 2023, to June 30, 2024, the Food and Drug Administration (FDA) approved 15 new anticancer therapeutics, as well as 15 new indications for previously approved agents, one new imaging agent, several artificial intelligence (AI) tools to improve early cancer detection and diagnosis, and two minimally invasive tests for assessing inherited cancer risk or early cancer detection, according to the report.

“Cancer diagnostics are becoming more sophisticated,” AACR president Patricia M. LoRusso, DO, PhD, said during the briefing. “New technologies, such as spatial transcriptomics, are helping us study tumors at a cellular level, and helping to unveil things that we did not initially even begin to understand or think of. AI-based approaches are beginning to transform cancer detection, diagnosis, clinical decision-making, and treatment response monitoring.” 

The report also highlights the significant progress in many childhood and adolescent/young adult cancers, Dr. LoRusso noted. These include FDA approvals for two new molecularly targeted therapeutics: tovorafenib for children with certain types of brain tumor and repotrectinib for children with a wide array of cancer types that have a specific genetic alteration known as NTRK gene fusion. It also includes an expanded approval for eflornithine to reduce the risk for relapse in children with high-risk neuroblastoma.

“Decades — decades — of basic research discoveries, have led to these clinical breakthroughs,” she stressed. “These gains against cancer are because of the rapid progress in our ability to decode the cancer genome, which has opened new and innovative avenues for drug development.”
 

 

 

The Gaps

Even with progress in cancer prevention, early detection, and treatment, cancer remains a significant issue.

“In 2024, it is estimated that more than 2 million new cases of cancer will be diagnosed in the United States. More than 611,000 people will die from the disease,” according to the report.

The 2024 report shows that incidence rates for some cancers are increasing in the United States, including vaccine-preventable cancers such as human papillomavirus (HPV)–associated oral cancers and, in young adults, cervical cancers. A recent analysis also found that overall cervical cancer incidence among women aged 30-34 years increased by 2.5% a year between 2012 and 2019.

Furthermore, despite clear evidence demonstrating that the HPV vaccine reduces cervical cancer incidence, uptake has remained poor, with only 38.6% of US children and adolescents aged 9-17 years receiving at least one dose of the vaccine in 2022.

Early-onset cancers are also increasing. Rates of breast, colorectal, and other cancers are on the rise in adults younger than 50 years, the report noted.

The report also pointed to data that 40% of all cancer cases in the United States can be attributed to preventable factors, such as smoking, excess body weight, and alcohol. However, our understanding of these risk factors has improved. Excessive levels of alcohol consumption have, for instance, been shown to increase the risk for six different types of cancer: certain types of head and neck cancer, esophageal squamous cell carcinoma, and breast, colorectal, liver, and stomach cancers.

Financial toxicity remains prevalent as well.

The report explains that financial hardship following a cancer diagnosis is widespread, and the effects can last for years. In fact, more than 40% of patients can spend their entire life savings within the first 2 years of cancer treatment. Among adult survivors of childhood cancers, 20.7% had trouble paying their medical bills, 29.9% said they had been sent to debt collection for unpaid bills, 14.1% had forgone medical care, and 26.8% could not afford nutritious meals.

For young cancer survivors, the lifetime costs associated with a diagnosis of cancer are substantial, reaching an average of $259,324 per person.

On a global level, it is estimated that from 2020 to 2050, the cumulative economic burden of cancer will be $25.2 trillion.
 

The Path Forward

Despite these challenges, Dr. LoRusso said, “it is unquestionable that we are in a time of unparalleled opportunities in cancer research.

“I am excited about what the future holds for cancer research, and especially for patient care,” she said. 

However, funding commitments are needed to avoid impeding this momentum and losing a “talented and creative young workforce” that has brought new ideas and new technologies to the table.

Continued robust funding will help “to markedly improve cancer care, increase cancer survivorship, spur economic growth, and maintain the United States’ position as the global leader in science and medical research,” she added.

The AACR report specifically calls on Congress to:

  • Appropriate at least $51.3 billion in fiscal year 2025 for the base budget of the NIH and at least $7.934 billion for the NCI.
  • Provide $3.6 billion in dedicated funding for Cancer Moonshot activities through fiscal year 2026 in addition to other funding, consistent with the President’s fiscal year 2025 budget.
  • Appropriate at least $472.4 million in fiscal year 2025 for the CDC’s Division of Cancer Prevention to support comprehensive cancer control, central cancer registries, and screening and awareness programs for specific cancers.
  • Allocate $55 million in funding for the Oncology Center of Excellence at FDA in fiscal year 2025 to provide regulators with the staff and tools necessary to conduct expedited review of cancer-related medical products.

By working together with Congress and other stakeholders, “we will be able to accelerate the pace of progress and make major strides toward the lifesaving goal of preventing and curing all cancers at the earliest possible time,” Dr. Foti said. “I believe if we do that ... one day we will win this war on cancer.”

A version of this article first appeared on Medscape.com.

Despite the “remarkable progress” in cancer research and care, cancer remains “an ongoing public health challenge,” which requires significant attention and funding, according to the Cancer Progress Report 2024 from the American Association for Cancer Research (AACR).

The AACR’s 216-page report — an annual endeavor now in its 14th year — focused on the “tremendous” strides made in cancer care, prevention, and early detection and highlighted areas where more research and attention are warranted. 

One key area is funding. For the first time since 2016, federal funding for the National Institutes of Health (NIH) and National Cancer Institute (NCI) decreased in the past year. The cuts followed nearly a decade of funding increases that saw the NIH budget expand by nearly $15 billion, and that allowed for a “rapid pace and broad scope” of advances in cancer, AACR’s chief executive officer Margaret Foti, MD, PhD, said during a press briefing.

These recent cuts “threaten to curtail the medical progress seen in recent years and stymie future advancements,” said Dr. Foti, who called on Congress to commit to funding cancer research at significant and consistent levels to “maintain the momentum of progress against cancer.”
 

Inside the Report: Big Progress

Overall, advances in prevention, early detection, and treatment have helped catch more cancers earlier and save lives. 

According to the AACR report, the age-adjusted overall cancer death rate in the United States fell by 33% between 1991 and 2021, meaning about 4.1 million cancer deaths were averted. The overall cancer death rate for children and adolescents has declined by 24% in the past 2 decades. The 5-year relative survival rate for children diagnosed with cancer in the US has improved from 58% for those diagnosed in the mid-1970s to 85% for those diagnosed between 2013 and 2019.

The past fiscal year has seen many new approvals for cancer drugs, diagnostics, and screening tests. From July 1, 2023, to June 30, 2024, the Food and Drug Administration (FDA) approved 15 new anticancer therapeutics, as well as 15 new indications for previously approved agents, one new imaging agent, several artificial intelligence (AI) tools to improve early cancer detection and diagnosis, and two minimally invasive tests for assessing inherited cancer risk or early cancer detection, according to the report.

“Cancer diagnostics are becoming more sophisticated,” AACR president Patricia M. LoRusso, DO, PhD, said during the briefing. “New technologies, such as spatial transcriptomics, are helping us study tumors at a cellular level, and helping to unveil things that we did not initially even begin to understand or think of. AI-based approaches are beginning to transform cancer detection, diagnosis, clinical decision-making, and treatment response monitoring.” 

The report also highlights the significant progress in many childhood and adolescent/young adult cancers, Dr. LoRusso noted. These include FDA approvals for two new molecularly targeted therapeutics: tovorafenib for children with certain types of brain tumor and repotrectinib for children with a wide array of cancer types that have a specific genetic alteration known as NTRK gene fusion. It also includes an expanded approval for eflornithine to reduce the risk for relapse in children with high-risk neuroblastoma.

“Decades — decades — of basic research discoveries, have led to these clinical breakthroughs,” she stressed. “These gains against cancer are because of the rapid progress in our ability to decode the cancer genome, which has opened new and innovative avenues for drug development.”
 

 

 

The Gaps

Even with progress in cancer prevention, early detection, and treatment, cancer remains a significant issue.

“In 2024, it is estimated that more than 2 million new cases of cancer will be diagnosed in the United States. More than 611,000 people will die from the disease,” according to the report.

The 2024 report shows that incidence rates for some cancers are increasing in the United States, including vaccine-preventable cancers such as human papillomavirus (HPV)–associated oral cancers and, in young adults, cervical cancers. A recent analysis also found that overall cervical cancer incidence among women aged 30-34 years increased by 2.5% a year between 2012 and 2019.

Furthermore, despite clear evidence demonstrating that the HPV vaccine reduces cervical cancer incidence, uptake has remained poor, with only 38.6% of US children and adolescents aged 9-17 years receiving at least one dose of the vaccine in 2022.

Early-onset cancers are also increasing. Rates of breast, colorectal, and other cancers are on the rise in adults younger than 50 years, the report noted.

The report also pointed to data that 40% of all cancer cases in the United States can be attributed to preventable factors, such as smoking, excess body weight, and alcohol. However, our understanding of these risk factors has improved. Excessive levels of alcohol consumption have, for instance, been shown to increase the risk for six different types of cancer: certain types of head and neck cancer, esophageal squamous cell carcinoma, and breast, colorectal, liver, and stomach cancers.

Financial toxicity remains prevalent as well.

The report explains that financial hardship following a cancer diagnosis is widespread, and the effects can last for years. In fact, more than 40% of patients can spend their entire life savings within the first 2 years of cancer treatment. Among adult survivors of childhood cancers, 20.7% had trouble paying their medical bills, 29.9% said they had been sent to debt collection for unpaid bills, 14.1% had forgone medical care, and 26.8% could not afford nutritious meals.

For young cancer survivors, the lifetime costs associated with a diagnosis of cancer are substantial, reaching an average of $259,324 per person.

On a global level, it is estimated that from 2020 to 2050, the cumulative economic burden of cancer will be $25.2 trillion.
 

The Path Forward

Despite these challenges, Dr. LoRusso said, “it is unquestionable that we are in a time of unparalleled opportunities in cancer research.

“I am excited about what the future holds for cancer research, and especially for patient care,” she said. 

However, funding commitments are needed to avoid impeding this momentum and losing a “talented and creative young workforce” that has brought new ideas and new technologies to the table.

Continued robust funding will help “to markedly improve cancer care, increase cancer survivorship, spur economic growth, and maintain the United States’ position as the global leader in science and medical research,” she added.

The AACR report specifically calls on Congress to:

  • Appropriate at least $51.3 billion in fiscal year 2025 for the base budget of the NIH and at least $7.934 billion for the NCI.
  • Provide $3.6 billion in dedicated funding for Cancer Moonshot activities through fiscal year 2026 in addition to other funding, consistent with the President’s fiscal year 2025 budget.
  • Appropriate at least $472.4 million in fiscal year 2025 for the CDC’s Division of Cancer Prevention to support comprehensive cancer control, central cancer registries, and screening and awareness programs for specific cancers.
  • Allocate $55 million in funding for the Oncology Center of Excellence at FDA in fiscal year 2025 to provide regulators with the staff and tools necessary to conduct expedited review of cancer-related medical products.

By working together with Congress and other stakeholders, “we will be able to accelerate the pace of progress and make major strides toward the lifesaving goal of preventing and curing all cancers at the earliest possible time,” Dr. Foti said. “I believe if we do that ... one day we will win this war on cancer.”

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Triptans Trump Newer, More Expensive Meds for Acute Migraine

Article Type
Changed
Mon, 09/30/2024 - 08:58

Four triptans are more effective for acute migraine than newer, more expensive medications for this headache type, new research suggested.

Results of a large systematic review and meta-analysis showed that eletriptan, rizatriptan, sumatriptan, and zolmitriptan were more effective than lasmiditan, rimegepant, and ubrogepant, which investigators found were as effective as nonsteroidal anti-inflammatory drugs (NSAIDs).

International guidelines generally endorse NSAIDs as the first-line treatment for migraine and recommend triptans for moderate to severe episodes or when the response to NSAIDs is insufficient.

However, based on the study’s findings, these four triptans should be considered the treatment of choice for migraine, study investigator Andrea Cipriani, MD, PhD, professor of psychiatry at the University of Oxford in England and director of the Oxford Health Clinical Research Facility, told a press briefing.

The investigators added that these particular triptans should be “included in the WHO [World Health Organization] List of Essential Medicines to promote global accessibility and uniform standards of care.”

The study was published online in The BMJ.
 

Filling the Knowledge Gap

To date, almost all migraine studies have compared migraine drugs with placebo, so there’s a knowledge gap, said Dr. Cipriani. As a result, “there’s no clear consensus among experts and guidelines about which specific drug classes should be prescribed initially, and this is a clinical problem.”

The researchers pointed out that, in recent years, lasmiditan and gepants have been introduced as further treatment options, especially for patients in whom triptans are contraindicated because of their potential vasoconstrictive effects and higher risk for ischemic events.

The analysis included 137 double-blind, randomized, controlled trials that were primarily sponsored by the pharmaceutical industry. It included 89,445 adult outpatients with migraine (mean age, 40.3 years; 85.6% women).

Only drugs licensed for migraine or headache that are recommended in at least one country were included. Researchers divided these 17 drugs into five categories: Antipyretics (paracetamol), ditans (lasmiditan), gepants (rimegepant and ubrogepant), NSAIDs (acetylsalicylic acid, celecoxib, diclofenac potassium, ibuprofen, naproxen sodium, and phenazone), and triptans (almotriptan, eletriptan, frovatriptan, naratriptan, rizatriptan, sumatriptan, and zolmitriptan).

The study’s primary outcomes were freedom from pain at 2 hours and at 2-24 hours, without the use of rescue drugs.

Investigators used sumatriptan as the reference intervention because it is the most commonly prescribed migraine drug and is included in the WHO Model Lists of Essential Medicines.

The study showed all active interventions were better than placebo for pain freedom at 2 hours; with the exception of paracetamol and naratriptan, all were better for sustained pain freedom from 2 to 24 hours.

When the active interventions were compared with each other, eletriptan outperformed other drugs for achieving pain freedom at 2 hours. It was followed by rizatriptan, sumatriptan, and zolmitriptan (odds ratio [OR], 1.35-3.01). For sustained pain freedom up to 24 hours, the most efficacious interventions were eletriptan (OR, 1.41-2.73) and ibuprofen (OR, 3.16-4.82).

As for secondary efficacy outcomes, in head-to-head comparisons, eletriptan was superior to nearly all other active interventions for pain relief at 2 hours and for the use of rescue drugs.

As for adverse events, dizziness was more commonly associated with lasmiditan, eletriptan, sumatriptan, and zolmitriptan, while fatigue and sedation occurred more frequently with eletriptan and lasmiditan. Nausea was more often associated with lasmiditan, sumatriptan, zolmitriptan, and ubrogepant. Eletriptan was the only intervention most frequently associated with chest pain or discomfort.
 

 

 

Need to Update Guidelines?

Considering the new results, Dr. Cipriani and study coauthor Messoud Ashina, MD, PhD, professor of neurology, University of Copenhagen in Denmark, said clinical guidelines for acute migraine management should be updated.

While triptans are contraindicated in patients with vascular disease, the researchers noted that “cerebrovascular events may present primarily as migraine-like headaches, and misdiagnosis of transient ischemic attack and minor stroke as migraine is not rare.”

Recently, lasmiditan, rimegepant, and ubrogepant — which are not associated with vasoconstrictive effects — have been promoted as alternatives in patients for whom triptans are contraindicated or not tolerated. But the high costs of these drugs put them out of reach for some patients, the investigators noted.

Triptans are widely underutilized, Dr. Ashina noted during the press briefing. Current use ranges from 17% to 22% in the United States and from 3% to 22.5% in Europe.

The investigators said that triptans have been shown to be superior and should be promoted globally, adding that the limited access and substantial underutilization of these medications are “missed opportunities to offer more effective treatments.”

The new results underscore the importance of head-to-head trials, which is the gold standard, said Dr. Cipriani.

The investigators noted that the study’s main limitation was the quality of the data, which was deemed to be low, or very low, for most comparisons. Other potential limitations included lack of individual patient data; exclusion of combination drugs; inclusion of only oral treatments; and not considering type of oral formulation, consistency in response across migraine episodes, or cost-effectiveness.

The study also did not cover important clinical issues that might inform treatment decision-making, including drug overuse headache or potential withdrawal symptoms. And the authors were unable to quantify some outcomes, such as global functioning.
 

‘Best Profile’?

Reached for comment, Neurologist Nina Riggins, MD, PhD, Headache Center of Excellence, Palo Alto VA Medical Center in California, praised the authors for a “great job” of bringing attention to the topic.

However, she noted that the investigators’ characterization of the four triptans as having the “best profile” for acute migraine gave her pause.

“Calling triptans the medication with the ‘best profile’ might be not applicable in many cases,” she said. For example, those who need acute medication more than two to three times a week in addition to those with cardiovascular contraindications to triptans may fall outside of that category.

Dr. Riggins said that “it makes sense” that longer-acting triptans like frovatriptan and naratriptan may not rank highly for efficacy within the first 2 hours. However, these agents likely offer a superior therapeutic profile in specific contexts, such as menstrual-related migraine.

In addition, while triptans are known to cause medication overuse headache, this may not be the case with gepants, she noted.

In a release from the Science Media Center, a nonprofit organization promoting voices and views of the scientific community, Eloísa Rubio-Beltrán, PhD, research associate with The Migraine Trust at the Wolfson Sensory, Pain and Regeneration Centre, King’s College London in England, said the findings should affect migraine treatment guidelines.

“As the study highlights, due to their high efficacy and low cost, triptans should be the first-line treatment option for the acute treatment of migraine. These results should inform treatment guidelines and support the inclusion of the best performing triptans into the List of Essential Medicines, to optimize treatment, allowing patients to access more efficacious options,” said Dr. Rubio-Beltrán.

It is also important to note that gepants and ditans were developed to offer alternatives for patients who show no improvement from triptans, she added.

She pointed out that these medications were not developed as a substitute for triptans, but rather to expand the number of treatment options for migraine.

“Nonetheless,” she added, “this study highlights the need for further research on the pathophysiology of migraine, which will allow the discovery of novel targets, and thus, novel treatments options that will benefit all patient populations.”

The study was funded by the NIHR Oxford Health Biomedical Research Centre and the Lundbeck Foundation. Dr. Cipriani reported receiving research, educational, and consultancy fees from Italian Network for Pediatric Clinical Trials, Fondazione Cariplo, Lundbeck, and Angelini Pharma. Dr. Ashina is a consultant, speaker, or scientific adviser for AbbVie, Amgen, AstraZeneca, Eli Lilly, GSK, Lundbeck, Novartis, Pfizer, and Teva; is the past president of the International Headache Society; and an associate editor of The Journal of Headache and Pain and Brain. Dr. Riggins has consulted for Gerson Lehrman Group; participated in compensated work with AcademicCME and Association of Migraine Disorders; was a principal investigator on research with electroCore, Theranica, and Eli Lilly; serves on advisory boards for Theranica, Teva, Lundbeck, Amneal Pharmaceuticals, NeurologyLive, and Miles for Migraine; and is a project advisor for Clinical Awareness Initiative with Clinical Neurological Society of America. Dr. Rubio-Beltrán reported serving as a junior editorial board member of The Journal of Headache and Pain and a junior representative of the International Headache Society; receiving research support from The Migraine Trust, Eli Lilly, CoLucid Pharmaceuticals, Amgen, Novartis, and Kallyope; and receiving travel support from CoLucid Pharmaceuticals, Allergan, and Novartis.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Four triptans are more effective for acute migraine than newer, more expensive medications for this headache type, new research suggested.

Results of a large systematic review and meta-analysis showed that eletriptan, rizatriptan, sumatriptan, and zolmitriptan were more effective than lasmiditan, rimegepant, and ubrogepant, which investigators found were as effective as nonsteroidal anti-inflammatory drugs (NSAIDs).

International guidelines generally endorse NSAIDs as the first-line treatment for migraine and recommend triptans for moderate to severe episodes or when the response to NSAIDs is insufficient.

However, based on the study’s findings, these four triptans should be considered the treatment of choice for migraine, study investigator Andrea Cipriani, MD, PhD, professor of psychiatry at the University of Oxford in England and director of the Oxford Health Clinical Research Facility, told a press briefing.

The investigators added that these particular triptans should be “included in the WHO [World Health Organization] List of Essential Medicines to promote global accessibility and uniform standards of care.”

The study was published online in The BMJ.
 

Filling the Knowledge Gap

To date, almost all migraine studies have compared migraine drugs with placebo, so there’s a knowledge gap, said Dr. Cipriani. As a result, “there’s no clear consensus among experts and guidelines about which specific drug classes should be prescribed initially, and this is a clinical problem.”

The researchers pointed out that, in recent years, lasmiditan and gepants have been introduced as further treatment options, especially for patients in whom triptans are contraindicated because of their potential vasoconstrictive effects and higher risk for ischemic events.

The analysis included 137 double-blind, randomized, controlled trials that were primarily sponsored by the pharmaceutical industry. It included 89,445 adult outpatients with migraine (mean age, 40.3 years; 85.6% women).

Only drugs licensed for migraine or headache that are recommended in at least one country were included. Researchers divided these 17 drugs into five categories: Antipyretics (paracetamol), ditans (lasmiditan), gepants (rimegepant and ubrogepant), NSAIDs (acetylsalicylic acid, celecoxib, diclofenac potassium, ibuprofen, naproxen sodium, and phenazone), and triptans (almotriptan, eletriptan, frovatriptan, naratriptan, rizatriptan, sumatriptan, and zolmitriptan).

The study’s primary outcomes were freedom from pain at 2 hours and at 2-24 hours, without the use of rescue drugs.

Investigators used sumatriptan as the reference intervention because it is the most commonly prescribed migraine drug and is included in the WHO Model Lists of Essential Medicines.

The study showed all active interventions were better than placebo for pain freedom at 2 hours; with the exception of paracetamol and naratriptan, all were better for sustained pain freedom from 2 to 24 hours.

When the active interventions were compared with each other, eletriptan outperformed other drugs for achieving pain freedom at 2 hours. It was followed by rizatriptan, sumatriptan, and zolmitriptan (odds ratio [OR], 1.35-3.01). For sustained pain freedom up to 24 hours, the most efficacious interventions were eletriptan (OR, 1.41-2.73) and ibuprofen (OR, 3.16-4.82).

As for secondary efficacy outcomes, in head-to-head comparisons, eletriptan was superior to nearly all other active interventions for pain relief at 2 hours and for the use of rescue drugs.

As for adverse events, dizziness was more commonly associated with lasmiditan, eletriptan, sumatriptan, and zolmitriptan, while fatigue and sedation occurred more frequently with eletriptan and lasmiditan. Nausea was more often associated with lasmiditan, sumatriptan, zolmitriptan, and ubrogepant. Eletriptan was the only intervention most frequently associated with chest pain or discomfort.
 

 

 

Need to Update Guidelines?

Considering the new results, Dr. Cipriani and study coauthor Messoud Ashina, MD, PhD, professor of neurology, University of Copenhagen in Denmark, said clinical guidelines for acute migraine management should be updated.

While triptans are contraindicated in patients with vascular disease, the researchers noted that “cerebrovascular events may present primarily as migraine-like headaches, and misdiagnosis of transient ischemic attack and minor stroke as migraine is not rare.”

Recently, lasmiditan, rimegepant, and ubrogepant — which are not associated with vasoconstrictive effects — have been promoted as alternatives in patients for whom triptans are contraindicated or not tolerated. But the high costs of these drugs put them out of reach for some patients, the investigators noted.

Triptans are widely underutilized, Dr. Ashina noted during the press briefing. Current use ranges from 17% to 22% in the United States and from 3% to 22.5% in Europe.

The investigators said that triptans have been shown to be superior and should be promoted globally, adding that the limited access and substantial underutilization of these medications are “missed opportunities to offer more effective treatments.”

The new results underscore the importance of head-to-head trials, which is the gold standard, said Dr. Cipriani.

The investigators noted that the study’s main limitation was the quality of the data, which was deemed to be low, or very low, for most comparisons. Other potential limitations included lack of individual patient data; exclusion of combination drugs; inclusion of only oral treatments; and not considering type of oral formulation, consistency in response across migraine episodes, or cost-effectiveness.

The study also did not cover important clinical issues that might inform treatment decision-making, including drug overuse headache or potential withdrawal symptoms. And the authors were unable to quantify some outcomes, such as global functioning.
 

‘Best Profile’?

Reached for comment, Neurologist Nina Riggins, MD, PhD, Headache Center of Excellence, Palo Alto VA Medical Center in California, praised the authors for a “great job” of bringing attention to the topic.

However, she noted that the investigators’ characterization of the four triptans as having the “best profile” for acute migraine gave her pause.

“Calling triptans the medication with the ‘best profile’ might be not applicable in many cases,” she said. For example, those who need acute medication more than two to three times a week in addition to those with cardiovascular contraindications to triptans may fall outside of that category.

Dr. Riggins said that “it makes sense” that longer-acting triptans like frovatriptan and naratriptan may not rank highly for efficacy within the first 2 hours. However, these agents likely offer a superior therapeutic profile in specific contexts, such as menstrual-related migraine.

In addition, while triptans are known to cause medication overuse headache, this may not be the case with gepants, she noted.

In a release from the Science Media Center, a nonprofit organization promoting voices and views of the scientific community, Eloísa Rubio-Beltrán, PhD, research associate with The Migraine Trust at the Wolfson Sensory, Pain and Regeneration Centre, King’s College London in England, said the findings should affect migraine treatment guidelines.

“As the study highlights, due to their high efficacy and low cost, triptans should be the first-line treatment option for the acute treatment of migraine. These results should inform treatment guidelines and support the inclusion of the best performing triptans into the List of Essential Medicines, to optimize treatment, allowing patients to access more efficacious options,” said Dr. Rubio-Beltrán.

It is also important to note that gepants and ditans were developed to offer alternatives for patients who show no improvement from triptans, she added.

She pointed out that these medications were not developed as a substitute for triptans, but rather to expand the number of treatment options for migraine.

“Nonetheless,” she added, “this study highlights the need for further research on the pathophysiology of migraine, which will allow the discovery of novel targets, and thus, novel treatments options that will benefit all patient populations.”

The study was funded by the NIHR Oxford Health Biomedical Research Centre and the Lundbeck Foundation. Dr. Cipriani reported receiving research, educational, and consultancy fees from Italian Network for Pediatric Clinical Trials, Fondazione Cariplo, Lundbeck, and Angelini Pharma. Dr. Ashina is a consultant, speaker, or scientific adviser for AbbVie, Amgen, AstraZeneca, Eli Lilly, GSK, Lundbeck, Novartis, Pfizer, and Teva; is the past president of the International Headache Society; and an associate editor of The Journal of Headache and Pain and Brain. Dr. Riggins has consulted for Gerson Lehrman Group; participated in compensated work with AcademicCME and Association of Migraine Disorders; was a principal investigator on research with electroCore, Theranica, and Eli Lilly; serves on advisory boards for Theranica, Teva, Lundbeck, Amneal Pharmaceuticals, NeurologyLive, and Miles for Migraine; and is a project advisor for Clinical Awareness Initiative with Clinical Neurological Society of America. Dr. Rubio-Beltrán reported serving as a junior editorial board member of The Journal of Headache and Pain and a junior representative of the International Headache Society; receiving research support from The Migraine Trust, Eli Lilly, CoLucid Pharmaceuticals, Amgen, Novartis, and Kallyope; and receiving travel support from CoLucid Pharmaceuticals, Allergan, and Novartis.

A version of this article first appeared on Medscape.com.

Four triptans are more effective for acute migraine than newer, more expensive medications for this headache type, new research suggested.

Results of a large systematic review and meta-analysis showed that eletriptan, rizatriptan, sumatriptan, and zolmitriptan were more effective than lasmiditan, rimegepant, and ubrogepant, which investigators found were as effective as nonsteroidal anti-inflammatory drugs (NSAIDs).

International guidelines generally endorse NSAIDs as the first-line treatment for migraine and recommend triptans for moderate to severe episodes or when the response to NSAIDs is insufficient.

However, based on the study’s findings, these four triptans should be considered the treatment of choice for migraine, study investigator Andrea Cipriani, MD, PhD, professor of psychiatry at the University of Oxford in England and director of the Oxford Health Clinical Research Facility, told a press briefing.

The investigators added that these particular triptans should be “included in the WHO [World Health Organization] List of Essential Medicines to promote global accessibility and uniform standards of care.”

The study was published online in The BMJ.
 

Filling the Knowledge Gap

To date, almost all migraine studies have compared migraine drugs with placebo, so there’s a knowledge gap, said Dr. Cipriani. As a result, “there’s no clear consensus among experts and guidelines about which specific drug classes should be prescribed initially, and this is a clinical problem.”

The researchers pointed out that, in recent years, lasmiditan and gepants have been introduced as further treatment options, especially for patients in whom triptans are contraindicated because of their potential vasoconstrictive effects and higher risk for ischemic events.

The analysis included 137 double-blind, randomized, controlled trials that were primarily sponsored by the pharmaceutical industry. It included 89,445 adult outpatients with migraine (mean age, 40.3 years; 85.6% women).

Only drugs licensed for migraine or headache that are recommended in at least one country were included. Researchers divided these 17 drugs into five categories: Antipyretics (paracetamol), ditans (lasmiditan), gepants (rimegepant and ubrogepant), NSAIDs (acetylsalicylic acid, celecoxib, diclofenac potassium, ibuprofen, naproxen sodium, and phenazone), and triptans (almotriptan, eletriptan, frovatriptan, naratriptan, rizatriptan, sumatriptan, and zolmitriptan).

The study’s primary outcomes were freedom from pain at 2 hours and at 2-24 hours, without the use of rescue drugs.

Investigators used sumatriptan as the reference intervention because it is the most commonly prescribed migraine drug and is included in the WHO Model Lists of Essential Medicines.

The study showed all active interventions were better than placebo for pain freedom at 2 hours; with the exception of paracetamol and naratriptan, all were better for sustained pain freedom from 2 to 24 hours.

When the active interventions were compared with each other, eletriptan outperformed other drugs for achieving pain freedom at 2 hours. It was followed by rizatriptan, sumatriptan, and zolmitriptan (odds ratio [OR], 1.35-3.01). For sustained pain freedom up to 24 hours, the most efficacious interventions were eletriptan (OR, 1.41-2.73) and ibuprofen (OR, 3.16-4.82).

As for secondary efficacy outcomes, in head-to-head comparisons, eletriptan was superior to nearly all other active interventions for pain relief at 2 hours and for the use of rescue drugs.

As for adverse events, dizziness was more commonly associated with lasmiditan, eletriptan, sumatriptan, and zolmitriptan, while fatigue and sedation occurred more frequently with eletriptan and lasmiditan. Nausea was more often associated with lasmiditan, sumatriptan, zolmitriptan, and ubrogepant. Eletriptan was the only intervention most frequently associated with chest pain or discomfort.
 

 

 

Need to Update Guidelines?

Considering the new results, Dr. Cipriani and study coauthor Messoud Ashina, MD, PhD, professor of neurology, University of Copenhagen in Denmark, said clinical guidelines for acute migraine management should be updated.

While triptans are contraindicated in patients with vascular disease, the researchers noted that “cerebrovascular events may present primarily as migraine-like headaches, and misdiagnosis of transient ischemic attack and minor stroke as migraine is not rare.”

Recently, lasmiditan, rimegepant, and ubrogepant — which are not associated with vasoconstrictive effects — have been promoted as alternatives in patients for whom triptans are contraindicated or not tolerated. But the high costs of these drugs put them out of reach for some patients, the investigators noted.

Triptans are widely underutilized, Dr. Ashina noted during the press briefing. Current use ranges from 17% to 22% in the United States and from 3% to 22.5% in Europe.

The investigators said that triptans have been shown to be superior and should be promoted globally, adding that the limited access and substantial underutilization of these medications are “missed opportunities to offer more effective treatments.”

The new results underscore the importance of head-to-head trials, which is the gold standard, said Dr. Cipriani.

The investigators noted that the study’s main limitation was the quality of the data, which was deemed to be low, or very low, for most comparisons. Other potential limitations included lack of individual patient data; exclusion of combination drugs; inclusion of only oral treatments; and not considering type of oral formulation, consistency in response across migraine episodes, or cost-effectiveness.

The study also did not cover important clinical issues that might inform treatment decision-making, including drug overuse headache or potential withdrawal symptoms. And the authors were unable to quantify some outcomes, such as global functioning.
 

‘Best Profile’?

Reached for comment, Neurologist Nina Riggins, MD, PhD, Headache Center of Excellence, Palo Alto VA Medical Center in California, praised the authors for a “great job” of bringing attention to the topic.

However, she noted that the investigators’ characterization of the four triptans as having the “best profile” for acute migraine gave her pause.

“Calling triptans the medication with the ‘best profile’ might be not applicable in many cases,” she said. For example, those who need acute medication more than two to three times a week in addition to those with cardiovascular contraindications to triptans may fall outside of that category.

Dr. Riggins said that “it makes sense” that longer-acting triptans like frovatriptan and naratriptan may not rank highly for efficacy within the first 2 hours. However, these agents likely offer a superior therapeutic profile in specific contexts, such as menstrual-related migraine.

In addition, while triptans are known to cause medication overuse headache, this may not be the case with gepants, she noted.

In a release from the Science Media Center, a nonprofit organization promoting voices and views of the scientific community, Eloísa Rubio-Beltrán, PhD, research associate with The Migraine Trust at the Wolfson Sensory, Pain and Regeneration Centre, King’s College London in England, said the findings should affect migraine treatment guidelines.

“As the study highlights, due to their high efficacy and low cost, triptans should be the first-line treatment option for the acute treatment of migraine. These results should inform treatment guidelines and support the inclusion of the best performing triptans into the List of Essential Medicines, to optimize treatment, allowing patients to access more efficacious options,” said Dr. Rubio-Beltrán.

It is also important to note that gepants and ditans were developed to offer alternatives for patients who show no improvement from triptans, she added.

She pointed out that these medications were not developed as a substitute for triptans, but rather to expand the number of treatment options for migraine.

“Nonetheless,” she added, “this study highlights the need for further research on the pathophysiology of migraine, which will allow the discovery of novel targets, and thus, novel treatments options that will benefit all patient populations.”

The study was funded by the NIHR Oxford Health Biomedical Research Centre and the Lundbeck Foundation. Dr. Cipriani reported receiving research, educational, and consultancy fees from Italian Network for Pediatric Clinical Trials, Fondazione Cariplo, Lundbeck, and Angelini Pharma. Dr. Ashina is a consultant, speaker, or scientific adviser for AbbVie, Amgen, AstraZeneca, Eli Lilly, GSK, Lundbeck, Novartis, Pfizer, and Teva; is the past president of the International Headache Society; and an associate editor of The Journal of Headache and Pain and Brain. Dr. Riggins has consulted for Gerson Lehrman Group; participated in compensated work with AcademicCME and Association of Migraine Disorders; was a principal investigator on research with electroCore, Theranica, and Eli Lilly; serves on advisory boards for Theranica, Teva, Lundbeck, Amneal Pharmaceuticals, NeurologyLive, and Miles for Migraine; and is a project advisor for Clinical Awareness Initiative with Clinical Neurological Society of America. Dr. Rubio-Beltrán reported serving as a junior editorial board member of The Journal of Headache and Pain and a junior representative of the International Headache Society; receiving research support from The Migraine Trust, Eli Lilly, CoLucid Pharmaceuticals, Amgen, Novartis, and Kallyope; and receiving travel support from CoLucid Pharmaceuticals, Allergan, and Novartis.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM THE BMJ

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Can Antihistamines Trigger Seizures in Young Kids?

Article Type
Changed
Tue, 09/10/2024 - 14:59

 

TOPLINE:

First-generation antihistamines are linked to a 22% higher risk for seizures in children, new research shows. The risk appears to be most pronounced in children aged 6-24 months.

METHODOLOGY:

  • Researchers in Korea used a self-controlled case-crossover design to assess the risk for seizures associated with prescriptions of first-generation antihistamines.
  • They analyzed data from 11,729 children who had a seizure event (an emergency department visit with a diagnosis of epilepsy, status epilepticus, or convulsion) and had previously received a prescription for a first-generation antihistamine, including chlorpheniramine maleate, mequitazine, oxatomide, piprinhydrinate, or hydroxyzine hydrochloride.
  • Prescriptions during the 15 days before a seizure were considered to have been received during a hazard period, whereas earlier prescriptions were considered to have been received during a control period.
  • The researchers excluded patients with febrile seizures.

TAKEAWAY:

  • In an adjusted analysis, a prescription for an antihistamine during the hazard period was associated with a 22% higher risk for seizures in children (adjusted odds ratio, 1.22; 95% CI, 1.13-1.31).
  • The seizure risk was significant in children aged 6-24 months, with an adjusted odds ratio of 1.49 (95% CI, 1.31-1.70).
  • For older children, the risk was not statistically significant.

IN PRACTICE:

“The study underscores a substantial increase in seizure risk associated with antihistamine prescription among children aged 6-24 months,” the authors of the study wrote. “We are not aware of any other studies that have pointed out the increased risk of seizures with first-generation antihistamines in this particular age group. ... The benefits and risks of antihistamine use should always be carefully considered, especially when prescribing H1 antihistamines to vulnerable infants.”

The findings raise a host of questions for clinicians, including how a “relatively small risk” should translate into practice, and whether the risk may be attenuated with newer antihistamines, wrote Frank Max Charles Besag, MB, ChB, with East London NHS Foundation Trust in England, in an editorial accompanying the study. “It would be reasonable to inform families that at least one study has suggested a relatively small increase in the risk of seizures with first-generation antihistamines, adding that there are still too few data to draw any firm conclusions and also providing families with the information on what to do if the child were to have a seizure.” 
 

SOURCE:

Seonkyeong Rhie, MD, and Man Yong Han, MD, both with the Department of Pediatrics at CHA University School of Medicine, in Seongnam, South Korea, were the corresponding authors on the study. The research was published online in JAMA Network Open.

LIMITATIONS:

The researchers did not have details about seizure symptoms, did not include children seen in outpatient clinics, and were unable to verify the actual intake of the prescribed antihistamines. Although second-generation antihistamines may be less likely to cross the blood-brain barrier, one newer medication, desloratadine, has been associated with seizures.

DISCLOSURES:

The study was supported by grants from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute, the Ministry of Health and Welfare, Republic of Korea.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

First-generation antihistamines are linked to a 22% higher risk for seizures in children, new research shows. The risk appears to be most pronounced in children aged 6-24 months.

METHODOLOGY:

  • Researchers in Korea used a self-controlled case-crossover design to assess the risk for seizures associated with prescriptions of first-generation antihistamines.
  • They analyzed data from 11,729 children who had a seizure event (an emergency department visit with a diagnosis of epilepsy, status epilepticus, or convulsion) and had previously received a prescription for a first-generation antihistamine, including chlorpheniramine maleate, mequitazine, oxatomide, piprinhydrinate, or hydroxyzine hydrochloride.
  • Prescriptions during the 15 days before a seizure were considered to have been received during a hazard period, whereas earlier prescriptions were considered to have been received during a control period.
  • The researchers excluded patients with febrile seizures.

TAKEAWAY:

  • In an adjusted analysis, a prescription for an antihistamine during the hazard period was associated with a 22% higher risk for seizures in children (adjusted odds ratio, 1.22; 95% CI, 1.13-1.31).
  • The seizure risk was significant in children aged 6-24 months, with an adjusted odds ratio of 1.49 (95% CI, 1.31-1.70).
  • For older children, the risk was not statistically significant.

IN PRACTICE:

“The study underscores a substantial increase in seizure risk associated with antihistamine prescription among children aged 6-24 months,” the authors of the study wrote. “We are not aware of any other studies that have pointed out the increased risk of seizures with first-generation antihistamines in this particular age group. ... The benefits and risks of antihistamine use should always be carefully considered, especially when prescribing H1 antihistamines to vulnerable infants.”

The findings raise a host of questions for clinicians, including how a “relatively small risk” should translate into practice, and whether the risk may be attenuated with newer antihistamines, wrote Frank Max Charles Besag, MB, ChB, with East London NHS Foundation Trust in England, in an editorial accompanying the study. “It would be reasonable to inform families that at least one study has suggested a relatively small increase in the risk of seizures with first-generation antihistamines, adding that there are still too few data to draw any firm conclusions and also providing families with the information on what to do if the child were to have a seizure.” 
 

SOURCE:

Seonkyeong Rhie, MD, and Man Yong Han, MD, both with the Department of Pediatrics at CHA University School of Medicine, in Seongnam, South Korea, were the corresponding authors on the study. The research was published online in JAMA Network Open.

LIMITATIONS:

The researchers did not have details about seizure symptoms, did not include children seen in outpatient clinics, and were unable to verify the actual intake of the prescribed antihistamines. Although second-generation antihistamines may be less likely to cross the blood-brain barrier, one newer medication, desloratadine, has been associated with seizures.

DISCLOSURES:

The study was supported by grants from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute, the Ministry of Health and Welfare, Republic of Korea.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE:

First-generation antihistamines are linked to a 22% higher risk for seizures in children, new research shows. The risk appears to be most pronounced in children aged 6-24 months.

METHODOLOGY:

  • Researchers in Korea used a self-controlled case-crossover design to assess the risk for seizures associated with prescriptions of first-generation antihistamines.
  • They analyzed data from 11,729 children who had a seizure event (an emergency department visit with a diagnosis of epilepsy, status epilepticus, or convulsion) and had previously received a prescription for a first-generation antihistamine, including chlorpheniramine maleate, mequitazine, oxatomide, piprinhydrinate, or hydroxyzine hydrochloride.
  • Prescriptions during the 15 days before a seizure were considered to have been received during a hazard period, whereas earlier prescriptions were considered to have been received during a control period.
  • The researchers excluded patients with febrile seizures.

TAKEAWAY:

  • In an adjusted analysis, a prescription for an antihistamine during the hazard period was associated with a 22% higher risk for seizures in children (adjusted odds ratio, 1.22; 95% CI, 1.13-1.31).
  • The seizure risk was significant in children aged 6-24 months, with an adjusted odds ratio of 1.49 (95% CI, 1.31-1.70).
  • For older children, the risk was not statistically significant.

IN PRACTICE:

“The study underscores a substantial increase in seizure risk associated with antihistamine prescription among children aged 6-24 months,” the authors of the study wrote. “We are not aware of any other studies that have pointed out the increased risk of seizures with first-generation antihistamines in this particular age group. ... The benefits and risks of antihistamine use should always be carefully considered, especially when prescribing H1 antihistamines to vulnerable infants.”

The findings raise a host of questions for clinicians, including how a “relatively small risk” should translate into practice, and whether the risk may be attenuated with newer antihistamines, wrote Frank Max Charles Besag, MB, ChB, with East London NHS Foundation Trust in England, in an editorial accompanying the study. “It would be reasonable to inform families that at least one study has suggested a relatively small increase in the risk of seizures with first-generation antihistamines, adding that there are still too few data to draw any firm conclusions and also providing families with the information on what to do if the child were to have a seizure.” 
 

SOURCE:

Seonkyeong Rhie, MD, and Man Yong Han, MD, both with the Department of Pediatrics at CHA University School of Medicine, in Seongnam, South Korea, were the corresponding authors on the study. The research was published online in JAMA Network Open.

LIMITATIONS:

The researchers did not have details about seizure symptoms, did not include children seen in outpatient clinics, and were unable to verify the actual intake of the prescribed antihistamines. Although second-generation antihistamines may be less likely to cross the blood-brain barrier, one newer medication, desloratadine, has been associated with seizures.

DISCLOSURES:

The study was supported by grants from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute, the Ministry of Health and Welfare, Republic of Korea.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

The Link Between Vision Impairment and Dementia in Older Adults

Article Type
Changed
Tue, 09/17/2024 - 10:48

 

TOPLINE:

Addressing vision impairments could help with dementia prevention, as vision impairment is linked to 19% of dementia cases in older adults.
 

METHODOLOGY:

  • Researchers conducted a cross-sectional analysis using data from the National Health and Aging Trends Study (NHATS).
  • The analysis included 2767 US adults aged 71 years or older (54.7% female and 45.3% male).
  • Vision impairments were defined using 2019 World Health Organization criteria. Near and distance vision impairments were defined as greater than 0.30 logMAR, and contrast sensitivity impairment was identified by scores below 1.55 logCS.
  • Dementia was classified using a standardized algorithm developed in NHATS, which incorporated a series of tests measuring cognition, memory and orientation, reports of Alzheimer’s disease, or a dementia diagnosis from the patient or a proxy, and an informant questionnaire (Ascertain Dementia-8 Dementia Screening Interview).
  • The study analyzed data from 2021, with the primary outcome being the population attributable fraction (PAF) of dementia from vision impairment.

TAKEAWAY:

  • The PAF of dementia associated with at least one vision impairment was 19% (95% CI, 8.2-29.7).
  • Impairment in contrast sensitivity had the highest PAF among all other vision issues, at 15% (95% CI, 6.6-23.6). This figure was higher than that for impairment of near acuity, at 9.7% (95% CI, 2.6-17.0), or distance acuity, at 4.9% (95% CI, 0.1-9.9).
  • The highest PAFs for dementia due to vision impairment was among participants aged 71-79 years (24.3%; 95% CI, 6.6-41.8), women (26.8%; 95% CI, 12.2-39.9), and non-Hispanic White participants (22.3%; 95% CI, 9.6-34.5).

IN PRACTICE:

“While not proving a cause-and-effect relationship, these findings support inclusion of multiple objective measures of vision impairments, including contrast sensitivity and visual acuity, to capture the total potential impact of addressing vision impairment on dementia,” study authors wrote.

SOURCE:

This study was led by Jason R. Smith, ScM, of the Department of Epidemiology at the Johns Hopkins Bloomberg School of Public Health in Baltimore. It was published online in JAMA Ophthalmology.

LIMITATIONS:

The limited sample sizes for American Indian, Alaska Native, Asian, and Hispanic groups prevented researchers from calculating PAFs for these populations. The cross-sectional design prevented the researchers from examining the timing of vision impairment in relation to a diagnosis of dementia. The study did not explore links between other measures of vision and dementia. Those with early cognitive impairment may not have updated glasses, affecting visual performance. The findings from the study may not apply to institutionalized older adults.

DISCLOSURES:

Jennifer A. Deal, PhD, MHS, reported receiving personal fees from Frontiers in Epidemiology, Velux Stiftung, and Medical Education Speakers Network outside the submitted work. Nicholas S. Reed, AuD, PhD, reported receiving stock options from Neosensory outside the submitted work. No other disclosures were reported.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Addressing vision impairments could help with dementia prevention, as vision impairment is linked to 19% of dementia cases in older adults.
 

METHODOLOGY:

  • Researchers conducted a cross-sectional analysis using data from the National Health and Aging Trends Study (NHATS).
  • The analysis included 2767 US adults aged 71 years or older (54.7% female and 45.3% male).
  • Vision impairments were defined using 2019 World Health Organization criteria. Near and distance vision impairments were defined as greater than 0.30 logMAR, and contrast sensitivity impairment was identified by scores below 1.55 logCS.
  • Dementia was classified using a standardized algorithm developed in NHATS, which incorporated a series of tests measuring cognition, memory and orientation, reports of Alzheimer’s disease, or a dementia diagnosis from the patient or a proxy, and an informant questionnaire (Ascertain Dementia-8 Dementia Screening Interview).
  • The study analyzed data from 2021, with the primary outcome being the population attributable fraction (PAF) of dementia from vision impairment.

TAKEAWAY:

  • The PAF of dementia associated with at least one vision impairment was 19% (95% CI, 8.2-29.7).
  • Impairment in contrast sensitivity had the highest PAF among all other vision issues, at 15% (95% CI, 6.6-23.6). This figure was higher than that for impairment of near acuity, at 9.7% (95% CI, 2.6-17.0), or distance acuity, at 4.9% (95% CI, 0.1-9.9).
  • The highest PAFs for dementia due to vision impairment was among participants aged 71-79 years (24.3%; 95% CI, 6.6-41.8), women (26.8%; 95% CI, 12.2-39.9), and non-Hispanic White participants (22.3%; 95% CI, 9.6-34.5).

IN PRACTICE:

“While not proving a cause-and-effect relationship, these findings support inclusion of multiple objective measures of vision impairments, including contrast sensitivity and visual acuity, to capture the total potential impact of addressing vision impairment on dementia,” study authors wrote.

SOURCE:

This study was led by Jason R. Smith, ScM, of the Department of Epidemiology at the Johns Hopkins Bloomberg School of Public Health in Baltimore. It was published online in JAMA Ophthalmology.

LIMITATIONS:

The limited sample sizes for American Indian, Alaska Native, Asian, and Hispanic groups prevented researchers from calculating PAFs for these populations. The cross-sectional design prevented the researchers from examining the timing of vision impairment in relation to a diagnosis of dementia. The study did not explore links between other measures of vision and dementia. Those with early cognitive impairment may not have updated glasses, affecting visual performance. The findings from the study may not apply to institutionalized older adults.

DISCLOSURES:

Jennifer A. Deal, PhD, MHS, reported receiving personal fees from Frontiers in Epidemiology, Velux Stiftung, and Medical Education Speakers Network outside the submitted work. Nicholas S. Reed, AuD, PhD, reported receiving stock options from Neosensory outside the submitted work. No other disclosures were reported.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.A version of this article appeared on Medscape.com.

 

TOPLINE:

Addressing vision impairments could help with dementia prevention, as vision impairment is linked to 19% of dementia cases in older adults.
 

METHODOLOGY:

  • Researchers conducted a cross-sectional analysis using data from the National Health and Aging Trends Study (NHATS).
  • The analysis included 2767 US adults aged 71 years or older (54.7% female and 45.3% male).
  • Vision impairments were defined using 2019 World Health Organization criteria. Near and distance vision impairments were defined as greater than 0.30 logMAR, and contrast sensitivity impairment was identified by scores below 1.55 logCS.
  • Dementia was classified using a standardized algorithm developed in NHATS, which incorporated a series of tests measuring cognition, memory and orientation, reports of Alzheimer’s disease, or a dementia diagnosis from the patient or a proxy, and an informant questionnaire (Ascertain Dementia-8 Dementia Screening Interview).
  • The study analyzed data from 2021, with the primary outcome being the population attributable fraction (PAF) of dementia from vision impairment.

TAKEAWAY:

  • The PAF of dementia associated with at least one vision impairment was 19% (95% CI, 8.2-29.7).
  • Impairment in contrast sensitivity had the highest PAF among all other vision issues, at 15% (95% CI, 6.6-23.6). This figure was higher than that for impairment of near acuity, at 9.7% (95% CI, 2.6-17.0), or distance acuity, at 4.9% (95% CI, 0.1-9.9).
  • The highest PAFs for dementia due to vision impairment was among participants aged 71-79 years (24.3%; 95% CI, 6.6-41.8), women (26.8%; 95% CI, 12.2-39.9), and non-Hispanic White participants (22.3%; 95% CI, 9.6-34.5).

IN PRACTICE:

“While not proving a cause-and-effect relationship, these findings support inclusion of multiple objective measures of vision impairments, including contrast sensitivity and visual acuity, to capture the total potential impact of addressing vision impairment on dementia,” study authors wrote.

SOURCE:

This study was led by Jason R. Smith, ScM, of the Department of Epidemiology at the Johns Hopkins Bloomberg School of Public Health in Baltimore. It was published online in JAMA Ophthalmology.

LIMITATIONS:

The limited sample sizes for American Indian, Alaska Native, Asian, and Hispanic groups prevented researchers from calculating PAFs for these populations. The cross-sectional design prevented the researchers from examining the timing of vision impairment in relation to a diagnosis of dementia. The study did not explore links between other measures of vision and dementia. Those with early cognitive impairment may not have updated glasses, affecting visual performance. The findings from the study may not apply to institutionalized older adults.

DISCLOSURES:

Jennifer A. Deal, PhD, MHS, reported receiving personal fees from Frontiers in Epidemiology, Velux Stiftung, and Medical Education Speakers Network outside the submitted work. Nicholas S. Reed, AuD, PhD, reported receiving stock options from Neosensory outside the submitted work. No other disclosures were reported.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Does MS Protect Against Alzheimer’s Disease?

Article Type
Changed
Mon, 09/09/2024 - 10:09

 

In a recent study, patients with multiple sclerosis (MS) had half the rate of amyloid beta pathology versus matched controls without MS, supporting authors’ suspicion that MS may protect against Alzheimer’s disease. Understanding how MS does this may drive new treatment strategies, said the authors of the study, which was published online in Annals of Neurology. Regarding current treatments, they added, the availability of new disease-modifying Alzheimer’s disease therapies increases the importance of early diagnosis in cognitively impaired people including those with MS.

Confirmatory Studies Needed

“Replication and confirmation of these findings, including in studies representative of the real-world Alzheimer’s population in race/ethnicity and sex/gender, are needed before any clinical implications can be drawn,” said Claire Sexton, DPhil, Alzheimer’s Association senior director of scientific programs and outreach. She was not involved with the study but was asked to comment.

The study’s most important immediate implication, said Dr. Sexton, is that it “opens the door to questions about why MS may be associated with Alzheimer’s risk.”

Alzheimer's Association
Dr. Claire Sexton

 

Anecdotal Observation

Although life expectancy for people with MS is increasing, the authors, led by Matthew R. Brier, MD, PhD, an assistant professor at Washington University in St. Louis, Missouri, said they have seen no concomitant rise in Alzheimer’s disease dementia among their patients with MS. This anecdotal observation fueled their hypothesis that Alzheimer’s disease pathology occurs less frequently in this population.

To test their hypothesis, the investigators sequentially enrolled 100 patients with MS (age 60 years or older), along with 300 non-MS controls matched for age, sex, apolipoprotein E (apoE) proteotype, and cognitive status. All participants underwent the Mini-Mental State Examination (MMSE) and PrecivityAD2 (C2N Diagnostics) blood testing.

Washngton University
Dr. Matthew R. Brier


Overall, patients with MS had lower p-tau217 (t = 3.76, P = .00019) and amyloid probability score 2 (APS2; t = 3.83, P = .00015) ratios than did those without MS. APS2 combines p-tau217 ratio with Abeta42/40 ratio. In addition, APS2 and p-tau217 ratios were lower in patients with MS and ApoE3/apoE3 or apoE3/apoE4 proteotype. MMSE scores were also slightly lower in the MS cohort: 27.6 versus 28.44 for controls. Of 11 patients with MS who underwent Pittsburgh Compound B (PiB) positron emission tomography (PET), nine had congruent PiB PET and plasma results.

When the investigators applied clinical cutoffs, 7.1% of patients with MS were APS2-positive, versus 15.3% of controls (P = .0043). The corresponding figures for p-tau217 ratio positivity were 9% and 18.3%, respectively (P = .0024). Mean Abeta42/40 scores showed no difference between groups.

Patients with MS and positive amyloid biomarkers often had atypical MS features at diagnosis. Compared with biomarker-negative patients with MS, odds ratios for having at least two atypical MS features at diagnosis among APS2-positive and p-tau217 ratio-positive patients with MS were 23.3 and 11.38, respectively.

Data regarding the actual incidence of Alzheimer’s disease among people with MS are scarce and conflicting. An autopsy study published in Annals of Neurology in 2008 revealed the expected rate of amyloid pathology in MS brain tissue, along with extensive microglia activation. In a PET study published in Annals of Neurology in 2020, however, researchers found less amyloid pathology among patients with MS than those without, but little difference in tau pathology.

Because MS and Alzheimer’s disease can each cause cognitive impairment, the rate of co-occurrence of MS and Alzheimer’s disease has been difficult to ascertain without accurate biomarkers. But, the authors said, the advent of disease-modifying therapies makes identifying early Alzheimer’s dementia in MS patients relevant.
 

 

 

Possible Explanations

The authors hypothesized that the lower rate of amyloid pathology observed in their patients with MS may stem from the following possibly overlapping mechanisms:

  • MS components, such as persistent perilesional immune activity, may inhibit amyloid beta deposition or facilitate its clearance.
  • Exposure to MS drugs may impact Alzheimer’s disease pathology. Most study patients with MS were exposed to beta interferons or glatiramer acetate, the authors noted, and 39 had switched to high-efficacy medications such as B-cell depleting therapies and natalizumab.
  • MS’s genetic signature may protect against AD.

“Investigating these ideas would advance our understanding of the relationship between MS and Alzheimer’s, and potentially inform avenues for treatment,” said Dr. Sexton. In this regard, the Alzheimer’s Association has funded an ongoing study examining a drug currently used to promote myelin formation in individuals with MS in genetically engineered Alzheimer’s-like mice. Additional Association-funded studies that examine inflammation also may improve understanding of the mechanisms that may link these diseases, said Dr. Sexton. 

The study authors added that unusual cases, such as a study patient who had high amyloid burden by PET but negative APS2 and tau PET, also may shed light on interactions between MS, amyloid pathology, and tau pathology.

Limitations of the present study include the fact that plasma Alzheimer’s disease biomarkers are potentially affected by other conditions as well, according to a study published in Nature Medicine. Additional shortcomings include the MS cohort’s relatively small size and lack of diagnostic confirmation by cerebrospinal fluid. Although MMSE scores among patients with MS were slightly lower, the authors added, this disparity would lead one to expect more, not less, amyloid pathology among these patients if their cognitive impairment resulted from Alzheimer’s disease.

Dr. Sexton reported no relevant financial interests.

The study was supported by the Hope Center for Neurological Disorders at Washington University in St. Louis and by C2N Diagnostics. Washington University in St. Louis holds equity in C2N Diagnostics and may receive royalties resulting from use of PrecivityAD2.

Publications
Topics
Sections

 

In a recent study, patients with multiple sclerosis (MS) had half the rate of amyloid beta pathology versus matched controls without MS, supporting authors’ suspicion that MS may protect against Alzheimer’s disease. Understanding how MS does this may drive new treatment strategies, said the authors of the study, which was published online in Annals of Neurology. Regarding current treatments, they added, the availability of new disease-modifying Alzheimer’s disease therapies increases the importance of early diagnosis in cognitively impaired people including those with MS.

Confirmatory Studies Needed

“Replication and confirmation of these findings, including in studies representative of the real-world Alzheimer’s population in race/ethnicity and sex/gender, are needed before any clinical implications can be drawn,” said Claire Sexton, DPhil, Alzheimer’s Association senior director of scientific programs and outreach. She was not involved with the study but was asked to comment.

The study’s most important immediate implication, said Dr. Sexton, is that it “opens the door to questions about why MS may be associated with Alzheimer’s risk.”

Alzheimer's Association
Dr. Claire Sexton

 

Anecdotal Observation

Although life expectancy for people with MS is increasing, the authors, led by Matthew R. Brier, MD, PhD, an assistant professor at Washington University in St. Louis, Missouri, said they have seen no concomitant rise in Alzheimer’s disease dementia among their patients with MS. This anecdotal observation fueled their hypothesis that Alzheimer’s disease pathology occurs less frequently in this population.

To test their hypothesis, the investigators sequentially enrolled 100 patients with MS (age 60 years or older), along with 300 non-MS controls matched for age, sex, apolipoprotein E (apoE) proteotype, and cognitive status. All participants underwent the Mini-Mental State Examination (MMSE) and PrecivityAD2 (C2N Diagnostics) blood testing.

Washngton University
Dr. Matthew R. Brier


Overall, patients with MS had lower p-tau217 (t = 3.76, P = .00019) and amyloid probability score 2 (APS2; t = 3.83, P = .00015) ratios than did those without MS. APS2 combines p-tau217 ratio with Abeta42/40 ratio. In addition, APS2 and p-tau217 ratios were lower in patients with MS and ApoE3/apoE3 or apoE3/apoE4 proteotype. MMSE scores were also slightly lower in the MS cohort: 27.6 versus 28.44 for controls. Of 11 patients with MS who underwent Pittsburgh Compound B (PiB) positron emission tomography (PET), nine had congruent PiB PET and plasma results.

When the investigators applied clinical cutoffs, 7.1% of patients with MS were APS2-positive, versus 15.3% of controls (P = .0043). The corresponding figures for p-tau217 ratio positivity were 9% and 18.3%, respectively (P = .0024). Mean Abeta42/40 scores showed no difference between groups.

Patients with MS and positive amyloid biomarkers often had atypical MS features at diagnosis. Compared with biomarker-negative patients with MS, odds ratios for having at least two atypical MS features at diagnosis among APS2-positive and p-tau217 ratio-positive patients with MS were 23.3 and 11.38, respectively.

Data regarding the actual incidence of Alzheimer’s disease among people with MS are scarce and conflicting. An autopsy study published in Annals of Neurology in 2008 revealed the expected rate of amyloid pathology in MS brain tissue, along with extensive microglia activation. In a PET study published in Annals of Neurology in 2020, however, researchers found less amyloid pathology among patients with MS than those without, but little difference in tau pathology.

Because MS and Alzheimer’s disease can each cause cognitive impairment, the rate of co-occurrence of MS and Alzheimer’s disease has been difficult to ascertain without accurate biomarkers. But, the authors said, the advent of disease-modifying therapies makes identifying early Alzheimer’s dementia in MS patients relevant.
 

 

 

Possible Explanations

The authors hypothesized that the lower rate of amyloid pathology observed in their patients with MS may stem from the following possibly overlapping mechanisms:

  • MS components, such as persistent perilesional immune activity, may inhibit amyloid beta deposition or facilitate its clearance.
  • Exposure to MS drugs may impact Alzheimer’s disease pathology. Most study patients with MS were exposed to beta interferons or glatiramer acetate, the authors noted, and 39 had switched to high-efficacy medications such as B-cell depleting therapies and natalizumab.
  • MS’s genetic signature may protect against AD.

“Investigating these ideas would advance our understanding of the relationship between MS and Alzheimer’s, and potentially inform avenues for treatment,” said Dr. Sexton. In this regard, the Alzheimer’s Association has funded an ongoing study examining a drug currently used to promote myelin formation in individuals with MS in genetically engineered Alzheimer’s-like mice. Additional Association-funded studies that examine inflammation also may improve understanding of the mechanisms that may link these diseases, said Dr. Sexton. 

The study authors added that unusual cases, such as a study patient who had high amyloid burden by PET but negative APS2 and tau PET, also may shed light on interactions between MS, amyloid pathology, and tau pathology.

Limitations of the present study include the fact that plasma Alzheimer’s disease biomarkers are potentially affected by other conditions as well, according to a study published in Nature Medicine. Additional shortcomings include the MS cohort’s relatively small size and lack of diagnostic confirmation by cerebrospinal fluid. Although MMSE scores among patients with MS were slightly lower, the authors added, this disparity would lead one to expect more, not less, amyloid pathology among these patients if their cognitive impairment resulted from Alzheimer’s disease.

Dr. Sexton reported no relevant financial interests.

The study was supported by the Hope Center for Neurological Disorders at Washington University in St. Louis and by C2N Diagnostics. Washington University in St. Louis holds equity in C2N Diagnostics and may receive royalties resulting from use of PrecivityAD2.

 

In a recent study, patients with multiple sclerosis (MS) had half the rate of amyloid beta pathology versus matched controls without MS, supporting authors’ suspicion that MS may protect against Alzheimer’s disease. Understanding how MS does this may drive new treatment strategies, said the authors of the study, which was published online in Annals of Neurology. Regarding current treatments, they added, the availability of new disease-modifying Alzheimer’s disease therapies increases the importance of early diagnosis in cognitively impaired people including those with MS.

Confirmatory Studies Needed

“Replication and confirmation of these findings, including in studies representative of the real-world Alzheimer’s population in race/ethnicity and sex/gender, are needed before any clinical implications can be drawn,” said Claire Sexton, DPhil, Alzheimer’s Association senior director of scientific programs and outreach. She was not involved with the study but was asked to comment.

The study’s most important immediate implication, said Dr. Sexton, is that it “opens the door to questions about why MS may be associated with Alzheimer’s risk.”

Alzheimer's Association
Dr. Claire Sexton

 

Anecdotal Observation

Although life expectancy for people with MS is increasing, the authors, led by Matthew R. Brier, MD, PhD, an assistant professor at Washington University in St. Louis, Missouri, said they have seen no concomitant rise in Alzheimer’s disease dementia among their patients with MS. This anecdotal observation fueled their hypothesis that Alzheimer’s disease pathology occurs less frequently in this population.

To test their hypothesis, the investigators sequentially enrolled 100 patients with MS (age 60 years or older), along with 300 non-MS controls matched for age, sex, apolipoprotein E (apoE) proteotype, and cognitive status. All participants underwent the Mini-Mental State Examination (MMSE) and PrecivityAD2 (C2N Diagnostics) blood testing.

Washngton University
Dr. Matthew R. Brier


Overall, patients with MS had lower p-tau217 (t = 3.76, P = .00019) and amyloid probability score 2 (APS2; t = 3.83, P = .00015) ratios than did those without MS. APS2 combines p-tau217 ratio with Abeta42/40 ratio. In addition, APS2 and p-tau217 ratios were lower in patients with MS and ApoE3/apoE3 or apoE3/apoE4 proteotype. MMSE scores were also slightly lower in the MS cohort: 27.6 versus 28.44 for controls. Of 11 patients with MS who underwent Pittsburgh Compound B (PiB) positron emission tomography (PET), nine had congruent PiB PET and plasma results.

When the investigators applied clinical cutoffs, 7.1% of patients with MS were APS2-positive, versus 15.3% of controls (P = .0043). The corresponding figures for p-tau217 ratio positivity were 9% and 18.3%, respectively (P = .0024). Mean Abeta42/40 scores showed no difference between groups.

Patients with MS and positive amyloid biomarkers often had atypical MS features at diagnosis. Compared with biomarker-negative patients with MS, odds ratios for having at least two atypical MS features at diagnosis among APS2-positive and p-tau217 ratio-positive patients with MS were 23.3 and 11.38, respectively.

Data regarding the actual incidence of Alzheimer’s disease among people with MS are scarce and conflicting. An autopsy study published in Annals of Neurology in 2008 revealed the expected rate of amyloid pathology in MS brain tissue, along with extensive microglia activation. In a PET study published in Annals of Neurology in 2020, however, researchers found less amyloid pathology among patients with MS than those without, but little difference in tau pathology.

Because MS and Alzheimer’s disease can each cause cognitive impairment, the rate of co-occurrence of MS and Alzheimer’s disease has been difficult to ascertain without accurate biomarkers. But, the authors said, the advent of disease-modifying therapies makes identifying early Alzheimer’s dementia in MS patients relevant.
 

 

 

Possible Explanations

The authors hypothesized that the lower rate of amyloid pathology observed in their patients with MS may stem from the following possibly overlapping mechanisms:

  • MS components, such as persistent perilesional immune activity, may inhibit amyloid beta deposition or facilitate its clearance.
  • Exposure to MS drugs may impact Alzheimer’s disease pathology. Most study patients with MS were exposed to beta interferons or glatiramer acetate, the authors noted, and 39 had switched to high-efficacy medications such as B-cell depleting therapies and natalizumab.
  • MS’s genetic signature may protect against AD.

“Investigating these ideas would advance our understanding of the relationship between MS and Alzheimer’s, and potentially inform avenues for treatment,” said Dr. Sexton. In this regard, the Alzheimer’s Association has funded an ongoing study examining a drug currently used to promote myelin formation in individuals with MS in genetically engineered Alzheimer’s-like mice. Additional Association-funded studies that examine inflammation also may improve understanding of the mechanisms that may link these diseases, said Dr. Sexton. 

The study authors added that unusual cases, such as a study patient who had high amyloid burden by PET but negative APS2 and tau PET, also may shed light on interactions between MS, amyloid pathology, and tau pathology.

Limitations of the present study include the fact that plasma Alzheimer’s disease biomarkers are potentially affected by other conditions as well, according to a study published in Nature Medicine. Additional shortcomings include the MS cohort’s relatively small size and lack of diagnostic confirmation by cerebrospinal fluid. Although MMSE scores among patients with MS were slightly lower, the authors added, this disparity would lead one to expect more, not less, amyloid pathology among these patients if their cognitive impairment resulted from Alzheimer’s disease.

Dr. Sexton reported no relevant financial interests.

The study was supported by the Hope Center for Neurological Disorders at Washington University in St. Louis and by C2N Diagnostics. Washington University in St. Louis holds equity in C2N Diagnostics and may receive royalties resulting from use of PrecivityAD2.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM ANNALS OF NEUROLOGY

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Brain Network Significantly Larger in People With Depression, Even in Childhood

Article Type
Changed
Fri, 09/06/2024 - 13:35

Researchers have discovered that a brain network involved in reward processing and attention to stimuli is markedly bigger in people with depression, remains stable over time, is unaffected by mood changes, and can be detected in children before onset of depression symptoms.

Using a novel brain-mapping technique, researchers found that the frontostriatal salience network was expanded nearly twofold in the brains of most individuals studied with depression compared with controls.

“This expansion in cortex was trait-like, meaning it was stable over time and did not change as symptoms changed over time,” said lead author Charles Lynch, PhD, assistant professor of neuroscience, Department of Psychiatry, Weill Cornell Medicine in New York.

It could also be detected in children who later developed depression, suggesting it may serve as a biomarker of depression risk. Investigators said the findings could aid in prevention and early detection of depression, as well as the development of more personalized treatment.

The study was published online in Nature.
 

Prewired for Depression?

Precision functional mapping is a relatively new approach to brain mapping in individuals that uses large amounts of fMRI data from hours of scans per person. The technique has been used to show differences in brain networks between and in healthy individuals but had not been used to study brain networks in people with depression.

“We leveraged our large longitudinal datasets — with many hours of functional MRI scanning per subject — to construct individual-specific maps of functional brain networks in each patient using precision functional mapping, instead of relying on group average,” Dr. Lynch said.

In the primary analysis of 141 adults with major depression and 37 healthy controls, the frontostriatal salience network — which is involved in reward processing and attention to internal and external stimuli — was markedly larger in these individuals with depression.

“This is one of the first times these kinds of personalized maps have been created in individuals with depression, and this is how we first observed of the salience network being larger in individuals with depression,” Dr. Lynch said.

In four of the six individuals, the salience network was expanded more than twofold, outside the range observed in all 37 healthy controls. On average, the salience network occupied 73% more of the cortical surface relative to the average in healthy controls.

The findings were replicated using independent samples of repeatedly sampled individuals with depression and in large-scale group average data.

The expansion of the salience network did not change over time and was unaffected by changes in mood state.

“These observations led us to propose that instead of driving changes in depressive symptoms over time, salience network expansion may be a stable marker of risk for developing depression,” the study team wrote.

An analysis of brain scans from 57 children who went on to develop depressive symptoms during adolescence and an equal number of children who did not develop depressive symptoms supports this theory.

On average, the salience network occupied roughly 36% more of cortex in the children with no current or previous symptoms of depression at the time of their fMRI scans but who subsequently developed clinically significant symptoms of depression, relative to children with no depressive symptoms at any study time point, the researchers found.
 

 

 

Immediate Clinical Impact?

Reached for comment, Shaheen Lakhan, MD, PhD, neurologist and researcher based in Miami, said this research “exemplifies the promising intersection of neurology and digital health, where advanced neuroimaging and data-driven approaches can transform mental health care into a more precise and individualized practice,” Dr. Lakhan said. “By identifying this brain network expansion, we’re unlocking new possibilities for precision medicine in mental health.”

Dr. Lakhan, who wasn’t involved in this research, said identifying the expansion of the frontostriatal salience network in individuals with depression opens new avenues for developing novel therapeutics.

“By targeting this network through neuromodulation techniques like deep brain stimulation, transcranial magnetic stimulation, and prescription digital therapeutics, treatments can be more precisely tailored to individual neurobiological profiles,” Dr. Lakhan said. “Additionally, this network expansion could serve as a biomarker for early detection, allowing for preventive strategies or personalized treatment plans, particularly for those at risk of developing depression.”

In addition, a greater understanding of the mechanisms driving salience network expansion offers potential for discovering new pharmacological targets, Dr. Lakhan noted.

“Drugs that modulate synaptic plasticity or network connectivity might be developed to reverse or mitigate these neural changes. The findings also support the use of longitudinal monitoring to predict and preempt symptom emergence, improving outcomes through timely intervention. This research paves the way for more personalized, precise, and proactive approaches in treating depression,” Dr. Lakhan concluded.

Also weighing in, Teddy Akiki, MD, with the Department of Psychiatry and Behavioral Sciences at Stanford Medicine in California, noted that the effect size of the frontostriatal salience network difference in depression is “remarkably larger than typically seen in neuroimaging studies of depression, which often describe subtle differences. The consistency across multiple datasets and across time at the individual level adds significant weight to these findings, suggesting that it is a trait marker rather than a state-dependent marker.”

“The observation that this expansion is present even before the onset of depressive symptoms in adolescence suggests its potential as a biomarker for depression risk,” Dr. Akiki said. “This approach could lead to earlier identification of at-risk individuals and potentially inform the development of targeted preventive interventions.”

He cautioned that it remains to be seen whether interventions targeting the salience network can effectively prevent or treat depression.

This research was supported in part by the National Institute of Mental Health, the National Institute on Drug Addiction, the Hope for Depression Research Foundation, and the Foundation for OCD Research. Dr. Lynch and a coauthor are listed as inventors for Cornell University patent applications on neuroimaging biomarkers for depression which are pending or in preparation. Dr. Liston has served as a scientific advisor or consultant to Compass Pathways PLC, Delix Therapeutics, and Brainify.AI. Dr. Lakhan and Dr. Akiki had no relevant disclosures.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Researchers have discovered that a brain network involved in reward processing and attention to stimuli is markedly bigger in people with depression, remains stable over time, is unaffected by mood changes, and can be detected in children before onset of depression symptoms.

Using a novel brain-mapping technique, researchers found that the frontostriatal salience network was expanded nearly twofold in the brains of most individuals studied with depression compared with controls.

“This expansion in cortex was trait-like, meaning it was stable over time and did not change as symptoms changed over time,” said lead author Charles Lynch, PhD, assistant professor of neuroscience, Department of Psychiatry, Weill Cornell Medicine in New York.

It could also be detected in children who later developed depression, suggesting it may serve as a biomarker of depression risk. Investigators said the findings could aid in prevention and early detection of depression, as well as the development of more personalized treatment.

The study was published online in Nature.
 

Prewired for Depression?

Precision functional mapping is a relatively new approach to brain mapping in individuals that uses large amounts of fMRI data from hours of scans per person. The technique has been used to show differences in brain networks between and in healthy individuals but had not been used to study brain networks in people with depression.

“We leveraged our large longitudinal datasets — with many hours of functional MRI scanning per subject — to construct individual-specific maps of functional brain networks in each patient using precision functional mapping, instead of relying on group average,” Dr. Lynch said.

In the primary analysis of 141 adults with major depression and 37 healthy controls, the frontostriatal salience network — which is involved in reward processing and attention to internal and external stimuli — was markedly larger in these individuals with depression.

“This is one of the first times these kinds of personalized maps have been created in individuals with depression, and this is how we first observed of the salience network being larger in individuals with depression,” Dr. Lynch said.

In four of the six individuals, the salience network was expanded more than twofold, outside the range observed in all 37 healthy controls. On average, the salience network occupied 73% more of the cortical surface relative to the average in healthy controls.

The findings were replicated using independent samples of repeatedly sampled individuals with depression and in large-scale group average data.

The expansion of the salience network did not change over time and was unaffected by changes in mood state.

“These observations led us to propose that instead of driving changes in depressive symptoms over time, salience network expansion may be a stable marker of risk for developing depression,” the study team wrote.

An analysis of brain scans from 57 children who went on to develop depressive symptoms during adolescence and an equal number of children who did not develop depressive symptoms supports this theory.

On average, the salience network occupied roughly 36% more of cortex in the children with no current or previous symptoms of depression at the time of their fMRI scans but who subsequently developed clinically significant symptoms of depression, relative to children with no depressive symptoms at any study time point, the researchers found.
 

 

 

Immediate Clinical Impact?

Reached for comment, Shaheen Lakhan, MD, PhD, neurologist and researcher based in Miami, said this research “exemplifies the promising intersection of neurology and digital health, where advanced neuroimaging and data-driven approaches can transform mental health care into a more precise and individualized practice,” Dr. Lakhan said. “By identifying this brain network expansion, we’re unlocking new possibilities for precision medicine in mental health.”

Dr. Lakhan, who wasn’t involved in this research, said identifying the expansion of the frontostriatal salience network in individuals with depression opens new avenues for developing novel therapeutics.

“By targeting this network through neuromodulation techniques like deep brain stimulation, transcranial magnetic stimulation, and prescription digital therapeutics, treatments can be more precisely tailored to individual neurobiological profiles,” Dr. Lakhan said. “Additionally, this network expansion could serve as a biomarker for early detection, allowing for preventive strategies or personalized treatment plans, particularly for those at risk of developing depression.”

In addition, a greater understanding of the mechanisms driving salience network expansion offers potential for discovering new pharmacological targets, Dr. Lakhan noted.

“Drugs that modulate synaptic plasticity or network connectivity might be developed to reverse or mitigate these neural changes. The findings also support the use of longitudinal monitoring to predict and preempt symptom emergence, improving outcomes through timely intervention. This research paves the way for more personalized, precise, and proactive approaches in treating depression,” Dr. Lakhan concluded.

Also weighing in, Teddy Akiki, MD, with the Department of Psychiatry and Behavioral Sciences at Stanford Medicine in California, noted that the effect size of the frontostriatal salience network difference in depression is “remarkably larger than typically seen in neuroimaging studies of depression, which often describe subtle differences. The consistency across multiple datasets and across time at the individual level adds significant weight to these findings, suggesting that it is a trait marker rather than a state-dependent marker.”

“The observation that this expansion is present even before the onset of depressive symptoms in adolescence suggests its potential as a biomarker for depression risk,” Dr. Akiki said. “This approach could lead to earlier identification of at-risk individuals and potentially inform the development of targeted preventive interventions.”

He cautioned that it remains to be seen whether interventions targeting the salience network can effectively prevent or treat depression.

This research was supported in part by the National Institute of Mental Health, the National Institute on Drug Addiction, the Hope for Depression Research Foundation, and the Foundation for OCD Research. Dr. Lynch and a coauthor are listed as inventors for Cornell University patent applications on neuroimaging biomarkers for depression which are pending or in preparation. Dr. Liston has served as a scientific advisor or consultant to Compass Pathways PLC, Delix Therapeutics, and Brainify.AI. Dr. Lakhan and Dr. Akiki had no relevant disclosures.

A version of this article first appeared on Medscape.com.

Researchers have discovered that a brain network involved in reward processing and attention to stimuli is markedly bigger in people with depression, remains stable over time, is unaffected by mood changes, and can be detected in children before onset of depression symptoms.

Using a novel brain-mapping technique, researchers found that the frontostriatal salience network was expanded nearly twofold in the brains of most individuals studied with depression compared with controls.

“This expansion in cortex was trait-like, meaning it was stable over time and did not change as symptoms changed over time,” said lead author Charles Lynch, PhD, assistant professor of neuroscience, Department of Psychiatry, Weill Cornell Medicine in New York.

It could also be detected in children who later developed depression, suggesting it may serve as a biomarker of depression risk. Investigators said the findings could aid in prevention and early detection of depression, as well as the development of more personalized treatment.

The study was published online in Nature.
 

Prewired for Depression?

Precision functional mapping is a relatively new approach to brain mapping in individuals that uses large amounts of fMRI data from hours of scans per person. The technique has been used to show differences in brain networks between and in healthy individuals but had not been used to study brain networks in people with depression.

“We leveraged our large longitudinal datasets — with many hours of functional MRI scanning per subject — to construct individual-specific maps of functional brain networks in each patient using precision functional mapping, instead of relying on group average,” Dr. Lynch said.

In the primary analysis of 141 adults with major depression and 37 healthy controls, the frontostriatal salience network — which is involved in reward processing and attention to internal and external stimuli — was markedly larger in these individuals with depression.

“This is one of the first times these kinds of personalized maps have been created in individuals with depression, and this is how we first observed of the salience network being larger in individuals with depression,” Dr. Lynch said.

In four of the six individuals, the salience network was expanded more than twofold, outside the range observed in all 37 healthy controls. On average, the salience network occupied 73% more of the cortical surface relative to the average in healthy controls.

The findings were replicated using independent samples of repeatedly sampled individuals with depression and in large-scale group average data.

The expansion of the salience network did not change over time and was unaffected by changes in mood state.

“These observations led us to propose that instead of driving changes in depressive symptoms over time, salience network expansion may be a stable marker of risk for developing depression,” the study team wrote.

An analysis of brain scans from 57 children who went on to develop depressive symptoms during adolescence and an equal number of children who did not develop depressive symptoms supports this theory.

On average, the salience network occupied roughly 36% more of cortex in the children with no current or previous symptoms of depression at the time of their fMRI scans but who subsequently developed clinically significant symptoms of depression, relative to children with no depressive symptoms at any study time point, the researchers found.
 

 

 

Immediate Clinical Impact?

Reached for comment, Shaheen Lakhan, MD, PhD, neurologist and researcher based in Miami, said this research “exemplifies the promising intersection of neurology and digital health, where advanced neuroimaging and data-driven approaches can transform mental health care into a more precise and individualized practice,” Dr. Lakhan said. “By identifying this brain network expansion, we’re unlocking new possibilities for precision medicine in mental health.”

Dr. Lakhan, who wasn’t involved in this research, said identifying the expansion of the frontostriatal salience network in individuals with depression opens new avenues for developing novel therapeutics.

“By targeting this network through neuromodulation techniques like deep brain stimulation, transcranial magnetic stimulation, and prescription digital therapeutics, treatments can be more precisely tailored to individual neurobiological profiles,” Dr. Lakhan said. “Additionally, this network expansion could serve as a biomarker for early detection, allowing for preventive strategies or personalized treatment plans, particularly for those at risk of developing depression.”

In addition, a greater understanding of the mechanisms driving salience network expansion offers potential for discovering new pharmacological targets, Dr. Lakhan noted.

“Drugs that modulate synaptic plasticity or network connectivity might be developed to reverse or mitigate these neural changes. The findings also support the use of longitudinal monitoring to predict and preempt symptom emergence, improving outcomes through timely intervention. This research paves the way for more personalized, precise, and proactive approaches in treating depression,” Dr. Lakhan concluded.

Also weighing in, Teddy Akiki, MD, with the Department of Psychiatry and Behavioral Sciences at Stanford Medicine in California, noted that the effect size of the frontostriatal salience network difference in depression is “remarkably larger than typically seen in neuroimaging studies of depression, which often describe subtle differences. The consistency across multiple datasets and across time at the individual level adds significant weight to these findings, suggesting that it is a trait marker rather than a state-dependent marker.”

“The observation that this expansion is present even before the onset of depressive symptoms in adolescence suggests its potential as a biomarker for depression risk,” Dr. Akiki said. “This approach could lead to earlier identification of at-risk individuals and potentially inform the development of targeted preventive interventions.”

He cautioned that it remains to be seen whether interventions targeting the salience network can effectively prevent or treat depression.

This research was supported in part by the National Institute of Mental Health, the National Institute on Drug Addiction, the Hope for Depression Research Foundation, and the Foundation for OCD Research. Dr. Lynch and a coauthor are listed as inventors for Cornell University patent applications on neuroimaging biomarkers for depression which are pending or in preparation. Dr. Liston has served as a scientific advisor or consultant to Compass Pathways PLC, Delix Therapeutics, and Brainify.AI. Dr. Lakhan and Dr. Akiki had no relevant disclosures.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM NATURE

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Nighttime Outdoor Light Pollution Linked to Alzheimer’s Risk

Article Type
Changed
Fri, 09/06/2024 - 12:54

Living in areas saturated with artificial outdoor light at night is associated with an increased risk for Alzheimer’s disease, a new national study suggested.

Analyses of state and county light pollution data and Medicare claims showed that areas with higher average nighttime light intensity had a greater prevalence of Alzheimer’s disease.

Among people aged 65 years or older, Alzheimer’s disease prevalence was more strongly associated with nightly light pollution exposure than with alcohol misuse, chronic kidney disease, depression, or obesity.

In those younger than 65 years, greater nighttime light intensity had a stronger association with Alzheimer’s disease prevalence than any other risk factor included in the study.

“The results are pretty striking when you do these comparisons and it’s true for people of all ages,” said Robin Voigt-Zuwala, PhD, lead author and director, Circadian Rhythm Research Laboratory, Rush University, Chicago, Illinois.

The study was published online in Frontiers of Neuroscience.
 

Shining a Light

Exposure to artificial outdoor light at night has been associated with adverse health effects such as sleep disruption, obesity, atherosclerosis, and cancer, but this is the first study to look specifically at Alzheimer’s disease, investigators noted.

Two recent studies reported higher risks for mild cognitive impairment among Chinese veterans and late-onset dementia among Italian residents living in areas with brighter outdoor light at night.

For this study, Dr. Voigt-Zuwala and colleagues examined the relationship between Alzheimer’s disease prevalence and average nighttime light intensity in the lower 48 states using data from Medicare Part A and B, the Centers for Disease Control and Prevention, and NASA satellite–acquired radiance data.

The data were averaged for the years 2012-2018 and states divided into five groups based on average nighttime light intensity.

The darkest states were Montana, Wyoming, South Dakota, Idaho, Maine, New Mexico, Vermont, Oregon, Utah, and Nevada. The brightest states were Indiana, Illinois, Florida, Ohio, Massachusetts, Connecticut, Maryland, Delaware, Rhode Island, and New Jersey.

Analysis of variance revealed a significant difference in Alzheimer’s disease prevalence between state groups (P < .0001). Multiple comparisons testing also showed that states with the lowest average nighttime light had significantly different Alzheimer’s disease prevalence than those with higher intensity.

The same positive relationship was observed when each year was assessed individually and at the county level, using data from 45 counties and the District of Columbia.
 

Strong Association

The investigators also found that state average nighttime light intensity is significantly associated with Alzheimer’s disease prevalence (P = .006). This effect was seen across all ages, sexes, and races except Asian Pacific Island, the latter possibly related to statistical power, the authors said.

When known or proposed risk factors for Alzheimer’s disease were added to the model, atrial fibrillation, diabetes, hyperlipidemia, hypertension, and stroke had a stronger association with Alzheimer’s disease than average nighttime light intensity.

Nighttime light intensity, however, was more strongly associated with Alzheimer’s disease prevalence than alcohol abuse, chronic kidney disease, depression, heart failure, and obesity.

Moreover, in people younger than 65 years, nighttime light pollution had a stronger association with Alzheimer’s disease prevalence than all other risk factors (P = .007).

The mechanism behind this increased vulnerability is unclear, but there may be an interplay between genetic susceptibility of an individual and how they respond to light, Dr. Voigt-Zuwala suggested.

APOE4 is the genotype most highly associated with Alzheimer’s disease risk, and maybe the people who have that genotype are just more sensitive to the effects of light exposure at night, more sensitive to circadian rhythm disruption,” she said.

The authors noted that additional research is needed but suggested light pollution may also influence Alzheimer’s disease through sleep disruption, which can promote inflammation, activate microglia and astrocytes, and negatively alter the clearance of amyloid beta, and by decreasing the levels of brain-derived neurotrophic factor.
 

 

 

Are We Measuring the Right Light?

“It’s a good article and it’s got a good message, but I have some caveats to that,” said George C. Brainard, PhD, director, Light Research Program, Thomas Jefferson University in Philadelphia, Pennsylvania, and a pioneer in the study of how light affects biology including breast cancer in night-shift workers.

The biggest caveat, and one acknowledged by the authors, is that the study didn’t measure indoor light exposure and relied instead on satellite imaging.

“They’re very striking images, but they may not be particularly relevant. And here’s why: People don’t live outdoors all night,” Dr. Brainard said.

Instead, people spend much of their time at night indoors where they’re exposed to lighting in the home and from smartphones, laptops, and television screens.

“It doesn’t invalidate their work. It’s an important advancement, an important observation,” Dr. Brainard said. “But the important thing really is to find out what is the population exposed to that triggers this response, and it’s probably indoor lighting related to the amount and physical characteristics of indoor lighting. It doesn’t mean outdoor lighting can’t play a role. It certainly can.”

Reached for comment, Erik Musiek, MD, PhD, a professor of neurology whose lab at Washington University School of Medicine in St. Louis, Missouri, has extensively studied circadian clock disruption and Alzheimer’s disease pathology in the brain, said the study provides a 10,000-foot view of the issue.

For example, the study was not designed to detect whether people living in high light pollution areas are actually experiencing more outdoor light at night and if risk factors such as air pollution and low socioeconomic status may correlate with these areas.

“Most of what we worry about is do people have lights on in the house, do they have their TV on, their screens up to their face late at night? This can’t tell us about that,” Dr. Musiek said. “But on the other hand, this kind of light exposure is something that public policy can affect.”

“It’s hard to control people’s personal habits nor should we probably, but we can control what types of bulbs you put into streetlights, how bright they are, and where you put lighting in a public place,” he added. “So I do think there’s value there.”

At least 19 states, the District of Columbia, and Puerto Rico have laws in place to reduce light pollution, with the majority doing so to promote energy conservation, public safety, aesthetic interests, or astronomical research, according to the National Conference of State Legislatures.

To respond to some of the limitations in this study, Dr. Voigt-Zuwala is writing a grant application for a new project to look at both indoor and outdoor light exposure on an individual level.

“This is what I’ve been wanting to study for a long time, and this study is just sort of the stepping stone, the proof of concept that this is something we need to be investigating,” she said.

Dr. Voigt-Zuwala reported RO1 and R24 grants from the National Institutes of Health (NIH), one coauthor reported an NIH R24 grant; another reported having no conflicts of interest. Dr. Brainard reported having no relevant conflicts of interest. Dr. Musiek reported research funding from Eisai Pharmaceuticals.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Living in areas saturated with artificial outdoor light at night is associated with an increased risk for Alzheimer’s disease, a new national study suggested.

Analyses of state and county light pollution data and Medicare claims showed that areas with higher average nighttime light intensity had a greater prevalence of Alzheimer’s disease.

Among people aged 65 years or older, Alzheimer’s disease prevalence was more strongly associated with nightly light pollution exposure than with alcohol misuse, chronic kidney disease, depression, or obesity.

In those younger than 65 years, greater nighttime light intensity had a stronger association with Alzheimer’s disease prevalence than any other risk factor included in the study.

“The results are pretty striking when you do these comparisons and it’s true for people of all ages,” said Robin Voigt-Zuwala, PhD, lead author and director, Circadian Rhythm Research Laboratory, Rush University, Chicago, Illinois.

The study was published online in Frontiers of Neuroscience.
 

Shining a Light

Exposure to artificial outdoor light at night has been associated with adverse health effects such as sleep disruption, obesity, atherosclerosis, and cancer, but this is the first study to look specifically at Alzheimer’s disease, investigators noted.

Two recent studies reported higher risks for mild cognitive impairment among Chinese veterans and late-onset dementia among Italian residents living in areas with brighter outdoor light at night.

For this study, Dr. Voigt-Zuwala and colleagues examined the relationship between Alzheimer’s disease prevalence and average nighttime light intensity in the lower 48 states using data from Medicare Part A and B, the Centers for Disease Control and Prevention, and NASA satellite–acquired radiance data.

The data were averaged for the years 2012-2018 and states divided into five groups based on average nighttime light intensity.

The darkest states were Montana, Wyoming, South Dakota, Idaho, Maine, New Mexico, Vermont, Oregon, Utah, and Nevada. The brightest states were Indiana, Illinois, Florida, Ohio, Massachusetts, Connecticut, Maryland, Delaware, Rhode Island, and New Jersey.

Analysis of variance revealed a significant difference in Alzheimer’s disease prevalence between state groups (P < .0001). Multiple comparisons testing also showed that states with the lowest average nighttime light had significantly different Alzheimer’s disease prevalence than those with higher intensity.

The same positive relationship was observed when each year was assessed individually and at the county level, using data from 45 counties and the District of Columbia.
 

Strong Association

The investigators also found that state average nighttime light intensity is significantly associated with Alzheimer’s disease prevalence (P = .006). This effect was seen across all ages, sexes, and races except Asian Pacific Island, the latter possibly related to statistical power, the authors said.

When known or proposed risk factors for Alzheimer’s disease were added to the model, atrial fibrillation, diabetes, hyperlipidemia, hypertension, and stroke had a stronger association with Alzheimer’s disease than average nighttime light intensity.

Nighttime light intensity, however, was more strongly associated with Alzheimer’s disease prevalence than alcohol abuse, chronic kidney disease, depression, heart failure, and obesity.

Moreover, in people younger than 65 years, nighttime light pollution had a stronger association with Alzheimer’s disease prevalence than all other risk factors (P = .007).

The mechanism behind this increased vulnerability is unclear, but there may be an interplay between genetic susceptibility of an individual and how they respond to light, Dr. Voigt-Zuwala suggested.

APOE4 is the genotype most highly associated with Alzheimer’s disease risk, and maybe the people who have that genotype are just more sensitive to the effects of light exposure at night, more sensitive to circadian rhythm disruption,” she said.

The authors noted that additional research is needed but suggested light pollution may also influence Alzheimer’s disease through sleep disruption, which can promote inflammation, activate microglia and astrocytes, and negatively alter the clearance of amyloid beta, and by decreasing the levels of brain-derived neurotrophic factor.
 

 

 

Are We Measuring the Right Light?

“It’s a good article and it’s got a good message, but I have some caveats to that,” said George C. Brainard, PhD, director, Light Research Program, Thomas Jefferson University in Philadelphia, Pennsylvania, and a pioneer in the study of how light affects biology including breast cancer in night-shift workers.

The biggest caveat, and one acknowledged by the authors, is that the study didn’t measure indoor light exposure and relied instead on satellite imaging.

“They’re very striking images, but they may not be particularly relevant. And here’s why: People don’t live outdoors all night,” Dr. Brainard said.

Instead, people spend much of their time at night indoors where they’re exposed to lighting in the home and from smartphones, laptops, and television screens.

“It doesn’t invalidate their work. It’s an important advancement, an important observation,” Dr. Brainard said. “But the important thing really is to find out what is the population exposed to that triggers this response, and it’s probably indoor lighting related to the amount and physical characteristics of indoor lighting. It doesn’t mean outdoor lighting can’t play a role. It certainly can.”

Reached for comment, Erik Musiek, MD, PhD, a professor of neurology whose lab at Washington University School of Medicine in St. Louis, Missouri, has extensively studied circadian clock disruption and Alzheimer’s disease pathology in the brain, said the study provides a 10,000-foot view of the issue.

For example, the study was not designed to detect whether people living in high light pollution areas are actually experiencing more outdoor light at night and if risk factors such as air pollution and low socioeconomic status may correlate with these areas.

“Most of what we worry about is do people have lights on in the house, do they have their TV on, their screens up to their face late at night? This can’t tell us about that,” Dr. Musiek said. “But on the other hand, this kind of light exposure is something that public policy can affect.”

“It’s hard to control people’s personal habits nor should we probably, but we can control what types of bulbs you put into streetlights, how bright they are, and where you put lighting in a public place,” he added. “So I do think there’s value there.”

At least 19 states, the District of Columbia, and Puerto Rico have laws in place to reduce light pollution, with the majority doing so to promote energy conservation, public safety, aesthetic interests, or astronomical research, according to the National Conference of State Legislatures.

To respond to some of the limitations in this study, Dr. Voigt-Zuwala is writing a grant application for a new project to look at both indoor and outdoor light exposure on an individual level.

“This is what I’ve been wanting to study for a long time, and this study is just sort of the stepping stone, the proof of concept that this is something we need to be investigating,” she said.

Dr. Voigt-Zuwala reported RO1 and R24 grants from the National Institutes of Health (NIH), one coauthor reported an NIH R24 grant; another reported having no conflicts of interest. Dr. Brainard reported having no relevant conflicts of interest. Dr. Musiek reported research funding from Eisai Pharmaceuticals.

A version of this article first appeared on Medscape.com.

Living in areas saturated with artificial outdoor light at night is associated with an increased risk for Alzheimer’s disease, a new national study suggested.

Analyses of state and county light pollution data and Medicare claims showed that areas with higher average nighttime light intensity had a greater prevalence of Alzheimer’s disease.

Among people aged 65 years or older, Alzheimer’s disease prevalence was more strongly associated with nightly light pollution exposure than with alcohol misuse, chronic kidney disease, depression, or obesity.

In those younger than 65 years, greater nighttime light intensity had a stronger association with Alzheimer’s disease prevalence than any other risk factor included in the study.

“The results are pretty striking when you do these comparisons and it’s true for people of all ages,” said Robin Voigt-Zuwala, PhD, lead author and director, Circadian Rhythm Research Laboratory, Rush University, Chicago, Illinois.

The study was published online in Frontiers of Neuroscience.
 

Shining a Light

Exposure to artificial outdoor light at night has been associated with adverse health effects such as sleep disruption, obesity, atherosclerosis, and cancer, but this is the first study to look specifically at Alzheimer’s disease, investigators noted.

Two recent studies reported higher risks for mild cognitive impairment among Chinese veterans and late-onset dementia among Italian residents living in areas with brighter outdoor light at night.

For this study, Dr. Voigt-Zuwala and colleagues examined the relationship between Alzheimer’s disease prevalence and average nighttime light intensity in the lower 48 states using data from Medicare Part A and B, the Centers for Disease Control and Prevention, and NASA satellite–acquired radiance data.

The data were averaged for the years 2012-2018 and states divided into five groups based on average nighttime light intensity.

The darkest states were Montana, Wyoming, South Dakota, Idaho, Maine, New Mexico, Vermont, Oregon, Utah, and Nevada. The brightest states were Indiana, Illinois, Florida, Ohio, Massachusetts, Connecticut, Maryland, Delaware, Rhode Island, and New Jersey.

Analysis of variance revealed a significant difference in Alzheimer’s disease prevalence between state groups (P < .0001). Multiple comparisons testing also showed that states with the lowest average nighttime light had significantly different Alzheimer’s disease prevalence than those with higher intensity.

The same positive relationship was observed when each year was assessed individually and at the county level, using data from 45 counties and the District of Columbia.
 

Strong Association

The investigators also found that state average nighttime light intensity is significantly associated with Alzheimer’s disease prevalence (P = .006). This effect was seen across all ages, sexes, and races except Asian Pacific Island, the latter possibly related to statistical power, the authors said.

When known or proposed risk factors for Alzheimer’s disease were added to the model, atrial fibrillation, diabetes, hyperlipidemia, hypertension, and stroke had a stronger association with Alzheimer’s disease than average nighttime light intensity.

Nighttime light intensity, however, was more strongly associated with Alzheimer’s disease prevalence than alcohol abuse, chronic kidney disease, depression, heart failure, and obesity.

Moreover, in people younger than 65 years, nighttime light pollution had a stronger association with Alzheimer’s disease prevalence than all other risk factors (P = .007).

The mechanism behind this increased vulnerability is unclear, but there may be an interplay between genetic susceptibility of an individual and how they respond to light, Dr. Voigt-Zuwala suggested.

APOE4 is the genotype most highly associated with Alzheimer’s disease risk, and maybe the people who have that genotype are just more sensitive to the effects of light exposure at night, more sensitive to circadian rhythm disruption,” she said.

The authors noted that additional research is needed but suggested light pollution may also influence Alzheimer’s disease through sleep disruption, which can promote inflammation, activate microglia and astrocytes, and negatively alter the clearance of amyloid beta, and by decreasing the levels of brain-derived neurotrophic factor.
 

 

 

Are We Measuring the Right Light?

“It’s a good article and it’s got a good message, but I have some caveats to that,” said George C. Brainard, PhD, director, Light Research Program, Thomas Jefferson University in Philadelphia, Pennsylvania, and a pioneer in the study of how light affects biology including breast cancer in night-shift workers.

The biggest caveat, and one acknowledged by the authors, is that the study didn’t measure indoor light exposure and relied instead on satellite imaging.

“They’re very striking images, but they may not be particularly relevant. And here’s why: People don’t live outdoors all night,” Dr. Brainard said.

Instead, people spend much of their time at night indoors where they’re exposed to lighting in the home and from smartphones, laptops, and television screens.

“It doesn’t invalidate their work. It’s an important advancement, an important observation,” Dr. Brainard said. “But the important thing really is to find out what is the population exposed to that triggers this response, and it’s probably indoor lighting related to the amount and physical characteristics of indoor lighting. It doesn’t mean outdoor lighting can’t play a role. It certainly can.”

Reached for comment, Erik Musiek, MD, PhD, a professor of neurology whose lab at Washington University School of Medicine in St. Louis, Missouri, has extensively studied circadian clock disruption and Alzheimer’s disease pathology in the brain, said the study provides a 10,000-foot view of the issue.

For example, the study was not designed to detect whether people living in high light pollution areas are actually experiencing more outdoor light at night and if risk factors such as air pollution and low socioeconomic status may correlate with these areas.

“Most of what we worry about is do people have lights on in the house, do they have their TV on, their screens up to their face late at night? This can’t tell us about that,” Dr. Musiek said. “But on the other hand, this kind of light exposure is something that public policy can affect.”

“It’s hard to control people’s personal habits nor should we probably, but we can control what types of bulbs you put into streetlights, how bright they are, and where you put lighting in a public place,” he added. “So I do think there’s value there.”

At least 19 states, the District of Columbia, and Puerto Rico have laws in place to reduce light pollution, with the majority doing so to promote energy conservation, public safety, aesthetic interests, or astronomical research, according to the National Conference of State Legislatures.

To respond to some of the limitations in this study, Dr. Voigt-Zuwala is writing a grant application for a new project to look at both indoor and outdoor light exposure on an individual level.

“This is what I’ve been wanting to study for a long time, and this study is just sort of the stepping stone, the proof of concept that this is something we need to be investigating,” she said.

Dr. Voigt-Zuwala reported RO1 and R24 grants from the National Institutes of Health (NIH), one coauthor reported an NIH R24 grant; another reported having no conflicts of interest. Dr. Brainard reported having no relevant conflicts of interest. Dr. Musiek reported research funding from Eisai Pharmaceuticals.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM FRONTIERS OF NEUROSCIENCE

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Cancer Cases, Deaths in Men Predicted to Surge by 2050

Article Type
Changed
Tue, 09/17/2024 - 19:29

 

TOPLINE:

The number of cancer cases in men is estimated to increase by 84% from 2022 to 2050 — reaching 19 million globally — and deaths are expected to rise by more than 93% — reaching 10.5 million globally — with substantial disparities in cancer cases and deaths by age and region of the world, a recent analysis found.

METHODOLOGY:

  • Overall, men have higher cancer incidence and mortality rates, which can be largely attributed to a higher prevalence of modifiable risk factors such as smoking, alcohol consumption, and occupational carcinogens, as well as the underuse of cancer prevention, screening, and treatment services.
  • To assess the burden of cancer in men of different ages and from different regions of the world, researchers analyzed data from the 2022 Global Cancer Observatory (GLOBOCAN), which provides national-level estimates for cancer cases and deaths.
  • Study outcomes included the incidence, mortality, and prevalence of cancer among men in 2022, along with projections for 2050. Estimates were stratified by several factors, including age; region; and Human Development Index (HDI), a composite score for health, education, and standard of living.
  • Researchers also calculated mortality-to-incidence ratios (MIRs) for various cancer types, where higher values indicate worse survival.

TAKEAWAY:

  • The researchers reported an estimated 10.3 million cancer cases and 5.4 million deaths globally in 2022, with almost two thirds of cases and deaths occurring in men aged 65 years or older.
  • By 2050, cancer cases and deaths were projected to increase by 84.3% (to 19 million) and 93.2% (to 10.5 million), respectively. The increase from 2022 to 2050 was more than twofold higher for older men and countries with low and medium HDI.
  • In 2022, the estimated global cancer MIR among men was nearly 55%, with variations by cancer types, age, and HDI. The MIR was lowest for thyroid cancer (7.6%) and highest for pancreatic cancer (90.9%); among World Health Organization regions, Africa had the highest MIR (72.6%), while the Americas had the lowest MIR (39.1%); countries with the lowest HDI had the highest MIR (73.5% vs 41.1% for very high HDI).
  • Lung cancer was the leading cause for cases and deaths in 2022 and was projected to remain the leading cause in 2050.

IN PRACTICE:

“Disparities in cancer incidence and mortality among men were observed across age groups, countries/territories, and HDI in 2022, with these disparities projected to widen further by 2050,” according to the authors, who called for efforts to “reduce disparities in cancer burden and ensure equity in cancer prevention and care for men across the globe.”

SOURCE:

The study, led by Habtamu Mellie Bizuayehu, PhD, School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, Australia, was published online in Cancer.

LIMITATIONS:

The findings may be influenced by the quality of GLOBOCAN data. Interpretation should be cautious as MIR may not fully reflect cancer outcome inequalities. The study did not include other measures of cancer burden, such as years of life lost or years lived with disability, which were unavailable from the data source.

DISCLOSURES:

The authors did not disclose any funding information. The authors declared no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

The number of cancer cases in men is estimated to increase by 84% from 2022 to 2050 — reaching 19 million globally — and deaths are expected to rise by more than 93% — reaching 10.5 million globally — with substantial disparities in cancer cases and deaths by age and region of the world, a recent analysis found.

METHODOLOGY:

  • Overall, men have higher cancer incidence and mortality rates, which can be largely attributed to a higher prevalence of modifiable risk factors such as smoking, alcohol consumption, and occupational carcinogens, as well as the underuse of cancer prevention, screening, and treatment services.
  • To assess the burden of cancer in men of different ages and from different regions of the world, researchers analyzed data from the 2022 Global Cancer Observatory (GLOBOCAN), which provides national-level estimates for cancer cases and deaths.
  • Study outcomes included the incidence, mortality, and prevalence of cancer among men in 2022, along with projections for 2050. Estimates were stratified by several factors, including age; region; and Human Development Index (HDI), a composite score for health, education, and standard of living.
  • Researchers also calculated mortality-to-incidence ratios (MIRs) for various cancer types, where higher values indicate worse survival.

TAKEAWAY:

  • The researchers reported an estimated 10.3 million cancer cases and 5.4 million deaths globally in 2022, with almost two thirds of cases and deaths occurring in men aged 65 years or older.
  • By 2050, cancer cases and deaths were projected to increase by 84.3% (to 19 million) and 93.2% (to 10.5 million), respectively. The increase from 2022 to 2050 was more than twofold higher for older men and countries with low and medium HDI.
  • In 2022, the estimated global cancer MIR among men was nearly 55%, with variations by cancer types, age, and HDI. The MIR was lowest for thyroid cancer (7.6%) and highest for pancreatic cancer (90.9%); among World Health Organization regions, Africa had the highest MIR (72.6%), while the Americas had the lowest MIR (39.1%); countries with the lowest HDI had the highest MIR (73.5% vs 41.1% for very high HDI).
  • Lung cancer was the leading cause for cases and deaths in 2022 and was projected to remain the leading cause in 2050.

IN PRACTICE:

“Disparities in cancer incidence and mortality among men were observed across age groups, countries/territories, and HDI in 2022, with these disparities projected to widen further by 2050,” according to the authors, who called for efforts to “reduce disparities in cancer burden and ensure equity in cancer prevention and care for men across the globe.”

SOURCE:

The study, led by Habtamu Mellie Bizuayehu, PhD, School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, Australia, was published online in Cancer.

LIMITATIONS:

The findings may be influenced by the quality of GLOBOCAN data. Interpretation should be cautious as MIR may not fully reflect cancer outcome inequalities. The study did not include other measures of cancer burden, such as years of life lost or years lived with disability, which were unavailable from the data source.

DISCLOSURES:

The authors did not disclose any funding information. The authors declared no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE:

The number of cancer cases in men is estimated to increase by 84% from 2022 to 2050 — reaching 19 million globally — and deaths are expected to rise by more than 93% — reaching 10.5 million globally — with substantial disparities in cancer cases and deaths by age and region of the world, a recent analysis found.

METHODOLOGY:

  • Overall, men have higher cancer incidence and mortality rates, which can be largely attributed to a higher prevalence of modifiable risk factors such as smoking, alcohol consumption, and occupational carcinogens, as well as the underuse of cancer prevention, screening, and treatment services.
  • To assess the burden of cancer in men of different ages and from different regions of the world, researchers analyzed data from the 2022 Global Cancer Observatory (GLOBOCAN), which provides national-level estimates for cancer cases and deaths.
  • Study outcomes included the incidence, mortality, and prevalence of cancer among men in 2022, along with projections for 2050. Estimates were stratified by several factors, including age; region; and Human Development Index (HDI), a composite score for health, education, and standard of living.
  • Researchers also calculated mortality-to-incidence ratios (MIRs) for various cancer types, where higher values indicate worse survival.

TAKEAWAY:

  • The researchers reported an estimated 10.3 million cancer cases and 5.4 million deaths globally in 2022, with almost two thirds of cases and deaths occurring in men aged 65 years or older.
  • By 2050, cancer cases and deaths were projected to increase by 84.3% (to 19 million) and 93.2% (to 10.5 million), respectively. The increase from 2022 to 2050 was more than twofold higher for older men and countries with low and medium HDI.
  • In 2022, the estimated global cancer MIR among men was nearly 55%, with variations by cancer types, age, and HDI. The MIR was lowest for thyroid cancer (7.6%) and highest for pancreatic cancer (90.9%); among World Health Organization regions, Africa had the highest MIR (72.6%), while the Americas had the lowest MIR (39.1%); countries with the lowest HDI had the highest MIR (73.5% vs 41.1% for very high HDI).
  • Lung cancer was the leading cause for cases and deaths in 2022 and was projected to remain the leading cause in 2050.

IN PRACTICE:

“Disparities in cancer incidence and mortality among men were observed across age groups, countries/territories, and HDI in 2022, with these disparities projected to widen further by 2050,” according to the authors, who called for efforts to “reduce disparities in cancer burden and ensure equity in cancer prevention and care for men across the globe.”

SOURCE:

The study, led by Habtamu Mellie Bizuayehu, PhD, School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, Australia, was published online in Cancer.

LIMITATIONS:

The findings may be influenced by the quality of GLOBOCAN data. Interpretation should be cautious as MIR may not fully reflect cancer outcome inequalities. The study did not include other measures of cancer burden, such as years of life lost or years lived with disability, which were unavailable from the data source.

DISCLOSURES:

The authors did not disclose any funding information. The authors declared no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Tue, 09/17/2024 - 19:29
Un-Gate On Date
Tue, 09/17/2024 - 19:29
Use ProPublica
CFC Schedule Remove Status
Tue, 09/17/2024 - 19:29
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Tue, 09/17/2024 - 19:29

HIIT May Best Moderate Exercise for Poststroke Fitness

Article Type
Changed
Tue, 08/27/2024 - 12:04

Repeated 1-minute bursts of high-intensity interval training (HIIT) are more effective than conventional moderate, continuous exercise for improving aerobic fitness after stroke, according to a multicenter randomized controlled trial.

“We hoped that we would see improvements in cardiovascular fitness after HIIT and anticipated that these improvements would be greater than in the moderate-intensity group, but we were pleasantly surprised by the degree of improvement we observed,” said Ada Tang, PT, PhD, associate professor of health sciences at McMaster University in Hamilton, Ontario, Canada. “The improvements seen in the HIIT group were twofold higher than in the other group.”

The results were published in Stroke.
 

Clinically Meaningful

Researchers compared the effects of 12 weeks of short-interval HIIT with those of moderate-intensity continuous training (MICT) on peak oxygen uptake (VO2peak), cardiovascular risk factors, and mobility outcomes after stroke.

They randomly assigned participants to receive 3 days per week of HIIT or traditional moderate exercise sessions for 12 weeks. Participants’ mean age was 65 years, and 39% were women. They enrolled at a mean age of 1.8 years after sustaining a mild stroke.

A total of 42 participants were randomized to HIIT and 40 to MICT. There were no significant differences between the groups at baseline, and both groups exercised on adaptive recumbent steppers, which are suitable for stroke survivors with varying abilities.

The short-interval HIIT protocol involved 10 1-minute intervals of high-intensity exercise, interspersed with nine 1-minute low-intensity intervals, for a total of 19 minutes. HIIT intervals targeted 80% heart rate reserve (HRR) and progressed by 10% every 4 weeks up to 100% HRR. The low-intensity intervals targeted 30% HRR.

The traditional MICT protocol for stroke rehabilitation targeted 40% HRR for 20 minutes and progressed by 10% HRR and 5 minutes every 4 weeks, up to 60% HRR for 30 minutes.

The HIIT group’s cardiorespiratory fitness levels (VO2peak) improved twice as much as those of the MICT group: 3.5 mL of oxygen consumed in 1 minute per kg of body weight (mL/kg/min) compared with 1.8 mL/kg/min.

Of note, changes in VO2peak from baseline remained above the clinically important threshold of 1.0 mL/kg/min at 8-week follow-up in the HIIT group (1.71 mL/kg/min) but not in the MICT group (0.67 mL/kg/min).

Both groups increased their 6-minute walk test distances by 8.8 m at 12 weeks and by 18.5 m at 20 weeks. No between-group differences were found for cardiovascular risk or mobility outcomes, and no adverse events occurred in either group.

On average, the HIIT group spent 36% of total training time exercising at intensities above 80% HRR throughout the intervention, while the MICT group spent 42% of time at intensities of 40%-59% HRR.

The study was limited by a small sample size of high-functioning individuals who sustained a mild stroke. Enrollment was halted for 2 years due to the COVID-19 lockdowns, limiting the study’s statistical power.

Nevertheless, the authors concluded, “Given that a lack of time is a significant barrier to the implementation of aerobic exercise in stroke clinical practice, our findings suggest that short-interval HIIT may be an effective alternative to traditional MICT for improving VO2peak after stroke, with potential clinically meaningful benefits sustained in the short-term.”

“Our findings show that a short HIIT protocol is possible in people with stroke, which is exciting to see,” said Tang. “But there are different factors that clinicians should consider before recommending this training for their patients, such as their health status and their physical status. Stroke rehabilitation specialists, including stroke physical therapists, can advise on how to proceed to ensure the safety and effectiveness of HIIT.”
 

 

 

Selected Patients May Benefit

“Broad implementation of this intervention may be premature without further research,” said Ryan Glatt, CPT, senior brain health coach and director of the FitBrain Program at Pacific Neuroscience Institute in Santa Monica, California. “The study focused on relatively high-functioning stroke survivors, which raises questions about the applicability of the results to those with more severe impairments.” Mr. Glatt did not participate in the research.

“Additional studies are needed to confirm whether these findings are applicable to more diverse and severely affected populations and to assess the long-term sustainability of the benefits observed,” he said. “Also, the lack of significant improvements in other critical outcomes, such as mobility, suggests limitations in the broader application of HIIT for stroke rehabilitation.”

“While HIIT shows potential, it should be approached with caution,” Mr. Glatt continued. “It may benefit select patients, but replacing traditional exercise protocols with HIIT should not be done in all cases. More robust evidence and careful consideration of individual patient needs are essential.”

This study was funded by an operating grant from the Canadian Institutes of Health Research. Dr. Tang reported grants from the Canadian Institutes of Health Research, the Physiotherapy Foundation of Canada, and the Heart and Stroke Foundation of Canada. Mr. Glatt declared no relevant financial relationships.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Repeated 1-minute bursts of high-intensity interval training (HIIT) are more effective than conventional moderate, continuous exercise for improving aerobic fitness after stroke, according to a multicenter randomized controlled trial.

“We hoped that we would see improvements in cardiovascular fitness after HIIT and anticipated that these improvements would be greater than in the moderate-intensity group, but we were pleasantly surprised by the degree of improvement we observed,” said Ada Tang, PT, PhD, associate professor of health sciences at McMaster University in Hamilton, Ontario, Canada. “The improvements seen in the HIIT group were twofold higher than in the other group.”

The results were published in Stroke.
 

Clinically Meaningful

Researchers compared the effects of 12 weeks of short-interval HIIT with those of moderate-intensity continuous training (MICT) on peak oxygen uptake (VO2peak), cardiovascular risk factors, and mobility outcomes after stroke.

They randomly assigned participants to receive 3 days per week of HIIT or traditional moderate exercise sessions for 12 weeks. Participants’ mean age was 65 years, and 39% were women. They enrolled at a mean age of 1.8 years after sustaining a mild stroke.

A total of 42 participants were randomized to HIIT and 40 to MICT. There were no significant differences between the groups at baseline, and both groups exercised on adaptive recumbent steppers, which are suitable for stroke survivors with varying abilities.

The short-interval HIIT protocol involved 10 1-minute intervals of high-intensity exercise, interspersed with nine 1-minute low-intensity intervals, for a total of 19 minutes. HIIT intervals targeted 80% heart rate reserve (HRR) and progressed by 10% every 4 weeks up to 100% HRR. The low-intensity intervals targeted 30% HRR.

The traditional MICT protocol for stroke rehabilitation targeted 40% HRR for 20 minutes and progressed by 10% HRR and 5 minutes every 4 weeks, up to 60% HRR for 30 minutes.

The HIIT group’s cardiorespiratory fitness levels (VO2peak) improved twice as much as those of the MICT group: 3.5 mL of oxygen consumed in 1 minute per kg of body weight (mL/kg/min) compared with 1.8 mL/kg/min.

Of note, changes in VO2peak from baseline remained above the clinically important threshold of 1.0 mL/kg/min at 8-week follow-up in the HIIT group (1.71 mL/kg/min) but not in the MICT group (0.67 mL/kg/min).

Both groups increased their 6-minute walk test distances by 8.8 m at 12 weeks and by 18.5 m at 20 weeks. No between-group differences were found for cardiovascular risk or mobility outcomes, and no adverse events occurred in either group.

On average, the HIIT group spent 36% of total training time exercising at intensities above 80% HRR throughout the intervention, while the MICT group spent 42% of time at intensities of 40%-59% HRR.

The study was limited by a small sample size of high-functioning individuals who sustained a mild stroke. Enrollment was halted for 2 years due to the COVID-19 lockdowns, limiting the study’s statistical power.

Nevertheless, the authors concluded, “Given that a lack of time is a significant barrier to the implementation of aerobic exercise in stroke clinical practice, our findings suggest that short-interval HIIT may be an effective alternative to traditional MICT for improving VO2peak after stroke, with potential clinically meaningful benefits sustained in the short-term.”

“Our findings show that a short HIIT protocol is possible in people with stroke, which is exciting to see,” said Tang. “But there are different factors that clinicians should consider before recommending this training for their patients, such as their health status and their physical status. Stroke rehabilitation specialists, including stroke physical therapists, can advise on how to proceed to ensure the safety and effectiveness of HIIT.”
 

 

 

Selected Patients May Benefit

“Broad implementation of this intervention may be premature without further research,” said Ryan Glatt, CPT, senior brain health coach and director of the FitBrain Program at Pacific Neuroscience Institute in Santa Monica, California. “The study focused on relatively high-functioning stroke survivors, which raises questions about the applicability of the results to those with more severe impairments.” Mr. Glatt did not participate in the research.

“Additional studies are needed to confirm whether these findings are applicable to more diverse and severely affected populations and to assess the long-term sustainability of the benefits observed,” he said. “Also, the lack of significant improvements in other critical outcomes, such as mobility, suggests limitations in the broader application of HIIT for stroke rehabilitation.”

“While HIIT shows potential, it should be approached with caution,” Mr. Glatt continued. “It may benefit select patients, but replacing traditional exercise protocols with HIIT should not be done in all cases. More robust evidence and careful consideration of individual patient needs are essential.”

This study was funded by an operating grant from the Canadian Institutes of Health Research. Dr. Tang reported grants from the Canadian Institutes of Health Research, the Physiotherapy Foundation of Canada, and the Heart and Stroke Foundation of Canada. Mr. Glatt declared no relevant financial relationships.
 

A version of this article appeared on Medscape.com.

Repeated 1-minute bursts of high-intensity interval training (HIIT) are more effective than conventional moderate, continuous exercise for improving aerobic fitness after stroke, according to a multicenter randomized controlled trial.

“We hoped that we would see improvements in cardiovascular fitness after HIIT and anticipated that these improvements would be greater than in the moderate-intensity group, but we were pleasantly surprised by the degree of improvement we observed,” said Ada Tang, PT, PhD, associate professor of health sciences at McMaster University in Hamilton, Ontario, Canada. “The improvements seen in the HIIT group were twofold higher than in the other group.”

The results were published in Stroke.
 

Clinically Meaningful

Researchers compared the effects of 12 weeks of short-interval HIIT with those of moderate-intensity continuous training (MICT) on peak oxygen uptake (VO2peak), cardiovascular risk factors, and mobility outcomes after stroke.

They randomly assigned participants to receive 3 days per week of HIIT or traditional moderate exercise sessions for 12 weeks. Participants’ mean age was 65 years, and 39% were women. They enrolled at a mean age of 1.8 years after sustaining a mild stroke.

A total of 42 participants were randomized to HIIT and 40 to MICT. There were no significant differences between the groups at baseline, and both groups exercised on adaptive recumbent steppers, which are suitable for stroke survivors with varying abilities.

The short-interval HIIT protocol involved 10 1-minute intervals of high-intensity exercise, interspersed with nine 1-minute low-intensity intervals, for a total of 19 minutes. HIIT intervals targeted 80% heart rate reserve (HRR) and progressed by 10% every 4 weeks up to 100% HRR. The low-intensity intervals targeted 30% HRR.

The traditional MICT protocol for stroke rehabilitation targeted 40% HRR for 20 minutes and progressed by 10% HRR and 5 minutes every 4 weeks, up to 60% HRR for 30 minutes.

The HIIT group’s cardiorespiratory fitness levels (VO2peak) improved twice as much as those of the MICT group: 3.5 mL of oxygen consumed in 1 minute per kg of body weight (mL/kg/min) compared with 1.8 mL/kg/min.

Of note, changes in VO2peak from baseline remained above the clinically important threshold of 1.0 mL/kg/min at 8-week follow-up in the HIIT group (1.71 mL/kg/min) but not in the MICT group (0.67 mL/kg/min).

Both groups increased their 6-minute walk test distances by 8.8 m at 12 weeks and by 18.5 m at 20 weeks. No between-group differences were found for cardiovascular risk or mobility outcomes, and no adverse events occurred in either group.

On average, the HIIT group spent 36% of total training time exercising at intensities above 80% HRR throughout the intervention, while the MICT group spent 42% of time at intensities of 40%-59% HRR.

The study was limited by a small sample size of high-functioning individuals who sustained a mild stroke. Enrollment was halted for 2 years due to the COVID-19 lockdowns, limiting the study’s statistical power.

Nevertheless, the authors concluded, “Given that a lack of time is a significant barrier to the implementation of aerobic exercise in stroke clinical practice, our findings suggest that short-interval HIIT may be an effective alternative to traditional MICT for improving VO2peak after stroke, with potential clinically meaningful benefits sustained in the short-term.”

“Our findings show that a short HIIT protocol is possible in people with stroke, which is exciting to see,” said Tang. “But there are different factors that clinicians should consider before recommending this training for their patients, such as their health status and their physical status. Stroke rehabilitation specialists, including stroke physical therapists, can advise on how to proceed to ensure the safety and effectiveness of HIIT.”
 

 

 

Selected Patients May Benefit

“Broad implementation of this intervention may be premature without further research,” said Ryan Glatt, CPT, senior brain health coach and director of the FitBrain Program at Pacific Neuroscience Institute in Santa Monica, California. “The study focused on relatively high-functioning stroke survivors, which raises questions about the applicability of the results to those with more severe impairments.” Mr. Glatt did not participate in the research.

“Additional studies are needed to confirm whether these findings are applicable to more diverse and severely affected populations and to assess the long-term sustainability of the benefits observed,” he said. “Also, the lack of significant improvements in other critical outcomes, such as mobility, suggests limitations in the broader application of HIIT for stroke rehabilitation.”

“While HIIT shows potential, it should be approached with caution,” Mr. Glatt continued. “It may benefit select patients, but replacing traditional exercise protocols with HIIT should not be done in all cases. More robust evidence and careful consideration of individual patient needs are essential.”

This study was funded by an operating grant from the Canadian Institutes of Health Research. Dr. Tang reported grants from the Canadian Institutes of Health Research, the Physiotherapy Foundation of Canada, and the Heart and Stroke Foundation of Canada. Mr. Glatt declared no relevant financial relationships.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article