User login
Most Disadvantaged Least Likely to Receive Thrombolysis
, early research shows.
“The findings should serve as an eye-opener that social determinants of health seem to be playing a role in who receives thrombolytic therapy, said study investigator Chanaka Kahathuduwa, MD, PhD, resident physician, Department of Neurology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock.
The findings were released ahead of the study’s scheduled presentation at the annual meeting of the American Academy of Neurology.
Contributor to Poor Outcomes
Social determinants of health are important contributors to poor stroke-related outcomes, the investigators noted. They pointed out that previous research has yielded conflicting results as to the cause.
Whereas some studies suggest poor social determinants of health drive increased stroke incidence, others raise the question of whether there are disparities in acute stroke care.
To investigate, the researchers used a publicly available database and diagnostic and procedure codes to identify patients presenting at emergency departments in Texas from 2016 to 2019 with ischemic stroke who did and did not receive thrombolytic therapy.
“We focused on Texas, which has a very large area but few places where people have easy access to health care, which is a problem,” said study co-investigator Chathurika Dhanasekara, MD, PhD, research assistant professor in the Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center.
The study included 63,983 stroke patients, of whom 51.6% were female, 66.6% were White, and 17.7% were Black. Of these, 7198 (11.2%) received thrombolytic therapy; such therapies include the tissue plasminogen activators (tPAs) alteplase and tenecteplace.
Researchers collected information on social determinants of health such as age, race, gender, insurance type, and residence based on zip codes. They computed risk ratios (RRs) of administering thrombolysis on the basis of these variables.
Results showed that Black patients were less likely than their White counterparts to receive thrombolysis (RR, 0.90; 95% CI, 0.85-0.96). In addition, patients older than 65 years were less likely those aged 18-45 years to receive thrombolysis (RR, 0.47; 95% CI, 0.44-0.51), and rural residents were less likely than urban dwellers to receive the intervention (RR, 0.60; 95% CI, 0.55-0.65).
It makes some sense, the researchers said, that rural stroke patients would be less likely to get thrombolysis because there’s a limited time window — within 4.5 hours — during which this therapy can be given, and such patients may live a long distance from a hospital.
Two other groups less likely to receive thrombolysis were Hispanic persons versus non-Hispanic persons (RR, 0.93; 95% CI, 0.87-0.98) and Medicare/Medicaid/Veterans Administration patients (RR, 0.77; 95% CI, 0.73-0.81) or uninsured patients (RR, 0.90; 95% CI, 0.94-0.87) vs those with private insurance.
Interestingly, male patients were less likely than female patients to receive thrombolysis (RR, 0.95; 95% CI, 0.90-0.99).
Surprising Findings
With the exception of the discrepancy in thrombolysis rates between rural versus urban dwellers, the study’s findings were surprising, said Dr. Kahathuduwa.
Researchers divided participants into quartiles, from least to most disadvantaged, based on the Social Vulnerability Index (SVI), created by the Centers for Disease Control and Prevention to determine social vulnerability or factors that can negatively affect a community’s health.
Among the 7930 individuals in the least disadvantaged group, 1037 received thrombolysis. In comparison, among the 7966 persons in the most disadvantaged group, 964 received thrombolysis.
After adjusting for age, sex, and education, investigators found that patients in the first quartile based on SVI were more likely to be associated with thrombolysis vs those in the second and third quartiles (RR, 1.13; 95% CI, 1.04-1.22).
The researchers also examined the impact of comorbidities using the Charlson Comorbidity Index. Patients with diabetes, hypertension, and high cholesterol in addition to signs of stroke would rouse a higher degree of suspicion and be more likely to be treated with tPA or tenecteplase, said Dr. Kahathuduwa.
“But even when we controlled for those comorbidities, the relationships we identified between health disparities and the likelihood of receiving thrombolysis remained the same,” said Dr. Kahathuduwa.
It’s not clear from this study what factors contribute to the disparities in stroke treatment. “All we know is these relationships exist,” said Dr. Kahathuduwa. “We should use this as a foundation to understand what’s really going on at the grassroots level.”
However, he added, it’s possible that accessibility plays a role. He noted that Lubbock has the only Level 1 stroke center in west Texas; most stroke centers in the state are concentrated in cities in east and central Texas.
The investigators are embarking on further research to assess the impact of determinants of health on receipt of endovascular therapy and the role of stroke severity.
“In an ideal world, all patients who need thrombolytic therapy would get thrombolytic therapy within the recommended time window because the benefits are very clear,” said Dr. Kahathuduwa.
The findings may not be generalizable because they come from a single database. “Our findings need to be validated in another independent dataset before we can confidently determine what’s going on,” said Dr. Kahathuduwa.
A limitation of the study was that it is unknown how many of the participants were seen at the hospital within the recommended time frame and would thus be eligible to receive the treatment.
Commenting on the research, Martinson Arnan, MD , a vascular neurologist at Bronson Neuroscience Center, Kalamazoo, Michigan, said the study’s “exploratory finding” is important and “illuminates the potential impact of social determinants of health on disparities in acute stroke treatment.”
Neurologists consistently emphasize the principle that “time is brain” — that timely restoration of blood flow is crucial for minimizing morbidity associated with ischemic stroke. This study offers a potential opportunity to investigate how social determinants of health may affect stroke care, said Dr. Arnan.
However, he added, further research is needed “to understand whether the differences in outcomes observed here are influenced by levels of health education, concordance between patients and their treating providers, or other issues related to access barriers.”
The investigators and Dr. Arnan report no relevant conflicts of interest.
A version of this article appeared on Medscape.com.
, early research shows.
“The findings should serve as an eye-opener that social determinants of health seem to be playing a role in who receives thrombolytic therapy, said study investigator Chanaka Kahathuduwa, MD, PhD, resident physician, Department of Neurology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock.
The findings were released ahead of the study’s scheduled presentation at the annual meeting of the American Academy of Neurology.
Contributor to Poor Outcomes
Social determinants of health are important contributors to poor stroke-related outcomes, the investigators noted. They pointed out that previous research has yielded conflicting results as to the cause.
Whereas some studies suggest poor social determinants of health drive increased stroke incidence, others raise the question of whether there are disparities in acute stroke care.
To investigate, the researchers used a publicly available database and diagnostic and procedure codes to identify patients presenting at emergency departments in Texas from 2016 to 2019 with ischemic stroke who did and did not receive thrombolytic therapy.
“We focused on Texas, which has a very large area but few places where people have easy access to health care, which is a problem,” said study co-investigator Chathurika Dhanasekara, MD, PhD, research assistant professor in the Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center.
The study included 63,983 stroke patients, of whom 51.6% were female, 66.6% were White, and 17.7% were Black. Of these, 7198 (11.2%) received thrombolytic therapy; such therapies include the tissue plasminogen activators (tPAs) alteplase and tenecteplace.
Researchers collected information on social determinants of health such as age, race, gender, insurance type, and residence based on zip codes. They computed risk ratios (RRs) of administering thrombolysis on the basis of these variables.
Results showed that Black patients were less likely than their White counterparts to receive thrombolysis (RR, 0.90; 95% CI, 0.85-0.96). In addition, patients older than 65 years were less likely those aged 18-45 years to receive thrombolysis (RR, 0.47; 95% CI, 0.44-0.51), and rural residents were less likely than urban dwellers to receive the intervention (RR, 0.60; 95% CI, 0.55-0.65).
It makes some sense, the researchers said, that rural stroke patients would be less likely to get thrombolysis because there’s a limited time window — within 4.5 hours — during which this therapy can be given, and such patients may live a long distance from a hospital.
Two other groups less likely to receive thrombolysis were Hispanic persons versus non-Hispanic persons (RR, 0.93; 95% CI, 0.87-0.98) and Medicare/Medicaid/Veterans Administration patients (RR, 0.77; 95% CI, 0.73-0.81) or uninsured patients (RR, 0.90; 95% CI, 0.94-0.87) vs those with private insurance.
Interestingly, male patients were less likely than female patients to receive thrombolysis (RR, 0.95; 95% CI, 0.90-0.99).
Surprising Findings
With the exception of the discrepancy in thrombolysis rates between rural versus urban dwellers, the study’s findings were surprising, said Dr. Kahathuduwa.
Researchers divided participants into quartiles, from least to most disadvantaged, based on the Social Vulnerability Index (SVI), created by the Centers for Disease Control and Prevention to determine social vulnerability or factors that can negatively affect a community’s health.
Among the 7930 individuals in the least disadvantaged group, 1037 received thrombolysis. In comparison, among the 7966 persons in the most disadvantaged group, 964 received thrombolysis.
After adjusting for age, sex, and education, investigators found that patients in the first quartile based on SVI were more likely to be associated with thrombolysis vs those in the second and third quartiles (RR, 1.13; 95% CI, 1.04-1.22).
The researchers also examined the impact of comorbidities using the Charlson Comorbidity Index. Patients with diabetes, hypertension, and high cholesterol in addition to signs of stroke would rouse a higher degree of suspicion and be more likely to be treated with tPA or tenecteplase, said Dr. Kahathuduwa.
“But even when we controlled for those comorbidities, the relationships we identified between health disparities and the likelihood of receiving thrombolysis remained the same,” said Dr. Kahathuduwa.
It’s not clear from this study what factors contribute to the disparities in stroke treatment. “All we know is these relationships exist,” said Dr. Kahathuduwa. “We should use this as a foundation to understand what’s really going on at the grassroots level.”
However, he added, it’s possible that accessibility plays a role. He noted that Lubbock has the only Level 1 stroke center in west Texas; most stroke centers in the state are concentrated in cities in east and central Texas.
The investigators are embarking on further research to assess the impact of determinants of health on receipt of endovascular therapy and the role of stroke severity.
“In an ideal world, all patients who need thrombolytic therapy would get thrombolytic therapy within the recommended time window because the benefits are very clear,” said Dr. Kahathuduwa.
The findings may not be generalizable because they come from a single database. “Our findings need to be validated in another independent dataset before we can confidently determine what’s going on,” said Dr. Kahathuduwa.
A limitation of the study was that it is unknown how many of the participants were seen at the hospital within the recommended time frame and would thus be eligible to receive the treatment.
Commenting on the research, Martinson Arnan, MD , a vascular neurologist at Bronson Neuroscience Center, Kalamazoo, Michigan, said the study’s “exploratory finding” is important and “illuminates the potential impact of social determinants of health on disparities in acute stroke treatment.”
Neurologists consistently emphasize the principle that “time is brain” — that timely restoration of blood flow is crucial for minimizing morbidity associated with ischemic stroke. This study offers a potential opportunity to investigate how social determinants of health may affect stroke care, said Dr. Arnan.
However, he added, further research is needed “to understand whether the differences in outcomes observed here are influenced by levels of health education, concordance between patients and their treating providers, or other issues related to access barriers.”
The investigators and Dr. Arnan report no relevant conflicts of interest.
A version of this article appeared on Medscape.com.
, early research shows.
“The findings should serve as an eye-opener that social determinants of health seem to be playing a role in who receives thrombolytic therapy, said study investigator Chanaka Kahathuduwa, MD, PhD, resident physician, Department of Neurology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock.
The findings were released ahead of the study’s scheduled presentation at the annual meeting of the American Academy of Neurology.
Contributor to Poor Outcomes
Social determinants of health are important contributors to poor stroke-related outcomes, the investigators noted. They pointed out that previous research has yielded conflicting results as to the cause.
Whereas some studies suggest poor social determinants of health drive increased stroke incidence, others raise the question of whether there are disparities in acute stroke care.
To investigate, the researchers used a publicly available database and diagnostic and procedure codes to identify patients presenting at emergency departments in Texas from 2016 to 2019 with ischemic stroke who did and did not receive thrombolytic therapy.
“We focused on Texas, which has a very large area but few places where people have easy access to health care, which is a problem,” said study co-investigator Chathurika Dhanasekara, MD, PhD, research assistant professor in the Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center.
The study included 63,983 stroke patients, of whom 51.6% were female, 66.6% were White, and 17.7% were Black. Of these, 7198 (11.2%) received thrombolytic therapy; such therapies include the tissue plasminogen activators (tPAs) alteplase and tenecteplace.
Researchers collected information on social determinants of health such as age, race, gender, insurance type, and residence based on zip codes. They computed risk ratios (RRs) of administering thrombolysis on the basis of these variables.
Results showed that Black patients were less likely than their White counterparts to receive thrombolysis (RR, 0.90; 95% CI, 0.85-0.96). In addition, patients older than 65 years were less likely those aged 18-45 years to receive thrombolysis (RR, 0.47; 95% CI, 0.44-0.51), and rural residents were less likely than urban dwellers to receive the intervention (RR, 0.60; 95% CI, 0.55-0.65).
It makes some sense, the researchers said, that rural stroke patients would be less likely to get thrombolysis because there’s a limited time window — within 4.5 hours — during which this therapy can be given, and such patients may live a long distance from a hospital.
Two other groups less likely to receive thrombolysis were Hispanic persons versus non-Hispanic persons (RR, 0.93; 95% CI, 0.87-0.98) and Medicare/Medicaid/Veterans Administration patients (RR, 0.77; 95% CI, 0.73-0.81) or uninsured patients (RR, 0.90; 95% CI, 0.94-0.87) vs those with private insurance.
Interestingly, male patients were less likely than female patients to receive thrombolysis (RR, 0.95; 95% CI, 0.90-0.99).
Surprising Findings
With the exception of the discrepancy in thrombolysis rates between rural versus urban dwellers, the study’s findings were surprising, said Dr. Kahathuduwa.
Researchers divided participants into quartiles, from least to most disadvantaged, based on the Social Vulnerability Index (SVI), created by the Centers for Disease Control and Prevention to determine social vulnerability or factors that can negatively affect a community’s health.
Among the 7930 individuals in the least disadvantaged group, 1037 received thrombolysis. In comparison, among the 7966 persons in the most disadvantaged group, 964 received thrombolysis.
After adjusting for age, sex, and education, investigators found that patients in the first quartile based on SVI were more likely to be associated with thrombolysis vs those in the second and third quartiles (RR, 1.13; 95% CI, 1.04-1.22).
The researchers also examined the impact of comorbidities using the Charlson Comorbidity Index. Patients with diabetes, hypertension, and high cholesterol in addition to signs of stroke would rouse a higher degree of suspicion and be more likely to be treated with tPA or tenecteplase, said Dr. Kahathuduwa.
“But even when we controlled for those comorbidities, the relationships we identified between health disparities and the likelihood of receiving thrombolysis remained the same,” said Dr. Kahathuduwa.
It’s not clear from this study what factors contribute to the disparities in stroke treatment. “All we know is these relationships exist,” said Dr. Kahathuduwa. “We should use this as a foundation to understand what’s really going on at the grassroots level.”
However, he added, it’s possible that accessibility plays a role. He noted that Lubbock has the only Level 1 stroke center in west Texas; most stroke centers in the state are concentrated in cities in east and central Texas.
The investigators are embarking on further research to assess the impact of determinants of health on receipt of endovascular therapy and the role of stroke severity.
“In an ideal world, all patients who need thrombolytic therapy would get thrombolytic therapy within the recommended time window because the benefits are very clear,” said Dr. Kahathuduwa.
The findings may not be generalizable because they come from a single database. “Our findings need to be validated in another independent dataset before we can confidently determine what’s going on,” said Dr. Kahathuduwa.
A limitation of the study was that it is unknown how many of the participants were seen at the hospital within the recommended time frame and would thus be eligible to receive the treatment.
Commenting on the research, Martinson Arnan, MD , a vascular neurologist at Bronson Neuroscience Center, Kalamazoo, Michigan, said the study’s “exploratory finding” is important and “illuminates the potential impact of social determinants of health on disparities in acute stroke treatment.”
Neurologists consistently emphasize the principle that “time is brain” — that timely restoration of blood flow is crucial for minimizing morbidity associated with ischemic stroke. This study offers a potential opportunity to investigate how social determinants of health may affect stroke care, said Dr. Arnan.
However, he added, further research is needed “to understand whether the differences in outcomes observed here are influenced by levels of health education, concordance between patients and their treating providers, or other issues related to access barriers.”
The investigators and Dr. Arnan report no relevant conflicts of interest.
A version of this article appeared on Medscape.com.
FROM AAN 2024
CHIP: The Silent Threat Steps Into the Limelight
While it is increasingly apparent that
Now, researchers at the cutting edge of both oncologic and cardiovascular research are not only defining the prognosis of CHIP with greater granularity but are also finding clues to mitigate the risks.
“It’s a very, very rapidly moving area,” said Christie M. Ballantyne, MD, Director, Center for Cardiometabolic Disease Prevention, Baylor College of Medicine, Houston, adding that, in many respects, “it’s a totally new area.”
CHIP Defined
CHIP was first recognized in the 1990s, when Martin F. Fey, MD, and colleagues from University and Inselspital, Bern, Switzerland, found X-linked inactivation in older women and suggested it was the result of acquired clonality later referred to as being of “indeterminate potential,” although that added syntax is currently a matter of debate.
Further work showed that, while somatic gene mutations occur spontaneously and are an unavoidable consequence of aging, their impact can vary widely.
The majority are “functionally silent,” while others may affect genes crucial to tissue self-renewal and differentiation, Lukasz Gondek, MD, PhD, assistant professor, Johns Hopkins Cellular and Molecular Medicine Program, Baltimore, and colleagues, noted in a recent review.
This results in the outgrowth of affected cells, known as clonal expansion, further dubbed clonal hematopoiesis when it occurs in hematopoietic tissue.
“Even though there’s clonal expansion, there’s no one CHIP,” Dr. Gondek said. “There are different flavors, and it depends on the genes that are mutated in the hematopoietic cells.”
He continued: “The older we get, the more mutations we acquire, and the probability that this mutation will hit the gene that’s responsible for expansion of the clone is higher.”
“That’s why CHIP is very uncommon in people under the age of 40, but it becomes more common in the fifth, sixth, and seventh decade of life and beyond.”
Indeed, it occurs in 10% to 15% of people aged 65 years or older, and in at least 30% of individuals by 80 years of age. In contrast, just 1% of those aged less than 50 years have the condition.
The most commonly affected genes, in around 80% of patients with CHIP, are the epigenetic regulators DNMT3A, TET2, and ASXL1; the DNA damage repair genes PPM1D and TP53; the regulatory tyrosine kinase JAK2; and the messenger RNA spliceosome components SF3B1 and SRSF2.
These mutations can have “two potential consequences,” explained Lachelle D. Weeks, MD, PhD, a hematologist at the Dana-Farber Cancer Institute, Boston.
“One is that there’s a risk of blood cancer development,” as several of the mutations are known drivers of leukemia or myelodysplastic syndromes (MDS).
Although the majority of individuals who acquire clonal hematopoiesis with age will never develop MDS, it nevertheless confers an 11- to 13-fold increased risk or an absolute risk of approximately 0.5%-1.0% per year.
Dr. Weeks continued that “the other side of it, though, is that those cells that have these mutations can also accelerate the risk of developing nonmalignant diseases like cardiovascular disease.”
This, Dr. Gondek explained, is because the mutations will be retained when the stem cells become monocytes or macrophages and, by either silencing or activating individual genes, they can make the cells more pro-inflammatory.
The result is that CHIP is associated with a marked increased risk for arteriosclerotic events such as stroke, myocardial infarction, decompensated heart failure, and cardiogenic shock, and worse outcomes after these events.
Researchers have shown that CHIP-related somatic mutations are associated with a twofold increased risk for coronary heart disease, a more than 2.5-fold increased risk for ischemic stroke, and a fourfold greater risk for myocardial infarction. A study from earlier this year found that CHIP also increases the risk for heart failure with preserved ejection fraction more than twofold.
There is even evidence to suggest that CHIP is associated with more severe acute kidney injury (AKI) and greater post-AKI kidney fibrosis.
The consequence is that individuals with CHIP face a 40% increased risk for all-cause mortality over 8 years.
No CHIP Test Yet
All of which has led for some to call for CHIP testing.
However, there are currently no screening programs for CHIP and no plans to introduce any. “So most CHIP is actually being diagnosed incidentally, when patients get genetic testing for some other indication,” said Dr. Weeks.
“The patients that we see in our CHIP clinic at Dana-Farber have genetic testing because they have low blood counts,” she continued, “and somebody’s trying to figure out: Do you have MDS?”
Other patients have genetic testing due to a family history of other cancers, “and so they’re getting hereditary cancer panels to determine if they have Lynch syndrome, or other hereditary syndromes,” which are picking up gene mutations associated with CHIP.
In other cases, study protocols are identifying CHIP “in various research contexts, and then as a follow-up, some of those patients end up with our clinic,” added Dr. Weeks.
Due to the associated risks for CHIP, “obviously everyone wants to know whether they are at risk for hematologic malignancy, or not,” said Dr. Gondek. To those ends, Dr. Weeks and colleagues developed the clonal hematopoiesis risk score (CHRS).
Published by NEJM Evidence in 2023, the score takes a range of predictive variables, such as age, number of mutations and their degree of associated risk, the variant allele fraction, and a series of blood indices to define patients as low-, intermediate-, or high-risk.
“A little over half” of high-risk individuals “will develop a blood cancer” such as MDS or acute myeloid leukemia (AML)” over the next 10 years, Weeks explained, while “for your intermediate risk folks, in that same time period, 7%-8% of them will develop a blood cancer.”
In low-risk individuals, the 10-year risk for MDS or AML is just 1%.
Dr. Weeks noted the “caveat that there are environmental factors or patient-specific issues that might increase your risk that are not considered in the calculator,” such the presence of hereditary cancer syndromes, “or if you’re getting chemotherapy for other cancers.”
From a cardiology point of view, Dr. Ballantyne said that, above all, “cardiologists need to be aware that some of these people are at increased risk for cardiovascular events.” This prompted a team including Dr. Weeks and Dr. Ballantyne to study whether the CHRS can also predict cardiovascular risk.
They found that people designated low-risk on the score faced an 8% increased risk for all-cause mortality vs individuals without CHIP during a median follow-up of 7 years. This rose to a 12% increase in intermediate-risk individuals.
And those deemed high-risk had a 2.5-fold increased risk for early mortality and a threefold higher risk for cardiovascular death.
Dr. Weeks noted: “We have not done a dedicated study to define a cardiovascular disease-specific calculator for CHIP,” but in the meantime, the CHRS is a “very reasonable way to estimate what someone’s risk of progression or adverse events is for cardiovascular disease.”
For clinicians, however, the key question becomes: What can be done to mitigate the risks, particularly in high-risk individuals?
For malignant conditions, the approach is to monitor patients, although “we and other centers are in the process of developing various interventional clinical trials to test various agents on their ability to improve blood counts, as well as to mitigate the risk of progression to overt blood cancer,” said Dr. Weeks.
Treat CHIP Like Lipoprotein(a)?
As for cardiovascular risk, Dr. Ballantyne believes that, because CHIP is an unmodifiable risk factor, an example to follow could be lipoprotein(a) (LP[a]).
“We don’t have a therapy specifically to target LP(a) yet, but we do know that the things that benefit in general,” he said, such as “taking a statin, lowering blood pressure into the optimal zone, diet ,and exercise.”
“What we do in our clinic, and what others have been doing,” Dr. Weeks added, “is for every patient who comes in and is diagnosed with CHIP, we are referring them to preventative cardiology for very aggressive preventative management.”
Finally, both Dr. Ballantyne and Dr. Weeks agree that there are many potential innovations on the horizon.
“It’s pretty exciting in terms of beginning to understand some of the links between aging, cardiovascular disease, and cancer that we had not been thinking about,” Dr. Ballantyne said.
On the malignant side, Dr. Weeks is already working on a prospective study to determine how the risks associated with CHIP evolve when patients undergo chemotherapy and radiation for other cancers.
“That will be really exciting and will help us to develop a specific calculator in that context,” she said, adding that a cardiovascular-specific calculator “is also coming down the line.”
Dr. Weeks declared relationships with Abbvie, Vertex, and Sobi. Dr. Ballantyne declared a relationship with Ten Sixteen Bio, and funding from the National Heart, Lung, and Blood Institute. No other relevant financial relationships were declared.
A version of this article appeared on Medscape.com.
While it is increasingly apparent that
Now, researchers at the cutting edge of both oncologic and cardiovascular research are not only defining the prognosis of CHIP with greater granularity but are also finding clues to mitigate the risks.
“It’s a very, very rapidly moving area,” said Christie M. Ballantyne, MD, Director, Center for Cardiometabolic Disease Prevention, Baylor College of Medicine, Houston, adding that, in many respects, “it’s a totally new area.”
CHIP Defined
CHIP was first recognized in the 1990s, when Martin F. Fey, MD, and colleagues from University and Inselspital, Bern, Switzerland, found X-linked inactivation in older women and suggested it was the result of acquired clonality later referred to as being of “indeterminate potential,” although that added syntax is currently a matter of debate.
Further work showed that, while somatic gene mutations occur spontaneously and are an unavoidable consequence of aging, their impact can vary widely.
The majority are “functionally silent,” while others may affect genes crucial to tissue self-renewal and differentiation, Lukasz Gondek, MD, PhD, assistant professor, Johns Hopkins Cellular and Molecular Medicine Program, Baltimore, and colleagues, noted in a recent review.
This results in the outgrowth of affected cells, known as clonal expansion, further dubbed clonal hematopoiesis when it occurs in hematopoietic tissue.
“Even though there’s clonal expansion, there’s no one CHIP,” Dr. Gondek said. “There are different flavors, and it depends on the genes that are mutated in the hematopoietic cells.”
He continued: “The older we get, the more mutations we acquire, and the probability that this mutation will hit the gene that’s responsible for expansion of the clone is higher.”
“That’s why CHIP is very uncommon in people under the age of 40, but it becomes more common in the fifth, sixth, and seventh decade of life and beyond.”
Indeed, it occurs in 10% to 15% of people aged 65 years or older, and in at least 30% of individuals by 80 years of age. In contrast, just 1% of those aged less than 50 years have the condition.
The most commonly affected genes, in around 80% of patients with CHIP, are the epigenetic regulators DNMT3A, TET2, and ASXL1; the DNA damage repair genes PPM1D and TP53; the regulatory tyrosine kinase JAK2; and the messenger RNA spliceosome components SF3B1 and SRSF2.
These mutations can have “two potential consequences,” explained Lachelle D. Weeks, MD, PhD, a hematologist at the Dana-Farber Cancer Institute, Boston.
“One is that there’s a risk of blood cancer development,” as several of the mutations are known drivers of leukemia or myelodysplastic syndromes (MDS).
Although the majority of individuals who acquire clonal hematopoiesis with age will never develop MDS, it nevertheless confers an 11- to 13-fold increased risk or an absolute risk of approximately 0.5%-1.0% per year.
Dr. Weeks continued that “the other side of it, though, is that those cells that have these mutations can also accelerate the risk of developing nonmalignant diseases like cardiovascular disease.”
This, Dr. Gondek explained, is because the mutations will be retained when the stem cells become monocytes or macrophages and, by either silencing or activating individual genes, they can make the cells more pro-inflammatory.
The result is that CHIP is associated with a marked increased risk for arteriosclerotic events such as stroke, myocardial infarction, decompensated heart failure, and cardiogenic shock, and worse outcomes after these events.
Researchers have shown that CHIP-related somatic mutations are associated with a twofold increased risk for coronary heart disease, a more than 2.5-fold increased risk for ischemic stroke, and a fourfold greater risk for myocardial infarction. A study from earlier this year found that CHIP also increases the risk for heart failure with preserved ejection fraction more than twofold.
There is even evidence to suggest that CHIP is associated with more severe acute kidney injury (AKI) and greater post-AKI kidney fibrosis.
The consequence is that individuals with CHIP face a 40% increased risk for all-cause mortality over 8 years.
No CHIP Test Yet
All of which has led for some to call for CHIP testing.
However, there are currently no screening programs for CHIP and no plans to introduce any. “So most CHIP is actually being diagnosed incidentally, when patients get genetic testing for some other indication,” said Dr. Weeks.
“The patients that we see in our CHIP clinic at Dana-Farber have genetic testing because they have low blood counts,” she continued, “and somebody’s trying to figure out: Do you have MDS?”
Other patients have genetic testing due to a family history of other cancers, “and so they’re getting hereditary cancer panels to determine if they have Lynch syndrome, or other hereditary syndromes,” which are picking up gene mutations associated with CHIP.
In other cases, study protocols are identifying CHIP “in various research contexts, and then as a follow-up, some of those patients end up with our clinic,” added Dr. Weeks.
Due to the associated risks for CHIP, “obviously everyone wants to know whether they are at risk for hematologic malignancy, or not,” said Dr. Gondek. To those ends, Dr. Weeks and colleagues developed the clonal hematopoiesis risk score (CHRS).
Published by NEJM Evidence in 2023, the score takes a range of predictive variables, such as age, number of mutations and their degree of associated risk, the variant allele fraction, and a series of blood indices to define patients as low-, intermediate-, or high-risk.
“A little over half” of high-risk individuals “will develop a blood cancer” such as MDS or acute myeloid leukemia (AML)” over the next 10 years, Weeks explained, while “for your intermediate risk folks, in that same time period, 7%-8% of them will develop a blood cancer.”
In low-risk individuals, the 10-year risk for MDS or AML is just 1%.
Dr. Weeks noted the “caveat that there are environmental factors or patient-specific issues that might increase your risk that are not considered in the calculator,” such the presence of hereditary cancer syndromes, “or if you’re getting chemotherapy for other cancers.”
From a cardiology point of view, Dr. Ballantyne said that, above all, “cardiologists need to be aware that some of these people are at increased risk for cardiovascular events.” This prompted a team including Dr. Weeks and Dr. Ballantyne to study whether the CHRS can also predict cardiovascular risk.
They found that people designated low-risk on the score faced an 8% increased risk for all-cause mortality vs individuals without CHIP during a median follow-up of 7 years. This rose to a 12% increase in intermediate-risk individuals.
And those deemed high-risk had a 2.5-fold increased risk for early mortality and a threefold higher risk for cardiovascular death.
Dr. Weeks noted: “We have not done a dedicated study to define a cardiovascular disease-specific calculator for CHIP,” but in the meantime, the CHRS is a “very reasonable way to estimate what someone’s risk of progression or adverse events is for cardiovascular disease.”
For clinicians, however, the key question becomes: What can be done to mitigate the risks, particularly in high-risk individuals?
For malignant conditions, the approach is to monitor patients, although “we and other centers are in the process of developing various interventional clinical trials to test various agents on their ability to improve blood counts, as well as to mitigate the risk of progression to overt blood cancer,” said Dr. Weeks.
Treat CHIP Like Lipoprotein(a)?
As for cardiovascular risk, Dr. Ballantyne believes that, because CHIP is an unmodifiable risk factor, an example to follow could be lipoprotein(a) (LP[a]).
“We don’t have a therapy specifically to target LP(a) yet, but we do know that the things that benefit in general,” he said, such as “taking a statin, lowering blood pressure into the optimal zone, diet ,and exercise.”
“What we do in our clinic, and what others have been doing,” Dr. Weeks added, “is for every patient who comes in and is diagnosed with CHIP, we are referring them to preventative cardiology for very aggressive preventative management.”
Finally, both Dr. Ballantyne and Dr. Weeks agree that there are many potential innovations on the horizon.
“It’s pretty exciting in terms of beginning to understand some of the links between aging, cardiovascular disease, and cancer that we had not been thinking about,” Dr. Ballantyne said.
On the malignant side, Dr. Weeks is already working on a prospective study to determine how the risks associated with CHIP evolve when patients undergo chemotherapy and radiation for other cancers.
“That will be really exciting and will help us to develop a specific calculator in that context,” she said, adding that a cardiovascular-specific calculator “is also coming down the line.”
Dr. Weeks declared relationships with Abbvie, Vertex, and Sobi. Dr. Ballantyne declared a relationship with Ten Sixteen Bio, and funding from the National Heart, Lung, and Blood Institute. No other relevant financial relationships were declared.
A version of this article appeared on Medscape.com.
While it is increasingly apparent that
Now, researchers at the cutting edge of both oncologic and cardiovascular research are not only defining the prognosis of CHIP with greater granularity but are also finding clues to mitigate the risks.
“It’s a very, very rapidly moving area,” said Christie M. Ballantyne, MD, Director, Center for Cardiometabolic Disease Prevention, Baylor College of Medicine, Houston, adding that, in many respects, “it’s a totally new area.”
CHIP Defined
CHIP was first recognized in the 1990s, when Martin F. Fey, MD, and colleagues from University and Inselspital, Bern, Switzerland, found X-linked inactivation in older women and suggested it was the result of acquired clonality later referred to as being of “indeterminate potential,” although that added syntax is currently a matter of debate.
Further work showed that, while somatic gene mutations occur spontaneously and are an unavoidable consequence of aging, their impact can vary widely.
The majority are “functionally silent,” while others may affect genes crucial to tissue self-renewal and differentiation, Lukasz Gondek, MD, PhD, assistant professor, Johns Hopkins Cellular and Molecular Medicine Program, Baltimore, and colleagues, noted in a recent review.
This results in the outgrowth of affected cells, known as clonal expansion, further dubbed clonal hematopoiesis when it occurs in hematopoietic tissue.
“Even though there’s clonal expansion, there’s no one CHIP,” Dr. Gondek said. “There are different flavors, and it depends on the genes that are mutated in the hematopoietic cells.”
He continued: “The older we get, the more mutations we acquire, and the probability that this mutation will hit the gene that’s responsible for expansion of the clone is higher.”
“That’s why CHIP is very uncommon in people under the age of 40, but it becomes more common in the fifth, sixth, and seventh decade of life and beyond.”
Indeed, it occurs in 10% to 15% of people aged 65 years or older, and in at least 30% of individuals by 80 years of age. In contrast, just 1% of those aged less than 50 years have the condition.
The most commonly affected genes, in around 80% of patients with CHIP, are the epigenetic regulators DNMT3A, TET2, and ASXL1; the DNA damage repair genes PPM1D and TP53; the regulatory tyrosine kinase JAK2; and the messenger RNA spliceosome components SF3B1 and SRSF2.
These mutations can have “two potential consequences,” explained Lachelle D. Weeks, MD, PhD, a hematologist at the Dana-Farber Cancer Institute, Boston.
“One is that there’s a risk of blood cancer development,” as several of the mutations are known drivers of leukemia or myelodysplastic syndromes (MDS).
Although the majority of individuals who acquire clonal hematopoiesis with age will never develop MDS, it nevertheless confers an 11- to 13-fold increased risk or an absolute risk of approximately 0.5%-1.0% per year.
Dr. Weeks continued that “the other side of it, though, is that those cells that have these mutations can also accelerate the risk of developing nonmalignant diseases like cardiovascular disease.”
This, Dr. Gondek explained, is because the mutations will be retained when the stem cells become monocytes or macrophages and, by either silencing or activating individual genes, they can make the cells more pro-inflammatory.
The result is that CHIP is associated with a marked increased risk for arteriosclerotic events such as stroke, myocardial infarction, decompensated heart failure, and cardiogenic shock, and worse outcomes after these events.
Researchers have shown that CHIP-related somatic mutations are associated with a twofold increased risk for coronary heart disease, a more than 2.5-fold increased risk for ischemic stroke, and a fourfold greater risk for myocardial infarction. A study from earlier this year found that CHIP also increases the risk for heart failure with preserved ejection fraction more than twofold.
There is even evidence to suggest that CHIP is associated with more severe acute kidney injury (AKI) and greater post-AKI kidney fibrosis.
The consequence is that individuals with CHIP face a 40% increased risk for all-cause mortality over 8 years.
No CHIP Test Yet
All of which has led for some to call for CHIP testing.
However, there are currently no screening programs for CHIP and no plans to introduce any. “So most CHIP is actually being diagnosed incidentally, when patients get genetic testing for some other indication,” said Dr. Weeks.
“The patients that we see in our CHIP clinic at Dana-Farber have genetic testing because they have low blood counts,” she continued, “and somebody’s trying to figure out: Do you have MDS?”
Other patients have genetic testing due to a family history of other cancers, “and so they’re getting hereditary cancer panels to determine if they have Lynch syndrome, or other hereditary syndromes,” which are picking up gene mutations associated with CHIP.
In other cases, study protocols are identifying CHIP “in various research contexts, and then as a follow-up, some of those patients end up with our clinic,” added Dr. Weeks.
Due to the associated risks for CHIP, “obviously everyone wants to know whether they are at risk for hematologic malignancy, or not,” said Dr. Gondek. To those ends, Dr. Weeks and colleagues developed the clonal hematopoiesis risk score (CHRS).
Published by NEJM Evidence in 2023, the score takes a range of predictive variables, such as age, number of mutations and their degree of associated risk, the variant allele fraction, and a series of blood indices to define patients as low-, intermediate-, or high-risk.
“A little over half” of high-risk individuals “will develop a blood cancer” such as MDS or acute myeloid leukemia (AML)” over the next 10 years, Weeks explained, while “for your intermediate risk folks, in that same time period, 7%-8% of them will develop a blood cancer.”
In low-risk individuals, the 10-year risk for MDS or AML is just 1%.
Dr. Weeks noted the “caveat that there are environmental factors or patient-specific issues that might increase your risk that are not considered in the calculator,” such the presence of hereditary cancer syndromes, “or if you’re getting chemotherapy for other cancers.”
From a cardiology point of view, Dr. Ballantyne said that, above all, “cardiologists need to be aware that some of these people are at increased risk for cardiovascular events.” This prompted a team including Dr. Weeks and Dr. Ballantyne to study whether the CHRS can also predict cardiovascular risk.
They found that people designated low-risk on the score faced an 8% increased risk for all-cause mortality vs individuals without CHIP during a median follow-up of 7 years. This rose to a 12% increase in intermediate-risk individuals.
And those deemed high-risk had a 2.5-fold increased risk for early mortality and a threefold higher risk for cardiovascular death.
Dr. Weeks noted: “We have not done a dedicated study to define a cardiovascular disease-specific calculator for CHIP,” but in the meantime, the CHRS is a “very reasonable way to estimate what someone’s risk of progression or adverse events is for cardiovascular disease.”
For clinicians, however, the key question becomes: What can be done to mitigate the risks, particularly in high-risk individuals?
For malignant conditions, the approach is to monitor patients, although “we and other centers are in the process of developing various interventional clinical trials to test various agents on their ability to improve blood counts, as well as to mitigate the risk of progression to overt blood cancer,” said Dr. Weeks.
Treat CHIP Like Lipoprotein(a)?
As for cardiovascular risk, Dr. Ballantyne believes that, because CHIP is an unmodifiable risk factor, an example to follow could be lipoprotein(a) (LP[a]).
“We don’t have a therapy specifically to target LP(a) yet, but we do know that the things that benefit in general,” he said, such as “taking a statin, lowering blood pressure into the optimal zone, diet ,and exercise.”
“What we do in our clinic, and what others have been doing,” Dr. Weeks added, “is for every patient who comes in and is diagnosed with CHIP, we are referring them to preventative cardiology for very aggressive preventative management.”
Finally, both Dr. Ballantyne and Dr. Weeks agree that there are many potential innovations on the horizon.
“It’s pretty exciting in terms of beginning to understand some of the links between aging, cardiovascular disease, and cancer that we had not been thinking about,” Dr. Ballantyne said.
On the malignant side, Dr. Weeks is already working on a prospective study to determine how the risks associated with CHIP evolve when patients undergo chemotherapy and radiation for other cancers.
“That will be really exciting and will help us to develop a specific calculator in that context,” she said, adding that a cardiovascular-specific calculator “is also coming down the line.”
Dr. Weeks declared relationships with Abbvie, Vertex, and Sobi. Dr. Ballantyne declared a relationship with Ten Sixteen Bio, and funding from the National Heart, Lung, and Blood Institute. No other relevant financial relationships were declared.
A version of this article appeared on Medscape.com.
Can a Stroke Be Caused by Cervical Manipulation?
Cervical manipulations have been associated with vascular complications. While the incidence of carotid dissections does not seem to have increased, the question remains open for vertebral artery injuries. We must remain vigilant!
Resorting to joint manipulation for neck pain is not unusual. Currently, cervical manipulation remains a popular first-line treatment for cervicodynia or headaches. Although evidence exists showing that specific joint mobilization can improve this type of symptomatology, there is a possibility that it may risk damaging the cervical arteries and causing ischemic stroke through arterial dissection.
Epidemiologically, internal carotid artery dissection is a relatively rare event with an estimated annual incidence of 1.72 per 100,000 individuals (those most likely to be diagnosed being obviously those leading to hospitalization for stroke) but represents one of the most common causes of stroke in young and middle-aged adults. Faced with case reports that may raise concerns and hypotheses about an associated risk, two studies have sought to delve into the issue.
No Increased Carotid Risk Identified
The first study, of a case-cross design, identified all incident cases of ischemic stroke in the territory of the internal carotid artery admitted to the hospital over a 9-year period using administrative healthcare data, the cases being used as their own control by sampling control periods before the date of the index stroke. Thus, 15,523 cases were compared with 62,092 control periods using exposure windows of 1, 3, 7, and 14 days before the stroke. The study also compared post-medical consultation and post-chiropractic consultation outcomes, knowing that as a first-line for complaints of neck pain or headache, patients often turn to one of these two types of primary care clinicians.
However, data analysis shows, among subjects aged under 45 years, positive associations for both different consultations in cases of subsequent carotid stroke (but no association for those aged over 45 years). These associations tended to increase when analyses were limited to visits for diagnoses of neck pain and headaches. Nevertheless, there was no significant difference between risk estimates after chiropractic or general medical consultation.
A notable limitation of this work is that it did not focus on strokes due to vertebral artery dissections that run through the transverse foramina of the cervical vertebrae.
A Screening Test Lacking Precision
More recently, the International Federation of Orthopedic Manual Physical Therapists has looked into the subject to refine the assessment of the risk for vascular complications in patients seeking physiotherapy/osteopathy care for neck pain and/or headaches. Through a cross-sectional study involving 150 patients, it tested a vascular complication risk index (from high to low grade, based on history taking and clinical examination), developed to estimate the risk for the presence of vascular rather than musculoskeletal pathology, to determine whether or not there is a contraindication to cervical manipulation.
However, the developed index had only low sensitivity (0.50; 95% CI, 0.39-0.61) and moderate specificity (0.63; 95% CI, 0.51-0.75), knowing that the reference test was a consensus medical decision made by a vascular neurologist, an interventional neurologist, and a neuroradiologist (based on clinical data and cervical MRI). Similarly, positive and negative likelihood ratios were low at 1.36 (95% CI, 0.93-1.99) and 0.79 (95% CI, 0.60-1.05), respectively.
In conclusion, the data from the case-cross study did not seem to demonstrate an excess risk for stroke in the territory of the internal carotid artery after cervical joint manipulations. Associations between cervical manipulation sessions or medical consultations and carotid strokes appear similar and could have been due to the fact that patients with early symptoms related to arterial dissection seek care before developing their stroke.
However, it is regrettable that the study did not focus on vertebral artery dissections, which are anatomically more exposed to cervical chiropractic sessions. Nevertheless, because indices defined from joint tests and medical history are insufficient to identify patients “at risk or in the process of arterial dissection,” and because stroke can result in severe disability, practitioners managing patients with neck pain cannot take this type of complication lightly.
This story was translated from JIM using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.
Cervical manipulations have been associated with vascular complications. While the incidence of carotid dissections does not seem to have increased, the question remains open for vertebral artery injuries. We must remain vigilant!
Resorting to joint manipulation for neck pain is not unusual. Currently, cervical manipulation remains a popular first-line treatment for cervicodynia or headaches. Although evidence exists showing that specific joint mobilization can improve this type of symptomatology, there is a possibility that it may risk damaging the cervical arteries and causing ischemic stroke through arterial dissection.
Epidemiologically, internal carotid artery dissection is a relatively rare event with an estimated annual incidence of 1.72 per 100,000 individuals (those most likely to be diagnosed being obviously those leading to hospitalization for stroke) but represents one of the most common causes of stroke in young and middle-aged adults. Faced with case reports that may raise concerns and hypotheses about an associated risk, two studies have sought to delve into the issue.
No Increased Carotid Risk Identified
The first study, of a case-cross design, identified all incident cases of ischemic stroke in the territory of the internal carotid artery admitted to the hospital over a 9-year period using administrative healthcare data, the cases being used as their own control by sampling control periods before the date of the index stroke. Thus, 15,523 cases were compared with 62,092 control periods using exposure windows of 1, 3, 7, and 14 days before the stroke. The study also compared post-medical consultation and post-chiropractic consultation outcomes, knowing that as a first-line for complaints of neck pain or headache, patients often turn to one of these two types of primary care clinicians.
However, data analysis shows, among subjects aged under 45 years, positive associations for both different consultations in cases of subsequent carotid stroke (but no association for those aged over 45 years). These associations tended to increase when analyses were limited to visits for diagnoses of neck pain and headaches. Nevertheless, there was no significant difference between risk estimates after chiropractic or general medical consultation.
A notable limitation of this work is that it did not focus on strokes due to vertebral artery dissections that run through the transverse foramina of the cervical vertebrae.
A Screening Test Lacking Precision
More recently, the International Federation of Orthopedic Manual Physical Therapists has looked into the subject to refine the assessment of the risk for vascular complications in patients seeking physiotherapy/osteopathy care for neck pain and/or headaches. Through a cross-sectional study involving 150 patients, it tested a vascular complication risk index (from high to low grade, based on history taking and clinical examination), developed to estimate the risk for the presence of vascular rather than musculoskeletal pathology, to determine whether or not there is a contraindication to cervical manipulation.
However, the developed index had only low sensitivity (0.50; 95% CI, 0.39-0.61) and moderate specificity (0.63; 95% CI, 0.51-0.75), knowing that the reference test was a consensus medical decision made by a vascular neurologist, an interventional neurologist, and a neuroradiologist (based on clinical data and cervical MRI). Similarly, positive and negative likelihood ratios were low at 1.36 (95% CI, 0.93-1.99) and 0.79 (95% CI, 0.60-1.05), respectively.
In conclusion, the data from the case-cross study did not seem to demonstrate an excess risk for stroke in the territory of the internal carotid artery after cervical joint manipulations. Associations between cervical manipulation sessions or medical consultations and carotid strokes appear similar and could have been due to the fact that patients with early symptoms related to arterial dissection seek care before developing their stroke.
However, it is regrettable that the study did not focus on vertebral artery dissections, which are anatomically more exposed to cervical chiropractic sessions. Nevertheless, because indices defined from joint tests and medical history are insufficient to identify patients “at risk or in the process of arterial dissection,” and because stroke can result in severe disability, practitioners managing patients with neck pain cannot take this type of complication lightly.
This story was translated from JIM using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.
Cervical manipulations have been associated with vascular complications. While the incidence of carotid dissections does not seem to have increased, the question remains open for vertebral artery injuries. We must remain vigilant!
Resorting to joint manipulation for neck pain is not unusual. Currently, cervical manipulation remains a popular first-line treatment for cervicodynia or headaches. Although evidence exists showing that specific joint mobilization can improve this type of symptomatology, there is a possibility that it may risk damaging the cervical arteries and causing ischemic stroke through arterial dissection.
Epidemiologically, internal carotid artery dissection is a relatively rare event with an estimated annual incidence of 1.72 per 100,000 individuals (those most likely to be diagnosed being obviously those leading to hospitalization for stroke) but represents one of the most common causes of stroke in young and middle-aged adults. Faced with case reports that may raise concerns and hypotheses about an associated risk, two studies have sought to delve into the issue.
No Increased Carotid Risk Identified
The first study, of a case-cross design, identified all incident cases of ischemic stroke in the territory of the internal carotid artery admitted to the hospital over a 9-year period using administrative healthcare data, the cases being used as their own control by sampling control periods before the date of the index stroke. Thus, 15,523 cases were compared with 62,092 control periods using exposure windows of 1, 3, 7, and 14 days before the stroke. The study also compared post-medical consultation and post-chiropractic consultation outcomes, knowing that as a first-line for complaints of neck pain or headache, patients often turn to one of these two types of primary care clinicians.
However, data analysis shows, among subjects aged under 45 years, positive associations for both different consultations in cases of subsequent carotid stroke (but no association for those aged over 45 years). These associations tended to increase when analyses were limited to visits for diagnoses of neck pain and headaches. Nevertheless, there was no significant difference between risk estimates after chiropractic or general medical consultation.
A notable limitation of this work is that it did not focus on strokes due to vertebral artery dissections that run through the transverse foramina of the cervical vertebrae.
A Screening Test Lacking Precision
More recently, the International Federation of Orthopedic Manual Physical Therapists has looked into the subject to refine the assessment of the risk for vascular complications in patients seeking physiotherapy/osteopathy care for neck pain and/or headaches. Through a cross-sectional study involving 150 patients, it tested a vascular complication risk index (from high to low grade, based on history taking and clinical examination), developed to estimate the risk for the presence of vascular rather than musculoskeletal pathology, to determine whether or not there is a contraindication to cervical manipulation.
However, the developed index had only low sensitivity (0.50; 95% CI, 0.39-0.61) and moderate specificity (0.63; 95% CI, 0.51-0.75), knowing that the reference test was a consensus medical decision made by a vascular neurologist, an interventional neurologist, and a neuroradiologist (based on clinical data and cervical MRI). Similarly, positive and negative likelihood ratios were low at 1.36 (95% CI, 0.93-1.99) and 0.79 (95% CI, 0.60-1.05), respectively.
In conclusion, the data from the case-cross study did not seem to demonstrate an excess risk for stroke in the territory of the internal carotid artery after cervical joint manipulations. Associations between cervical manipulation sessions or medical consultations and carotid strokes appear similar and could have been due to the fact that patients with early symptoms related to arterial dissection seek care before developing their stroke.
However, it is regrettable that the study did not focus on vertebral artery dissections, which are anatomically more exposed to cervical chiropractic sessions. Nevertheless, because indices defined from joint tests and medical history are insufficient to identify patients “at risk or in the process of arterial dissection,” and because stroke can result in severe disability, practitioners managing patients with neck pain cannot take this type of complication lightly.
This story was translated from JIM using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.
Neurological Disorders Now Top Global Cause of Illness, Disability
, a new comprehensive analysis showed.
In 2021, neurological conditions were responsible for 443 million years of healthy life lost due to illness, disability, and premature death — a measurement known as disability-adjusted life years (DALY) — making them the top contributor to the global disease burden, ahead of cardiovascular diseases.
Some 3.4 billion people — 43% of the entire global population — had a neurological illness in 2021, the report noted.
“As the world’s leading cause of overall disease burden, and with case numbers rising 59% globally since 1990, nervous system conditions must be addressed through effective, culturally acceptable, and affordable prevention, treatment, rehabilitation, and long-term care strategies,” lead author Jaimie Steinmetz, PhD, from the Institute of Health Metrics and Evaluation (IHME), University of Washington, Seattle, said in a news release.
The findings, from the Global Burden of Disease, Injuries, and Risk Factors Study (GBD) 2021, “have important health service and policy implications and serve as evidence that global neurological heath loss has been under-recognized and is increasing and unevenly distributed geographically and socioeconomically,” the authors noted.
The study was published online in The Lancet: Neurology.
The Top 10
The top 10 contributors to neurological health loss in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer’s disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications from preterm birth, autistic spectrum disorders, and nervous system cancers.
Neurological consequences of COVID-19 ranked 20th out of 37 unique conditions assessed.
In 2021, there were more than 23 million global cases of COVID-19 with long-term cognitive symptoms or Guillain-Barré syndrome, accounting for 57% of all infectious neurological disease cases and contributing to 2.48 million years of healthy life lost, the study found.
The most prevalent neurological disorders were tension-type headache (about 2 billion cases) and migraine (about 1.1 billion cases), while diabetic neuropathy is the fastest-growing of all neurological conditions.
“The number of people with diabetic neuropathy has more than tripled globally since 1990, rising to 206 million in 2021. This is in line with the increase in the global prevalence of diabetes,” co-senior author Liane Ong, PhD, from IHME, said in the release.
The data showed striking differences in the burden of neurological conditions between world regions and national income levels, with over 80% of neurological deaths and health loss occurring in low- and middle-income countries.
Regions with the highest burden of neurological conditions were central and western sub-Saharan Africa, while high-income Asia Pacific and Australasia had the lowest burden.
“Nervous system health loss disproportionately impacts many of the poorest countries partly due to the higher prevalence of conditions affecting neonates and children under 5, especially birth-related complications and infections,” co-senior author Tarun Dua, MD, with the World Health Organization (WHO) brain health unit, noted in the news release.
“Improved infant survival has led to an increase in long-term disability, while limited access to treatment and rehabilitation services is contributing to the much higher proportion of deaths in these countries,” Dr. Dua said.
Prioritize Prevention
The analysis also provides estimates of the proportion of neurological conditions that are potentially preventable by eliminating known risk factors for stroke, dementia, multiple sclerosis, Parkinson’s disease, encephalitis, meningitis, and intellectual disability.
It shows that modifying 18 risk factors over a person’s lifetime — most importantly high systolic blood pressure — could prevent 84% of global DALYs from stroke. Controlling lead exposure could lower intellectual disability cases by 63% and reducing high fasting plasma glucose to normal levels could cut dementia by roughly 15%.
“Because many neurological conditions lack cures, and access to medical care is often limited, understanding modifiable risk factors and the potentially avoidable neurological condition burden is essential to help curb this global health crisis,” co-lead author Katrin Seeher, PhD, mental health specialist with WHO’s brain health unit, said in the release.
It’s important to note that nervous system conditions include infectious and vector-borne diseases and injuries as well as noncommunicable diseases and injuries, Dr. Steinmetz said, “demanding different strategies for prevention and treatment throughout life.”
“We hope that our findings can help policymakers more comprehensively understand the impact of neurological conditions on both adults and children to inform more targeted interventions in individual countries, as well as guide ongoing awareness and advocacy efforts around the world,” Dr. Steinmetz added.
In an accompanying editorial, Wolfgang Grisold, MD, president of the World Federation of Neurology, London, noted that the study builds on previous findings and expands the number of neurological conditions studied from 15 to 37.
“This important new GBD report highlights that the burden of neurological conditions is greater than previously thought,” wrote Dr. Grisold, who was not a part of the study. “In the next iteration, more attention should be given to neuromuscular diseases, the effects of cancer in the nervous system, and neuropathic pain. Comparing the disability caused by conditions with episodic occurrence versus those that cause permanent and progressive disease will remain challenging because the effects on the individuals vary substantially.”
The study was funded by the Bill and Melinda Gates Foundation. Full disclosures are included in the original article.
A version of this article appeared on Medscape.com.
, a new comprehensive analysis showed.
In 2021, neurological conditions were responsible for 443 million years of healthy life lost due to illness, disability, and premature death — a measurement known as disability-adjusted life years (DALY) — making them the top contributor to the global disease burden, ahead of cardiovascular diseases.
Some 3.4 billion people — 43% of the entire global population — had a neurological illness in 2021, the report noted.
“As the world’s leading cause of overall disease burden, and with case numbers rising 59% globally since 1990, nervous system conditions must be addressed through effective, culturally acceptable, and affordable prevention, treatment, rehabilitation, and long-term care strategies,” lead author Jaimie Steinmetz, PhD, from the Institute of Health Metrics and Evaluation (IHME), University of Washington, Seattle, said in a news release.
The findings, from the Global Burden of Disease, Injuries, and Risk Factors Study (GBD) 2021, “have important health service and policy implications and serve as evidence that global neurological heath loss has been under-recognized and is increasing and unevenly distributed geographically and socioeconomically,” the authors noted.
The study was published online in The Lancet: Neurology.
The Top 10
The top 10 contributors to neurological health loss in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer’s disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications from preterm birth, autistic spectrum disorders, and nervous system cancers.
Neurological consequences of COVID-19 ranked 20th out of 37 unique conditions assessed.
In 2021, there were more than 23 million global cases of COVID-19 with long-term cognitive symptoms or Guillain-Barré syndrome, accounting for 57% of all infectious neurological disease cases and contributing to 2.48 million years of healthy life lost, the study found.
The most prevalent neurological disorders were tension-type headache (about 2 billion cases) and migraine (about 1.1 billion cases), while diabetic neuropathy is the fastest-growing of all neurological conditions.
“The number of people with diabetic neuropathy has more than tripled globally since 1990, rising to 206 million in 2021. This is in line with the increase in the global prevalence of diabetes,” co-senior author Liane Ong, PhD, from IHME, said in the release.
The data showed striking differences in the burden of neurological conditions between world regions and national income levels, with over 80% of neurological deaths and health loss occurring in low- and middle-income countries.
Regions with the highest burden of neurological conditions were central and western sub-Saharan Africa, while high-income Asia Pacific and Australasia had the lowest burden.
“Nervous system health loss disproportionately impacts many of the poorest countries partly due to the higher prevalence of conditions affecting neonates and children under 5, especially birth-related complications and infections,” co-senior author Tarun Dua, MD, with the World Health Organization (WHO) brain health unit, noted in the news release.
“Improved infant survival has led to an increase in long-term disability, while limited access to treatment and rehabilitation services is contributing to the much higher proportion of deaths in these countries,” Dr. Dua said.
Prioritize Prevention
The analysis also provides estimates of the proportion of neurological conditions that are potentially preventable by eliminating known risk factors for stroke, dementia, multiple sclerosis, Parkinson’s disease, encephalitis, meningitis, and intellectual disability.
It shows that modifying 18 risk factors over a person’s lifetime — most importantly high systolic blood pressure — could prevent 84% of global DALYs from stroke. Controlling lead exposure could lower intellectual disability cases by 63% and reducing high fasting plasma glucose to normal levels could cut dementia by roughly 15%.
“Because many neurological conditions lack cures, and access to medical care is often limited, understanding modifiable risk factors and the potentially avoidable neurological condition burden is essential to help curb this global health crisis,” co-lead author Katrin Seeher, PhD, mental health specialist with WHO’s brain health unit, said in the release.
It’s important to note that nervous system conditions include infectious and vector-borne diseases and injuries as well as noncommunicable diseases and injuries, Dr. Steinmetz said, “demanding different strategies for prevention and treatment throughout life.”
“We hope that our findings can help policymakers more comprehensively understand the impact of neurological conditions on both adults and children to inform more targeted interventions in individual countries, as well as guide ongoing awareness and advocacy efforts around the world,” Dr. Steinmetz added.
In an accompanying editorial, Wolfgang Grisold, MD, president of the World Federation of Neurology, London, noted that the study builds on previous findings and expands the number of neurological conditions studied from 15 to 37.
“This important new GBD report highlights that the burden of neurological conditions is greater than previously thought,” wrote Dr. Grisold, who was not a part of the study. “In the next iteration, more attention should be given to neuromuscular diseases, the effects of cancer in the nervous system, and neuropathic pain. Comparing the disability caused by conditions with episodic occurrence versus those that cause permanent and progressive disease will remain challenging because the effects on the individuals vary substantially.”
The study was funded by the Bill and Melinda Gates Foundation. Full disclosures are included in the original article.
A version of this article appeared on Medscape.com.
, a new comprehensive analysis showed.
In 2021, neurological conditions were responsible for 443 million years of healthy life lost due to illness, disability, and premature death — a measurement known as disability-adjusted life years (DALY) — making them the top contributor to the global disease burden, ahead of cardiovascular diseases.
Some 3.4 billion people — 43% of the entire global population — had a neurological illness in 2021, the report noted.
“As the world’s leading cause of overall disease burden, and with case numbers rising 59% globally since 1990, nervous system conditions must be addressed through effective, culturally acceptable, and affordable prevention, treatment, rehabilitation, and long-term care strategies,” lead author Jaimie Steinmetz, PhD, from the Institute of Health Metrics and Evaluation (IHME), University of Washington, Seattle, said in a news release.
The findings, from the Global Burden of Disease, Injuries, and Risk Factors Study (GBD) 2021, “have important health service and policy implications and serve as evidence that global neurological heath loss has been under-recognized and is increasing and unevenly distributed geographically and socioeconomically,” the authors noted.
The study was published online in The Lancet: Neurology.
The Top 10
The top 10 contributors to neurological health loss in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer’s disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications from preterm birth, autistic spectrum disorders, and nervous system cancers.
Neurological consequences of COVID-19 ranked 20th out of 37 unique conditions assessed.
In 2021, there were more than 23 million global cases of COVID-19 with long-term cognitive symptoms or Guillain-Barré syndrome, accounting for 57% of all infectious neurological disease cases and contributing to 2.48 million years of healthy life lost, the study found.
The most prevalent neurological disorders were tension-type headache (about 2 billion cases) and migraine (about 1.1 billion cases), while diabetic neuropathy is the fastest-growing of all neurological conditions.
“The number of people with diabetic neuropathy has more than tripled globally since 1990, rising to 206 million in 2021. This is in line with the increase in the global prevalence of diabetes,” co-senior author Liane Ong, PhD, from IHME, said in the release.
The data showed striking differences in the burden of neurological conditions between world regions and national income levels, with over 80% of neurological deaths and health loss occurring in low- and middle-income countries.
Regions with the highest burden of neurological conditions were central and western sub-Saharan Africa, while high-income Asia Pacific and Australasia had the lowest burden.
“Nervous system health loss disproportionately impacts many of the poorest countries partly due to the higher prevalence of conditions affecting neonates and children under 5, especially birth-related complications and infections,” co-senior author Tarun Dua, MD, with the World Health Organization (WHO) brain health unit, noted in the news release.
“Improved infant survival has led to an increase in long-term disability, while limited access to treatment and rehabilitation services is contributing to the much higher proportion of deaths in these countries,” Dr. Dua said.
Prioritize Prevention
The analysis also provides estimates of the proportion of neurological conditions that are potentially preventable by eliminating known risk factors for stroke, dementia, multiple sclerosis, Parkinson’s disease, encephalitis, meningitis, and intellectual disability.
It shows that modifying 18 risk factors over a person’s lifetime — most importantly high systolic blood pressure — could prevent 84% of global DALYs from stroke. Controlling lead exposure could lower intellectual disability cases by 63% and reducing high fasting plasma glucose to normal levels could cut dementia by roughly 15%.
“Because many neurological conditions lack cures, and access to medical care is often limited, understanding modifiable risk factors and the potentially avoidable neurological condition burden is essential to help curb this global health crisis,” co-lead author Katrin Seeher, PhD, mental health specialist with WHO’s brain health unit, said in the release.
It’s important to note that nervous system conditions include infectious and vector-borne diseases and injuries as well as noncommunicable diseases and injuries, Dr. Steinmetz said, “demanding different strategies for prevention and treatment throughout life.”
“We hope that our findings can help policymakers more comprehensively understand the impact of neurological conditions on both adults and children to inform more targeted interventions in individual countries, as well as guide ongoing awareness and advocacy efforts around the world,” Dr. Steinmetz added.
In an accompanying editorial, Wolfgang Grisold, MD, president of the World Federation of Neurology, London, noted that the study builds on previous findings and expands the number of neurological conditions studied from 15 to 37.
“This important new GBD report highlights that the burden of neurological conditions is greater than previously thought,” wrote Dr. Grisold, who was not a part of the study. “In the next iteration, more attention should be given to neuromuscular diseases, the effects of cancer in the nervous system, and neuropathic pain. Comparing the disability caused by conditions with episodic occurrence versus those that cause permanent and progressive disease will remain challenging because the effects on the individuals vary substantially.”
The study was funded by the Bill and Melinda Gates Foundation. Full disclosures are included in the original article.
A version of this article appeared on Medscape.com.
FROM THE LANCET NEUROLOGY
Obstructive Sleep Apnea Linked to Higher Stroke Risk
TOPLINE:
Obstructive sleep apnea (OSA) is associated with a significantly higher risk for stroke — regardless of continuous positive airway pressure (CPAP) device use — but only in White individuals, new data suggested. The study also found that stroke risk among Black individuals with OSA was lower in those who used CPAP machines vs those who didn›t.
METHODOLOGY:
- Researchers used data on 22,192 people from the Reasons for Geographic and Racial Differences in Stroke study, a US population-based cohort of Black and White individuals with no history of stroke at baseline (mean age, 64 years; 38% Black individuals).
- 11% of overall participants had provider diagnosed OSA at baseline.
- Participants were followed for a mean of 12 years.
- Researchers adjusted for demographic, socioeconomic, and stroke risk factors.
TAKEAWAY:
- During the follow-up period, 969 participants (4.4%) experienced a stroke.
- After adjusting for confounders, having high OSA risk and diagnosed OSA were associated with higher risks for incident stroke in White individuals (adjusted hazard ratio [aHR], 1.22; 95% CI, 1.01-1.47 and aHR, 1.33; 95% CI, 1.04-1.70, respectively) but not in Black individuals.
- Snoring was not associated with incident stroke in either Black or White individuals.
- Snoring was not associated with incident stroke in either Black or White individuals.
IN PRACTICE:
“These results were not what we were expecting to find since Black people have been shown to have a higher risk of stroke and are more likely to have sleep apnea than White people,” lead author Rebecca Robbins, MMSc, PhD, of Brigham and Women’s Hospital in Boston, Massachusetts, said in a news release. “Since it has been shown that Black people have more severe sleep apnea than White people and take longer to be screened and treated than White people, it’s possible that using a CPAP machine provides a greater benefit on reducing stroke risk for Black people.”
SOURCE:
Robbins was the lead and corresponding author of the study. It was published online in Neurology.
LIMITATIONS:
The current study assessed only self-reported OSA symptoms, risk, diagnosis, and treatment and did not include data on the hours of CPAP usage at night, number of days of treatment, adherence during the follow-up period, and OSA severity.
DISCLOSURES:
The study was funded by the National Institute of Neurological Disorders and Stroke and the National Institute on Aging. Robbins received consulting income from Sonesta Hotels International, Oura Ring Ltd., Savoir Beds Ltd., Castle Hot Springs, and ByNacht GmbH. The other authors’ disclosures are listed in the original paper.
A version of this article appeared on Medscape.com.
TOPLINE:
Obstructive sleep apnea (OSA) is associated with a significantly higher risk for stroke — regardless of continuous positive airway pressure (CPAP) device use — but only in White individuals, new data suggested. The study also found that stroke risk among Black individuals with OSA was lower in those who used CPAP machines vs those who didn›t.
METHODOLOGY:
- Researchers used data on 22,192 people from the Reasons for Geographic and Racial Differences in Stroke study, a US population-based cohort of Black and White individuals with no history of stroke at baseline (mean age, 64 years; 38% Black individuals).
- 11% of overall participants had provider diagnosed OSA at baseline.
- Participants were followed for a mean of 12 years.
- Researchers adjusted for demographic, socioeconomic, and stroke risk factors.
TAKEAWAY:
- During the follow-up period, 969 participants (4.4%) experienced a stroke.
- After adjusting for confounders, having high OSA risk and diagnosed OSA were associated with higher risks for incident stroke in White individuals (adjusted hazard ratio [aHR], 1.22; 95% CI, 1.01-1.47 and aHR, 1.33; 95% CI, 1.04-1.70, respectively) but not in Black individuals.
- Snoring was not associated with incident stroke in either Black or White individuals.
- Snoring was not associated with incident stroke in either Black or White individuals.
IN PRACTICE:
“These results were not what we were expecting to find since Black people have been shown to have a higher risk of stroke and are more likely to have sleep apnea than White people,” lead author Rebecca Robbins, MMSc, PhD, of Brigham and Women’s Hospital in Boston, Massachusetts, said in a news release. “Since it has been shown that Black people have more severe sleep apnea than White people and take longer to be screened and treated than White people, it’s possible that using a CPAP machine provides a greater benefit on reducing stroke risk for Black people.”
SOURCE:
Robbins was the lead and corresponding author of the study. It was published online in Neurology.
LIMITATIONS:
The current study assessed only self-reported OSA symptoms, risk, diagnosis, and treatment and did not include data on the hours of CPAP usage at night, number of days of treatment, adherence during the follow-up period, and OSA severity.
DISCLOSURES:
The study was funded by the National Institute of Neurological Disorders and Stroke and the National Institute on Aging. Robbins received consulting income from Sonesta Hotels International, Oura Ring Ltd., Savoir Beds Ltd., Castle Hot Springs, and ByNacht GmbH. The other authors’ disclosures are listed in the original paper.
A version of this article appeared on Medscape.com.
TOPLINE:
Obstructive sleep apnea (OSA) is associated with a significantly higher risk for stroke — regardless of continuous positive airway pressure (CPAP) device use — but only in White individuals, new data suggested. The study also found that stroke risk among Black individuals with OSA was lower in those who used CPAP machines vs those who didn›t.
METHODOLOGY:
- Researchers used data on 22,192 people from the Reasons for Geographic and Racial Differences in Stroke study, a US population-based cohort of Black and White individuals with no history of stroke at baseline (mean age, 64 years; 38% Black individuals).
- 11% of overall participants had provider diagnosed OSA at baseline.
- Participants were followed for a mean of 12 years.
- Researchers adjusted for demographic, socioeconomic, and stroke risk factors.
TAKEAWAY:
- During the follow-up period, 969 participants (4.4%) experienced a stroke.
- After adjusting for confounders, having high OSA risk and diagnosed OSA were associated with higher risks for incident stroke in White individuals (adjusted hazard ratio [aHR], 1.22; 95% CI, 1.01-1.47 and aHR, 1.33; 95% CI, 1.04-1.70, respectively) but not in Black individuals.
- Snoring was not associated with incident stroke in either Black or White individuals.
- Snoring was not associated with incident stroke in either Black or White individuals.
IN PRACTICE:
“These results were not what we were expecting to find since Black people have been shown to have a higher risk of stroke and are more likely to have sleep apnea than White people,” lead author Rebecca Robbins, MMSc, PhD, of Brigham and Women’s Hospital in Boston, Massachusetts, said in a news release. “Since it has been shown that Black people have more severe sleep apnea than White people and take longer to be screened and treated than White people, it’s possible that using a CPAP machine provides a greater benefit on reducing stroke risk for Black people.”
SOURCE:
Robbins was the lead and corresponding author of the study. It was published online in Neurology.
LIMITATIONS:
The current study assessed only self-reported OSA symptoms, risk, diagnosis, and treatment and did not include data on the hours of CPAP usage at night, number of days of treatment, adherence during the follow-up period, and OSA severity.
DISCLOSURES:
The study was funded by the National Institute of Neurological Disorders and Stroke and the National Institute on Aging. Robbins received consulting income from Sonesta Hotels International, Oura Ring Ltd., Savoir Beds Ltd., Castle Hot Springs, and ByNacht GmbH. The other authors’ disclosures are listed in the original paper.
A version of this article appeared on Medscape.com.
How Does Snoring Affect Cardiovascular Health?
Snoring is a common disorder that affects 20%-40% of the general population. The mechanism of snoring is the vibration of anatomical structures in the pharyngeal airways. The flutter of the soft palate explains the harsh aspect of the snoring sound, which occurs during natural sleep or drug-induced sleep. The presentation of snoring may vary throughout the night or between nights, with a subjective, and therefore inconsistent, assessment of its loudness.
Objective evaluation of snoring is important for clinical decision-making and predicting the effect of therapeutic interventions. It also provides information regarding the site and degree of upper airway obstruction. Snoring is one of the main features of sleep-disordered breathing, including hypopnea events, which reflect partial upper airway obstruction.
Obstructive sleep apnea (OSA) is characterized by episodes of complete (apnea) or partial (hypopnea) collapse of the upper airways with associated oxygen desaturation or awakening from sleep. Most patients with OSA snore loudly almost every night. However, in the Sleep Heart Health Study, one-third of participants with OSA reported no snoring, while one-third of snoring participants did not meet the criteria for OSA. Therefore, subjective assessments of snoring (self-reported) may not be sufficiently reliable to assess its potential impact on cardiovascular (CV) health outcomes.
CV Effects
OSA has been hypothesized as a modifiable risk factor for CV diseases (CVD), including hypertension, coronary artery disease (CAD), atrial fibrillation, heart failure, and stroke, primarily because of the results of traditional observational studies. Snoring is reported as a symptom of the early stage of OSA and has also been associated with a higher risk for CVD. However, establishing causality based on observational studies is difficult because of residual confounding from unknown or unmeasured factors and reverse causality (i.e., the scenario in which CVD increases the risk for OSA or snoring). A Mendelian randomization study, using the natural random allocation of genetic variants as instruments capable of producing results analogous to those of randomized controlled trials, suggested that OSA and snoring increase the risk for hypertension and CAD, with associations partly driven by body mass index (BMI). Conversely, no evidence was found that CVD causally influenced OSA or snoring.
Snoring has been associated with multiple subclinical markers of CV pathology, including high blood pressure, and loud snoring can interfere with restorative sleep and contribute to the risk for hypertension and other adverse outcomes in snorers. However, evidence on the associations between snoring and CV health outcomes remains limited and is primarily based on subjective assessments of snoring or small clinical samples with objective assessments of snoring for only 1 night.
Snoring and Hypertension
A study of 12,287 middle-aged patients (age, 50 years) who were predominantly males (88%) and generally overweight (BMI, 28 kg/m2) determined the prevalence of snoring and its association with the prevalence of hypertension using objective evaluation of snoring over multiple nights and multiple daytime blood pressure measurements. The findings included the following observations:
An increase in snoring duration was associated with a 3-mmHg increase in systolic (SBP) and a 4 mmHg increase in diastolic blood pressure (DBP) in patients with frequent and regular snoring, compared with those with infrequent snoring, regardless of age, BMI, sex, and estimated apnea/hypopnea index.
The association between severe OSA alone and blood pressure had an effect size similar to that of the association between snoring alone and blood pressure. In a model where OSA severity was classified and snoring duration was stratified into quartiles, severe OSA without snoring was associated with 3.6 mmHg higher SBP and 3.5 mmHg higher DBP, compared with the absence of snoring or OSA. Participants without OSA but with intense snoring (4th quartile) had 3.8 mmHg higher SBP and 4.5 mmHg higher DBP compared with participants without nighttime apnea or snoring.
Snoring was significantly associated with uncontrolled hypertension. There was a 20% increase in the probability of uncontrolled hypertension in subjects aged > 50 years with obesity and a 98% increase in subjects aged ≤ 50 years with normal BMI.
Duration of snoring was associated with an 87% increase in the likelihood of uncontrolled hypertension.
Implications for Practice
This study indicates that 15% of a predominantly overweight male population snore for > 20% of the night and about 10% of these subjects without nighttime apnea snore for > 12% of the night.
Regular nighttime snoring is associated with elevated blood pressure and uncontrolled hypertension, regardless of the presence or severity of OSA.
Physicians must be aware of the potential consequences of snoring on the risk for hypertension, and these results highlight the need to consider snoring in clinical care and in the management of sleep problems, especially in the context of managing arterial hypertension.
This story was translated from Univadis Italy, which is part of the Medscape professional network, using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.
Snoring is a common disorder that affects 20%-40% of the general population. The mechanism of snoring is the vibration of anatomical structures in the pharyngeal airways. The flutter of the soft palate explains the harsh aspect of the snoring sound, which occurs during natural sleep or drug-induced sleep. The presentation of snoring may vary throughout the night or between nights, with a subjective, and therefore inconsistent, assessment of its loudness.
Objective evaluation of snoring is important for clinical decision-making and predicting the effect of therapeutic interventions. It also provides information regarding the site and degree of upper airway obstruction. Snoring is one of the main features of sleep-disordered breathing, including hypopnea events, which reflect partial upper airway obstruction.
Obstructive sleep apnea (OSA) is characterized by episodes of complete (apnea) or partial (hypopnea) collapse of the upper airways with associated oxygen desaturation or awakening from sleep. Most patients with OSA snore loudly almost every night. However, in the Sleep Heart Health Study, one-third of participants with OSA reported no snoring, while one-third of snoring participants did not meet the criteria for OSA. Therefore, subjective assessments of snoring (self-reported) may not be sufficiently reliable to assess its potential impact on cardiovascular (CV) health outcomes.
CV Effects
OSA has been hypothesized as a modifiable risk factor for CV diseases (CVD), including hypertension, coronary artery disease (CAD), atrial fibrillation, heart failure, and stroke, primarily because of the results of traditional observational studies. Snoring is reported as a symptom of the early stage of OSA and has also been associated with a higher risk for CVD. However, establishing causality based on observational studies is difficult because of residual confounding from unknown or unmeasured factors and reverse causality (i.e., the scenario in which CVD increases the risk for OSA or snoring). A Mendelian randomization study, using the natural random allocation of genetic variants as instruments capable of producing results analogous to those of randomized controlled trials, suggested that OSA and snoring increase the risk for hypertension and CAD, with associations partly driven by body mass index (BMI). Conversely, no evidence was found that CVD causally influenced OSA or snoring.
Snoring has been associated with multiple subclinical markers of CV pathology, including high blood pressure, and loud snoring can interfere with restorative sleep and contribute to the risk for hypertension and other adverse outcomes in snorers. However, evidence on the associations between snoring and CV health outcomes remains limited and is primarily based on subjective assessments of snoring or small clinical samples with objective assessments of snoring for only 1 night.
Snoring and Hypertension
A study of 12,287 middle-aged patients (age, 50 years) who were predominantly males (88%) and generally overweight (BMI, 28 kg/m2) determined the prevalence of snoring and its association with the prevalence of hypertension using objective evaluation of snoring over multiple nights and multiple daytime blood pressure measurements. The findings included the following observations:
An increase in snoring duration was associated with a 3-mmHg increase in systolic (SBP) and a 4 mmHg increase in diastolic blood pressure (DBP) in patients with frequent and regular snoring, compared with those with infrequent snoring, regardless of age, BMI, sex, and estimated apnea/hypopnea index.
The association between severe OSA alone and blood pressure had an effect size similar to that of the association between snoring alone and blood pressure. In a model where OSA severity was classified and snoring duration was stratified into quartiles, severe OSA without snoring was associated with 3.6 mmHg higher SBP and 3.5 mmHg higher DBP, compared with the absence of snoring or OSA. Participants without OSA but with intense snoring (4th quartile) had 3.8 mmHg higher SBP and 4.5 mmHg higher DBP compared with participants without nighttime apnea or snoring.
Snoring was significantly associated with uncontrolled hypertension. There was a 20% increase in the probability of uncontrolled hypertension in subjects aged > 50 years with obesity and a 98% increase in subjects aged ≤ 50 years with normal BMI.
Duration of snoring was associated with an 87% increase in the likelihood of uncontrolled hypertension.
Implications for Practice
This study indicates that 15% of a predominantly overweight male population snore for > 20% of the night and about 10% of these subjects without nighttime apnea snore for > 12% of the night.
Regular nighttime snoring is associated with elevated blood pressure and uncontrolled hypertension, regardless of the presence or severity of OSA.
Physicians must be aware of the potential consequences of snoring on the risk for hypertension, and these results highlight the need to consider snoring in clinical care and in the management of sleep problems, especially in the context of managing arterial hypertension.
This story was translated from Univadis Italy, which is part of the Medscape professional network, using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.
Snoring is a common disorder that affects 20%-40% of the general population. The mechanism of snoring is the vibration of anatomical structures in the pharyngeal airways. The flutter of the soft palate explains the harsh aspect of the snoring sound, which occurs during natural sleep or drug-induced sleep. The presentation of snoring may vary throughout the night or between nights, with a subjective, and therefore inconsistent, assessment of its loudness.
Objective evaluation of snoring is important for clinical decision-making and predicting the effect of therapeutic interventions. It also provides information regarding the site and degree of upper airway obstruction. Snoring is one of the main features of sleep-disordered breathing, including hypopnea events, which reflect partial upper airway obstruction.
Obstructive sleep apnea (OSA) is characterized by episodes of complete (apnea) or partial (hypopnea) collapse of the upper airways with associated oxygen desaturation or awakening from sleep. Most patients with OSA snore loudly almost every night. However, in the Sleep Heart Health Study, one-third of participants with OSA reported no snoring, while one-third of snoring participants did not meet the criteria for OSA. Therefore, subjective assessments of snoring (self-reported) may not be sufficiently reliable to assess its potential impact on cardiovascular (CV) health outcomes.
CV Effects
OSA has been hypothesized as a modifiable risk factor for CV diseases (CVD), including hypertension, coronary artery disease (CAD), atrial fibrillation, heart failure, and stroke, primarily because of the results of traditional observational studies. Snoring is reported as a symptom of the early stage of OSA and has also been associated with a higher risk for CVD. However, establishing causality based on observational studies is difficult because of residual confounding from unknown or unmeasured factors and reverse causality (i.e., the scenario in which CVD increases the risk for OSA or snoring). A Mendelian randomization study, using the natural random allocation of genetic variants as instruments capable of producing results analogous to those of randomized controlled trials, suggested that OSA and snoring increase the risk for hypertension and CAD, with associations partly driven by body mass index (BMI). Conversely, no evidence was found that CVD causally influenced OSA or snoring.
Snoring has been associated with multiple subclinical markers of CV pathology, including high blood pressure, and loud snoring can interfere with restorative sleep and contribute to the risk for hypertension and other adverse outcomes in snorers. However, evidence on the associations between snoring and CV health outcomes remains limited and is primarily based on subjective assessments of snoring or small clinical samples with objective assessments of snoring for only 1 night.
Snoring and Hypertension
A study of 12,287 middle-aged patients (age, 50 years) who were predominantly males (88%) and generally overweight (BMI, 28 kg/m2) determined the prevalence of snoring and its association with the prevalence of hypertension using objective evaluation of snoring over multiple nights and multiple daytime blood pressure measurements. The findings included the following observations:
An increase in snoring duration was associated with a 3-mmHg increase in systolic (SBP) and a 4 mmHg increase in diastolic blood pressure (DBP) in patients with frequent and regular snoring, compared with those with infrequent snoring, regardless of age, BMI, sex, and estimated apnea/hypopnea index.
The association between severe OSA alone and blood pressure had an effect size similar to that of the association between snoring alone and blood pressure. In a model where OSA severity was classified and snoring duration was stratified into quartiles, severe OSA without snoring was associated with 3.6 mmHg higher SBP and 3.5 mmHg higher DBP, compared with the absence of snoring or OSA. Participants without OSA but with intense snoring (4th quartile) had 3.8 mmHg higher SBP and 4.5 mmHg higher DBP compared with participants without nighttime apnea or snoring.
Snoring was significantly associated with uncontrolled hypertension. There was a 20% increase in the probability of uncontrolled hypertension in subjects aged > 50 years with obesity and a 98% increase in subjects aged ≤ 50 years with normal BMI.
Duration of snoring was associated with an 87% increase in the likelihood of uncontrolled hypertension.
Implications for Practice
This study indicates that 15% of a predominantly overweight male population snore for > 20% of the night and about 10% of these subjects without nighttime apnea snore for > 12% of the night.
Regular nighttime snoring is associated with elevated blood pressure and uncontrolled hypertension, regardless of the presence or severity of OSA.
Physicians must be aware of the potential consequences of snoring on the risk for hypertension, and these results highlight the need to consider snoring in clinical care and in the management of sleep problems, especially in the context of managing arterial hypertension.
This story was translated from Univadis Italy, which is part of the Medscape professional network, using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.
Does worsening metabolic syndrome increase the risk of developing cancer?
The conditions that comprise metabolic syndrome (high blood pressure, high blood sugar, increased abdominal adiposity, and high cholesterol and triglycerides) have been associated with an increased risk of diseases, including heart disease, stroke, and type 2 diabetes, wrote Li Deng, PhD, of Capital Medical University, Beijing, China, and colleagues.
A systematic review and meta-analysis published in Diabetes Care in 2012 showed an association between the presence of metabolic syndrome and an increased risk of various cancers including liver, bladder, pancreatic, breast, and colorectal.
More recently, a 2019 study published in Diabetes showed evidence of increased risk for certain cancers (pancreatic, kidney, uterine, cervical) but no increased risk for cancer overall.
However, the reasons for this association between metabolic syndrome and cancer remain unclear, and the effect of the fluctuating nature of metabolic syndrome over time on long-term cancer risk has not been explored, the researchers wrote.
What Does New Study Add to Other Research on Metabolic Syndrome and Cancer Risk?
In the new study, published in Cancer on March 11 (doi: 10.1002/cncr.35235), 44,115 adults in China were separated into four trajectories based on metabolic syndrome scores for the period from 2006 to 2010. The scores were based on clinical evidence of metabolic syndrome, defined using the International Diabetes Federation criteria of central obesity and the presence of at least two other factors including increased triglycerides, decreased HDL cholesterol, high blood pressure (or treatment for previously diagnosed hypertension), and increased fasting plasma glucose (or previous diagnosis of type 2 diabetes).
The average age of the participants was 49 years. The four trajectories of metabolic syndrome were low-stable (10.56% of participants), moderate-low (40.84%), moderate-high (41.46%), and elevated-increasing (7.14%), based on trends from the individuals’ initial physical exams on entering the study.
Over a median follow-up period of 9.4 years (from 2010 to 2021), 2,271 cancer diagnoses were reported in the study population. Those with an elevated-increasing metabolic syndrome trajectory had 1.3 times the risk of any cancer compared with those in the low-stable group. Risk for breast cancer, endometrial cancer, kidney cancer, colorectal cancer, and liver cancer in the highest trajectory group were 2.1, 3.3, 4.5, 2.5, and 1.6 times higher, respectively, compared to the lowest group. The increased risk in the elevated-trajectory group for all cancer types persisted when the low-stable, moderate-low, and moderate-high trajectory pattern groups were combined.
The researchers also examined the impact of chronic inflammation and found that individuals with persistently high metabolic syndrome scores and concurrent chronic inflammation had the highest risks of breast, endometrial, colon, and liver cancer. However, individuals with persistently high metabolic syndrome scores and no concurrent chronic inflammation had the highest risk of kidney cancer.
What Are the Limitations of This Research?
The researchers of the current study acknowledged the lack of information on other causes of cancer, including dietary habits, hepatitis C infection, and Helicobacter pylori infection. Other limitations include the focus only on individuals from a single community of mainly middle-aged men in China that may not generalize to other populations.
Also, the metabolic syndrome trajectories did not change much over time, which may be related to the short 4-year study period.
What Is the Takeaway Message for Clinical Practice?
The results suggest that monitoring and managing metabolic syndrome could help reduce cancer risk, the researchers concluded.
“This research suggests that proactive and continuous management of metabolic syndrome may serve as an essential strategy in preventing cancer,” senior author Han-Ping Shi, MD, PhD, of Capital Medical University in Beijing, said in a press release accompanying the study.
More research is needed to assess the impact of these interventions on cancer risk, he noted. However, the data from the current study can guide future research that may lead to more targeted treatments and more effective preventive strategies, he said in a statement.
The study was supported by the National Key Research and Development Program of China. The researchers had no financial conflicts to disclose.
The conditions that comprise metabolic syndrome (high blood pressure, high blood sugar, increased abdominal adiposity, and high cholesterol and triglycerides) have been associated with an increased risk of diseases, including heart disease, stroke, and type 2 diabetes, wrote Li Deng, PhD, of Capital Medical University, Beijing, China, and colleagues.
A systematic review and meta-analysis published in Diabetes Care in 2012 showed an association between the presence of metabolic syndrome and an increased risk of various cancers including liver, bladder, pancreatic, breast, and colorectal.
More recently, a 2019 study published in Diabetes showed evidence of increased risk for certain cancers (pancreatic, kidney, uterine, cervical) but no increased risk for cancer overall.
However, the reasons for this association between metabolic syndrome and cancer remain unclear, and the effect of the fluctuating nature of metabolic syndrome over time on long-term cancer risk has not been explored, the researchers wrote.
What Does New Study Add to Other Research on Metabolic Syndrome and Cancer Risk?
In the new study, published in Cancer on March 11 (doi: 10.1002/cncr.35235), 44,115 adults in China were separated into four trajectories based on metabolic syndrome scores for the period from 2006 to 2010. The scores were based on clinical evidence of metabolic syndrome, defined using the International Diabetes Federation criteria of central obesity and the presence of at least two other factors including increased triglycerides, decreased HDL cholesterol, high blood pressure (or treatment for previously diagnosed hypertension), and increased fasting plasma glucose (or previous diagnosis of type 2 diabetes).
The average age of the participants was 49 years. The four trajectories of metabolic syndrome were low-stable (10.56% of participants), moderate-low (40.84%), moderate-high (41.46%), and elevated-increasing (7.14%), based on trends from the individuals’ initial physical exams on entering the study.
Over a median follow-up period of 9.4 years (from 2010 to 2021), 2,271 cancer diagnoses were reported in the study population. Those with an elevated-increasing metabolic syndrome trajectory had 1.3 times the risk of any cancer compared with those in the low-stable group. Risk for breast cancer, endometrial cancer, kidney cancer, colorectal cancer, and liver cancer in the highest trajectory group were 2.1, 3.3, 4.5, 2.5, and 1.6 times higher, respectively, compared to the lowest group. The increased risk in the elevated-trajectory group for all cancer types persisted when the low-stable, moderate-low, and moderate-high trajectory pattern groups were combined.
The researchers also examined the impact of chronic inflammation and found that individuals with persistently high metabolic syndrome scores and concurrent chronic inflammation had the highest risks of breast, endometrial, colon, and liver cancer. However, individuals with persistently high metabolic syndrome scores and no concurrent chronic inflammation had the highest risk of kidney cancer.
What Are the Limitations of This Research?
The researchers of the current study acknowledged the lack of information on other causes of cancer, including dietary habits, hepatitis C infection, and Helicobacter pylori infection. Other limitations include the focus only on individuals from a single community of mainly middle-aged men in China that may not generalize to other populations.
Also, the metabolic syndrome trajectories did not change much over time, which may be related to the short 4-year study period.
What Is the Takeaway Message for Clinical Practice?
The results suggest that monitoring and managing metabolic syndrome could help reduce cancer risk, the researchers concluded.
“This research suggests that proactive and continuous management of metabolic syndrome may serve as an essential strategy in preventing cancer,” senior author Han-Ping Shi, MD, PhD, of Capital Medical University in Beijing, said in a press release accompanying the study.
More research is needed to assess the impact of these interventions on cancer risk, he noted. However, the data from the current study can guide future research that may lead to more targeted treatments and more effective preventive strategies, he said in a statement.
The study was supported by the National Key Research and Development Program of China. The researchers had no financial conflicts to disclose.
The conditions that comprise metabolic syndrome (high blood pressure, high blood sugar, increased abdominal adiposity, and high cholesterol and triglycerides) have been associated with an increased risk of diseases, including heart disease, stroke, and type 2 diabetes, wrote Li Deng, PhD, of Capital Medical University, Beijing, China, and colleagues.
A systematic review and meta-analysis published in Diabetes Care in 2012 showed an association between the presence of metabolic syndrome and an increased risk of various cancers including liver, bladder, pancreatic, breast, and colorectal.
More recently, a 2019 study published in Diabetes showed evidence of increased risk for certain cancers (pancreatic, kidney, uterine, cervical) but no increased risk for cancer overall.
However, the reasons for this association between metabolic syndrome and cancer remain unclear, and the effect of the fluctuating nature of metabolic syndrome over time on long-term cancer risk has not been explored, the researchers wrote.
What Does New Study Add to Other Research on Metabolic Syndrome and Cancer Risk?
In the new study, published in Cancer on March 11 (doi: 10.1002/cncr.35235), 44,115 adults in China were separated into four trajectories based on metabolic syndrome scores for the period from 2006 to 2010. The scores were based on clinical evidence of metabolic syndrome, defined using the International Diabetes Federation criteria of central obesity and the presence of at least two other factors including increased triglycerides, decreased HDL cholesterol, high blood pressure (or treatment for previously diagnosed hypertension), and increased fasting plasma glucose (or previous diagnosis of type 2 diabetes).
The average age of the participants was 49 years. The four trajectories of metabolic syndrome were low-stable (10.56% of participants), moderate-low (40.84%), moderate-high (41.46%), and elevated-increasing (7.14%), based on trends from the individuals’ initial physical exams on entering the study.
Over a median follow-up period of 9.4 years (from 2010 to 2021), 2,271 cancer diagnoses were reported in the study population. Those with an elevated-increasing metabolic syndrome trajectory had 1.3 times the risk of any cancer compared with those in the low-stable group. Risk for breast cancer, endometrial cancer, kidney cancer, colorectal cancer, and liver cancer in the highest trajectory group were 2.1, 3.3, 4.5, 2.5, and 1.6 times higher, respectively, compared to the lowest group. The increased risk in the elevated-trajectory group for all cancer types persisted when the low-stable, moderate-low, and moderate-high trajectory pattern groups were combined.
The researchers also examined the impact of chronic inflammation and found that individuals with persistently high metabolic syndrome scores and concurrent chronic inflammation had the highest risks of breast, endometrial, colon, and liver cancer. However, individuals with persistently high metabolic syndrome scores and no concurrent chronic inflammation had the highest risk of kidney cancer.
What Are the Limitations of This Research?
The researchers of the current study acknowledged the lack of information on other causes of cancer, including dietary habits, hepatitis C infection, and Helicobacter pylori infection. Other limitations include the focus only on individuals from a single community of mainly middle-aged men in China that may not generalize to other populations.
Also, the metabolic syndrome trajectories did not change much over time, which may be related to the short 4-year study period.
What Is the Takeaway Message for Clinical Practice?
The results suggest that monitoring and managing metabolic syndrome could help reduce cancer risk, the researchers concluded.
“This research suggests that proactive and continuous management of metabolic syndrome may serve as an essential strategy in preventing cancer,” senior author Han-Ping Shi, MD, PhD, of Capital Medical University in Beijing, said in a press release accompanying the study.
More research is needed to assess the impact of these interventions on cancer risk, he noted. However, the data from the current study can guide future research that may lead to more targeted treatments and more effective preventive strategies, he said in a statement.
The study was supported by the National Key Research and Development Program of China. The researchers had no financial conflicts to disclose.
FROM CANCER
Promising New Wearable Could Retrain the Brain After Stroke
A new and deceptively simple advance in chronic stroke treatment could be a vibrating glove.
Researchers at Stanford University and Georgia Tech have developed a wearable device that straps around the wrist and hand, delivering subtle vibrations (akin to a vibrating cellphone) that may relieve spasticity as well as or better than the standard Botox injections.
“The vibro-tactile stimulation can be used at home, and we’re hoping it can be relatively low cost,” said senior study author Allison Okamura, PhD, a mechanical engineer at Stanford University, Stanford, California.
For now, the device is available only to clinical trial patients. But the researchers hope to get the glove into — or rather onto — more patients’ hands within a few years. A recent grant from the National Science Foundation’s Convergence Accelerator program could help pave the way to a commercial product. The team also hopes to expand access in the meantime through larger clinical trials with patients in additional locations.
The work builds on accumulating research exploring vibration and other stimulation therapies as treatments for neurological conditions. Other vibrating gloves have helped reduce involuntary movement for patients with Parkinson’s. And the University of Kansas Medical Center, Kansas City, will soon trial the Food and Drug Administration–approved vagal nerve stimulator, an implantable device intended to treat motor function in stroke survivors. Dr. Okamura noted that devices use “different types of vibration patterns and intensities,” depending on the disease state they target.
Spasticity often develops or worsens months after a stroke. By then, patients may have run out of insurance coverage for rehabilitation. And the effectiveness of Botox injections can “wear out over time,” Dr. Okamura said.
In a clinical trial, patients wore the device for 3 hours a day for 8 weeks, while doing their usual activities. The researchers continued testing their spasticity for 2 more weeks.
How Vibro-Tactile Stimulation May Rewire the Brain
The device originated at Georgia Tech, where Dr. Okamura’s postdoctoral research fellow Caitlyn Seim, PhD, was using vibro-tactile stimulation (VTS) to teach people skills, such as playing the piano, using touch-feedback training. The team decided to target spasticity, which VTS had helped in previousstudies of in-clinic (non-wearable) devices.
How does the device work? The researchers point to neuroplasticity, the ability of neurons to create new synapses or strengthen existing ones in the brain.
“The stimulation is sending additional sensory signals to the brain, which helps the brain interpret and reconnect any lost circuits,” Dr. Okamura said.
Spasticity is driven by “an imbalance in the excitatory drive to the muscles,” she continued. This can lead to worsening contractions, until a hand closes into a fist or a foot curls up. (The team has also done preliminary research on a similar device for foot spasticity, which they hope to continue developing.) Previous studies by Okamura and others suggest that vibration stimulation may prevent these contractions, both in the short and long term.
“Immediately, we do see some softening of the muscles,” Dr. Okamura said. “But in our longer-term study, where we compared to Botox, I also think that the vibration may be retraining the brain to send inhibitory signals. And that can restore balance that’s lost due to the damaged neural circuits from a stroke.”
When the team did a separate study comparing the effects of muscle and skin stimulation, they hypothesized that the vibration could be having a biomechanical effect on the muscle. Instead, they found that stimulating the skin had a greater impact — a “somewhat unexpected” result, Dr. Okamura said. That led them to the brain.
“Stimulating the skin is really about creating sensory signals that get sent to the brain,” Dr. Okamura said, “which is why we think it’s actually a brain-retraining effect and not a direct biomechanical effect.”
What’s Next?
The researchers are seeking funding for longer-term clinical studies to find out if effects persist beyond 2 weeks. They also want to explore how long and often patients should wear the glove for best results.
The researchers also want to study how movement might enhance the effects of the device.
“One of the treatments for spasticity — medications aside, this vibration machine aside — is more exercise, more passive range of motion,” said Oluwole O. Awosika, MD, associate professor at the University of Cincinnati College of Medicine, who was not involved in the study. “It would have been nice to have a control group that didn’t get any of this stimulation or that was only encouraged to do 3 hours of movement a day. What would the difference be?”
Dr. Awosika also wondered how easy it would be for stroke patients without in-home assistance to use the device. “Sometimes wearing these devices requires someone to put it on,” he said.
Of course, if all goes well, patients wouldn’t have to deal with that forever. “The dream would be that you reach true rehabilitation, which is no longer needing the device,” Dr. Okamura said.
A version of this article appeared on Medscape.com.
A new and deceptively simple advance in chronic stroke treatment could be a vibrating glove.
Researchers at Stanford University and Georgia Tech have developed a wearable device that straps around the wrist and hand, delivering subtle vibrations (akin to a vibrating cellphone) that may relieve spasticity as well as or better than the standard Botox injections.
“The vibro-tactile stimulation can be used at home, and we’re hoping it can be relatively low cost,” said senior study author Allison Okamura, PhD, a mechanical engineer at Stanford University, Stanford, California.
For now, the device is available only to clinical trial patients. But the researchers hope to get the glove into — or rather onto — more patients’ hands within a few years. A recent grant from the National Science Foundation’s Convergence Accelerator program could help pave the way to a commercial product. The team also hopes to expand access in the meantime through larger clinical trials with patients in additional locations.
The work builds on accumulating research exploring vibration and other stimulation therapies as treatments for neurological conditions. Other vibrating gloves have helped reduce involuntary movement for patients with Parkinson’s. And the University of Kansas Medical Center, Kansas City, will soon trial the Food and Drug Administration–approved vagal nerve stimulator, an implantable device intended to treat motor function in stroke survivors. Dr. Okamura noted that devices use “different types of vibration patterns and intensities,” depending on the disease state they target.
Spasticity often develops or worsens months after a stroke. By then, patients may have run out of insurance coverage for rehabilitation. And the effectiveness of Botox injections can “wear out over time,” Dr. Okamura said.
In a clinical trial, patients wore the device for 3 hours a day for 8 weeks, while doing their usual activities. The researchers continued testing their spasticity for 2 more weeks.
How Vibro-Tactile Stimulation May Rewire the Brain
The device originated at Georgia Tech, where Dr. Okamura’s postdoctoral research fellow Caitlyn Seim, PhD, was using vibro-tactile stimulation (VTS) to teach people skills, such as playing the piano, using touch-feedback training. The team decided to target spasticity, which VTS had helped in previousstudies of in-clinic (non-wearable) devices.
How does the device work? The researchers point to neuroplasticity, the ability of neurons to create new synapses or strengthen existing ones in the brain.
“The stimulation is sending additional sensory signals to the brain, which helps the brain interpret and reconnect any lost circuits,” Dr. Okamura said.
Spasticity is driven by “an imbalance in the excitatory drive to the muscles,” she continued. This can lead to worsening contractions, until a hand closes into a fist or a foot curls up. (The team has also done preliminary research on a similar device for foot spasticity, which they hope to continue developing.) Previous studies by Okamura and others suggest that vibration stimulation may prevent these contractions, both in the short and long term.
“Immediately, we do see some softening of the muscles,” Dr. Okamura said. “But in our longer-term study, where we compared to Botox, I also think that the vibration may be retraining the brain to send inhibitory signals. And that can restore balance that’s lost due to the damaged neural circuits from a stroke.”
When the team did a separate study comparing the effects of muscle and skin stimulation, they hypothesized that the vibration could be having a biomechanical effect on the muscle. Instead, they found that stimulating the skin had a greater impact — a “somewhat unexpected” result, Dr. Okamura said. That led them to the brain.
“Stimulating the skin is really about creating sensory signals that get sent to the brain,” Dr. Okamura said, “which is why we think it’s actually a brain-retraining effect and not a direct biomechanical effect.”
What’s Next?
The researchers are seeking funding for longer-term clinical studies to find out if effects persist beyond 2 weeks. They also want to explore how long and often patients should wear the glove for best results.
The researchers also want to study how movement might enhance the effects of the device.
“One of the treatments for spasticity — medications aside, this vibration machine aside — is more exercise, more passive range of motion,” said Oluwole O. Awosika, MD, associate professor at the University of Cincinnati College of Medicine, who was not involved in the study. “It would have been nice to have a control group that didn’t get any of this stimulation or that was only encouraged to do 3 hours of movement a day. What would the difference be?”
Dr. Awosika also wondered how easy it would be for stroke patients without in-home assistance to use the device. “Sometimes wearing these devices requires someone to put it on,” he said.
Of course, if all goes well, patients wouldn’t have to deal with that forever. “The dream would be that you reach true rehabilitation, which is no longer needing the device,” Dr. Okamura said.
A version of this article appeared on Medscape.com.
A new and deceptively simple advance in chronic stroke treatment could be a vibrating glove.
Researchers at Stanford University and Georgia Tech have developed a wearable device that straps around the wrist and hand, delivering subtle vibrations (akin to a vibrating cellphone) that may relieve spasticity as well as or better than the standard Botox injections.
“The vibro-tactile stimulation can be used at home, and we’re hoping it can be relatively low cost,” said senior study author Allison Okamura, PhD, a mechanical engineer at Stanford University, Stanford, California.
For now, the device is available only to clinical trial patients. But the researchers hope to get the glove into — or rather onto — more patients’ hands within a few years. A recent grant from the National Science Foundation’s Convergence Accelerator program could help pave the way to a commercial product. The team also hopes to expand access in the meantime through larger clinical trials with patients in additional locations.
The work builds on accumulating research exploring vibration and other stimulation therapies as treatments for neurological conditions. Other vibrating gloves have helped reduce involuntary movement for patients with Parkinson’s. And the University of Kansas Medical Center, Kansas City, will soon trial the Food and Drug Administration–approved vagal nerve stimulator, an implantable device intended to treat motor function in stroke survivors. Dr. Okamura noted that devices use “different types of vibration patterns and intensities,” depending on the disease state they target.
Spasticity often develops or worsens months after a stroke. By then, patients may have run out of insurance coverage for rehabilitation. And the effectiveness of Botox injections can “wear out over time,” Dr. Okamura said.
In a clinical trial, patients wore the device for 3 hours a day for 8 weeks, while doing their usual activities. The researchers continued testing their spasticity for 2 more weeks.
How Vibro-Tactile Stimulation May Rewire the Brain
The device originated at Georgia Tech, where Dr. Okamura’s postdoctoral research fellow Caitlyn Seim, PhD, was using vibro-tactile stimulation (VTS) to teach people skills, such as playing the piano, using touch-feedback training. The team decided to target spasticity, which VTS had helped in previousstudies of in-clinic (non-wearable) devices.
How does the device work? The researchers point to neuroplasticity, the ability of neurons to create new synapses or strengthen existing ones in the brain.
“The stimulation is sending additional sensory signals to the brain, which helps the brain interpret and reconnect any lost circuits,” Dr. Okamura said.
Spasticity is driven by “an imbalance in the excitatory drive to the muscles,” she continued. This can lead to worsening contractions, until a hand closes into a fist or a foot curls up. (The team has also done preliminary research on a similar device for foot spasticity, which they hope to continue developing.) Previous studies by Okamura and others suggest that vibration stimulation may prevent these contractions, both in the short and long term.
“Immediately, we do see some softening of the muscles,” Dr. Okamura said. “But in our longer-term study, where we compared to Botox, I also think that the vibration may be retraining the brain to send inhibitory signals. And that can restore balance that’s lost due to the damaged neural circuits from a stroke.”
When the team did a separate study comparing the effects of muscle and skin stimulation, they hypothesized that the vibration could be having a biomechanical effect on the muscle. Instead, they found that stimulating the skin had a greater impact — a “somewhat unexpected” result, Dr. Okamura said. That led them to the brain.
“Stimulating the skin is really about creating sensory signals that get sent to the brain,” Dr. Okamura said, “which is why we think it’s actually a brain-retraining effect and not a direct biomechanical effect.”
What’s Next?
The researchers are seeking funding for longer-term clinical studies to find out if effects persist beyond 2 weeks. They also want to explore how long and often patients should wear the glove for best results.
The researchers also want to study how movement might enhance the effects of the device.
“One of the treatments for spasticity — medications aside, this vibration machine aside — is more exercise, more passive range of motion,” said Oluwole O. Awosika, MD, associate professor at the University of Cincinnati College of Medicine, who was not involved in the study. “It would have been nice to have a control group that didn’t get any of this stimulation or that was only encouraged to do 3 hours of movement a day. What would the difference be?”
Dr. Awosika also wondered how easy it would be for stroke patients without in-home assistance to use the device. “Sometimes wearing these devices requires someone to put it on,” he said.
Of course, if all goes well, patients wouldn’t have to deal with that forever. “The dream would be that you reach true rehabilitation, which is no longer needing the device,” Dr. Okamura said.
A version of this article appeared on Medscape.com.
5 Interesting Neurology Studies
This transcript has been edited for clarity.
Dear colleagues, I’m Christoph Diener from the medical faculty of University Duisburg-Essen in Germany. Today I would like to tell you about five interesting studies that were published in January 2024.
Long COVID
I would like to start with long COVID. There is an ongoing discussion about whether this condition — which means symptoms like dizziness, vertigo, fatigue, headache, and cognitive impairment that persist for more than 6 months — is either a consequence of the infection, functional symptoms, psychosomatic disease, or a depression.
There is an important paper that came out in Science. The group investigated 39 controls and 113 patients who had COVID-19. At 6 months, 40 of them had long COVID. The researchers repeatedly measured more than 6500 proteins in serum. The patients with long COVID had a significant increase in complement activation, which persisted even beyond 6 months. These patients also showed increased tissue lesion markers in the blood and activation of the endothelium.
Also, they had increased platelet activation and autoantibodies with increased anti-cytomegalovirus and anti-Epstein-Barr virus immunoglobulins. These are very strong indicators that COVID-19 leads to long-term changes in our immune system, and different activations of complement factors could explain the variety of symptoms that these patients display. Whether this has consequences for treatment is unclear at the moment.
Parkinson’s Classification
Let me come to another issue, which is the future treatment of Parkinson’s disease, covered in a paper in The Lancet Neurology. I think you are all aware that once patients display symptoms like rigidity, bradykinesia, or tremor, it’s most probably too late for neuroprotective therapy because 70% of the dopaminergic neurons are already dead.
The authors propose a new biological diagnosis of the disease in the preclinical state. This early preclinical diagnosis has three components. One is to show the presence of synuclein either in skin biopsy or in serum. The second is proof of neurodegeneration either by MRI or by PET imaging. The third involves genetic markers.
On top of this, we know that we have preclinical manifestations of Parkinson’s disease, like REM sleep disorders, autonomic disturbances, and cognitive impairment. With this new classification, we should be able to identify the preclinical phase of Parkinson’s disease and include these patients in future trials for neuroprotection.
Niemann-Pick Disease
My third study, in The New England Journal of Medicine, deals with Niemann-Pick disease type C (Trial of N-Acetyl-l-Leucine in Niemann–Pick Disease Type C. This is a rare autosomal recessive disorder that involves impaired lysosomal storage. This disease, which manifests usually in childhood, goes along with systemic, psychiatric, and neurologic abnormalities, and in particular, ataxia. Until now, there has been only one therapy, with miglustat. which has many side effects.
The group of authors found a new therapeutic approach with N-acetyl-L-leucine, which primarily increases mitochondrial energy production. This was a small, placebo-controlled, crossover trial with 2 x 12 weeks of treatment. This new compound showed efficacy and was very well tolerated. This shows that we definitely need long-term studies with this new, well-tolerated drug in this rare disease.
Anticoagulation in Subclinical AF
My fourth study comes from the stroke-prevention field, published in The New England Journal of Medicine. I think you are aware of subclinical atrail fibrillation. These are high-frequency episodes in ECG, usually identified by pacemakers or ECG monitoring systems. The international ARTESIA study included more than 4000 patients randomized either to apixaban 5 mg twice daily or aspirin 81 mg.
After 3.5 years, the investigators showed a small but significant decrease in the rate of stroke, with a relative risk reduction of 37%, but also, unfortunately, a significantly increased risk for major bleeding with apixaban. This means that we need a careful discussion with the patient, the family, and the GP to decide whether these patients should be anticoagulated or not.
Migraine and Depression
My final study, published in the European Journal of Neurology, deals with the comorbidity of depression and migraine. This study in the Netherlands included 108 patients treated with erenumab and 90 with fremanezumab; 68 were controls.
They used two depression scales. They showed that treatment with the monoclonal antibodies improved at least one of the two depression scales. I think this is an important study because it indicates that you can improve comorbid depression in people with severe migraine, even if this study did not show a correlation between the reduction in monthly migraine days and the improvement of depression.
What we learned for clinical practice is that we have to identify depression in people with migraine and we have to deal with it. Whether it’s with the treatment of monoclonal antibodies or antidepressant therapy doesn’t really matter.
Dear colleagues, we had interesting studies this month. I think the most spectacular one was published in Science on long COVID. Thank you very much for listening and watching. I’m Christoph Diener from University Duisburg-Essen.
Dr. Diener is Professor, Department of Neurology, Stroke Center-Headache Center, University Duisburg-Essen, Essen, Germany. He disclosed ties with Abbott; Addex Pharma; Alder; Allergan; Almirall; Amgen; Autonomic Technology; AstraZeneca; Bayer Vital; Berlin Chemie; Bristol-Myers Squibb; Boehringer Ingelheim; Chordate; CoAxia; Corimmun; Covidien; Coherex; CoLucid; Daiichi-Sankyo; D-Pharml Electrocore; Fresenius; GlaxoSmithKline; Grunenthal; Janssen-Cilag; Labrys Biologics Lilly; La Roche; 3M Medica; MSD; Medtronic; Menarini; MindFrame; Minster; Neuroscore; Neurobiological Technologies; Novartis; Novo-Nordisk; Johnson & Johnson; Knoll; Paion; Parke-Davis; Pierre Fabre; Pfizer Inc; Schaper and Brummer; sanofi-aventis; Schering-Plough; Servier; Solvay; Syngis; St. Jude; Talecris; Thrombogenics; WebMD Global; Weber and Weber; Wyeth; and Yamanouchi.
A version of this article appeared on Medscape.com.
This transcript has been edited for clarity.
Dear colleagues, I’m Christoph Diener from the medical faculty of University Duisburg-Essen in Germany. Today I would like to tell you about five interesting studies that were published in January 2024.
Long COVID
I would like to start with long COVID. There is an ongoing discussion about whether this condition — which means symptoms like dizziness, vertigo, fatigue, headache, and cognitive impairment that persist for more than 6 months — is either a consequence of the infection, functional symptoms, psychosomatic disease, or a depression.
There is an important paper that came out in Science. The group investigated 39 controls and 113 patients who had COVID-19. At 6 months, 40 of them had long COVID. The researchers repeatedly measured more than 6500 proteins in serum. The patients with long COVID had a significant increase in complement activation, which persisted even beyond 6 months. These patients also showed increased tissue lesion markers in the blood and activation of the endothelium.
Also, they had increased platelet activation and autoantibodies with increased anti-cytomegalovirus and anti-Epstein-Barr virus immunoglobulins. These are very strong indicators that COVID-19 leads to long-term changes in our immune system, and different activations of complement factors could explain the variety of symptoms that these patients display. Whether this has consequences for treatment is unclear at the moment.
Parkinson’s Classification
Let me come to another issue, which is the future treatment of Parkinson’s disease, covered in a paper in The Lancet Neurology. I think you are all aware that once patients display symptoms like rigidity, bradykinesia, or tremor, it’s most probably too late for neuroprotective therapy because 70% of the dopaminergic neurons are already dead.
The authors propose a new biological diagnosis of the disease in the preclinical state. This early preclinical diagnosis has three components. One is to show the presence of synuclein either in skin biopsy or in serum. The second is proof of neurodegeneration either by MRI or by PET imaging. The third involves genetic markers.
On top of this, we know that we have preclinical manifestations of Parkinson’s disease, like REM sleep disorders, autonomic disturbances, and cognitive impairment. With this new classification, we should be able to identify the preclinical phase of Parkinson’s disease and include these patients in future trials for neuroprotection.
Niemann-Pick Disease
My third study, in The New England Journal of Medicine, deals with Niemann-Pick disease type C (Trial of N-Acetyl-l-Leucine in Niemann–Pick Disease Type C. This is a rare autosomal recessive disorder that involves impaired lysosomal storage. This disease, which manifests usually in childhood, goes along with systemic, psychiatric, and neurologic abnormalities, and in particular, ataxia. Until now, there has been only one therapy, with miglustat. which has many side effects.
The group of authors found a new therapeutic approach with N-acetyl-L-leucine, which primarily increases mitochondrial energy production. This was a small, placebo-controlled, crossover trial with 2 x 12 weeks of treatment. This new compound showed efficacy and was very well tolerated. This shows that we definitely need long-term studies with this new, well-tolerated drug in this rare disease.
Anticoagulation in Subclinical AF
My fourth study comes from the stroke-prevention field, published in The New England Journal of Medicine. I think you are aware of subclinical atrail fibrillation. These are high-frequency episodes in ECG, usually identified by pacemakers or ECG monitoring systems. The international ARTESIA study included more than 4000 patients randomized either to apixaban 5 mg twice daily or aspirin 81 mg.
After 3.5 years, the investigators showed a small but significant decrease in the rate of stroke, with a relative risk reduction of 37%, but also, unfortunately, a significantly increased risk for major bleeding with apixaban. This means that we need a careful discussion with the patient, the family, and the GP to decide whether these patients should be anticoagulated or not.
Migraine and Depression
My final study, published in the European Journal of Neurology, deals with the comorbidity of depression and migraine. This study in the Netherlands included 108 patients treated with erenumab and 90 with fremanezumab; 68 were controls.
They used two depression scales. They showed that treatment with the monoclonal antibodies improved at least one of the two depression scales. I think this is an important study because it indicates that you can improve comorbid depression in people with severe migraine, even if this study did not show a correlation between the reduction in monthly migraine days and the improvement of depression.
What we learned for clinical practice is that we have to identify depression in people with migraine and we have to deal with it. Whether it’s with the treatment of monoclonal antibodies or antidepressant therapy doesn’t really matter.
Dear colleagues, we had interesting studies this month. I think the most spectacular one was published in Science on long COVID. Thank you very much for listening and watching. I’m Christoph Diener from University Duisburg-Essen.
Dr. Diener is Professor, Department of Neurology, Stroke Center-Headache Center, University Duisburg-Essen, Essen, Germany. He disclosed ties with Abbott; Addex Pharma; Alder; Allergan; Almirall; Amgen; Autonomic Technology; AstraZeneca; Bayer Vital; Berlin Chemie; Bristol-Myers Squibb; Boehringer Ingelheim; Chordate; CoAxia; Corimmun; Covidien; Coherex; CoLucid; Daiichi-Sankyo; D-Pharml Electrocore; Fresenius; GlaxoSmithKline; Grunenthal; Janssen-Cilag; Labrys Biologics Lilly; La Roche; 3M Medica; MSD; Medtronic; Menarini; MindFrame; Minster; Neuroscore; Neurobiological Technologies; Novartis; Novo-Nordisk; Johnson & Johnson; Knoll; Paion; Parke-Davis; Pierre Fabre; Pfizer Inc; Schaper and Brummer; sanofi-aventis; Schering-Plough; Servier; Solvay; Syngis; St. Jude; Talecris; Thrombogenics; WebMD Global; Weber and Weber; Wyeth; and Yamanouchi.
A version of this article appeared on Medscape.com.
This transcript has been edited for clarity.
Dear colleagues, I’m Christoph Diener from the medical faculty of University Duisburg-Essen in Germany. Today I would like to tell you about five interesting studies that were published in January 2024.
Long COVID
I would like to start with long COVID. There is an ongoing discussion about whether this condition — which means symptoms like dizziness, vertigo, fatigue, headache, and cognitive impairment that persist for more than 6 months — is either a consequence of the infection, functional symptoms, psychosomatic disease, or a depression.
There is an important paper that came out in Science. The group investigated 39 controls and 113 patients who had COVID-19. At 6 months, 40 of them had long COVID. The researchers repeatedly measured more than 6500 proteins in serum. The patients with long COVID had a significant increase in complement activation, which persisted even beyond 6 months. These patients also showed increased tissue lesion markers in the blood and activation of the endothelium.
Also, they had increased platelet activation and autoantibodies with increased anti-cytomegalovirus and anti-Epstein-Barr virus immunoglobulins. These are very strong indicators that COVID-19 leads to long-term changes in our immune system, and different activations of complement factors could explain the variety of symptoms that these patients display. Whether this has consequences for treatment is unclear at the moment.
Parkinson’s Classification
Let me come to another issue, which is the future treatment of Parkinson’s disease, covered in a paper in The Lancet Neurology. I think you are all aware that once patients display symptoms like rigidity, bradykinesia, or tremor, it’s most probably too late for neuroprotective therapy because 70% of the dopaminergic neurons are already dead.
The authors propose a new biological diagnosis of the disease in the preclinical state. This early preclinical diagnosis has three components. One is to show the presence of synuclein either in skin biopsy or in serum. The second is proof of neurodegeneration either by MRI or by PET imaging. The third involves genetic markers.
On top of this, we know that we have preclinical manifestations of Parkinson’s disease, like REM sleep disorders, autonomic disturbances, and cognitive impairment. With this new classification, we should be able to identify the preclinical phase of Parkinson’s disease and include these patients in future trials for neuroprotection.
Niemann-Pick Disease
My third study, in The New England Journal of Medicine, deals with Niemann-Pick disease type C (Trial of N-Acetyl-l-Leucine in Niemann–Pick Disease Type C. This is a rare autosomal recessive disorder that involves impaired lysosomal storage. This disease, which manifests usually in childhood, goes along with systemic, psychiatric, and neurologic abnormalities, and in particular, ataxia. Until now, there has been only one therapy, with miglustat. which has many side effects.
The group of authors found a new therapeutic approach with N-acetyl-L-leucine, which primarily increases mitochondrial energy production. This was a small, placebo-controlled, crossover trial with 2 x 12 weeks of treatment. This new compound showed efficacy and was very well tolerated. This shows that we definitely need long-term studies with this new, well-tolerated drug in this rare disease.
Anticoagulation in Subclinical AF
My fourth study comes from the stroke-prevention field, published in The New England Journal of Medicine. I think you are aware of subclinical atrail fibrillation. These are high-frequency episodes in ECG, usually identified by pacemakers or ECG monitoring systems. The international ARTESIA study included more than 4000 patients randomized either to apixaban 5 mg twice daily or aspirin 81 mg.
After 3.5 years, the investigators showed a small but significant decrease in the rate of stroke, with a relative risk reduction of 37%, but also, unfortunately, a significantly increased risk for major bleeding with apixaban. This means that we need a careful discussion with the patient, the family, and the GP to decide whether these patients should be anticoagulated or not.
Migraine and Depression
My final study, published in the European Journal of Neurology, deals with the comorbidity of depression and migraine. This study in the Netherlands included 108 patients treated with erenumab and 90 with fremanezumab; 68 were controls.
They used two depression scales. They showed that treatment with the monoclonal antibodies improved at least one of the two depression scales. I think this is an important study because it indicates that you can improve comorbid depression in people with severe migraine, even if this study did not show a correlation between the reduction in monthly migraine days and the improvement of depression.
What we learned for clinical practice is that we have to identify depression in people with migraine and we have to deal with it. Whether it’s with the treatment of monoclonal antibodies or antidepressant therapy doesn’t really matter.
Dear colleagues, we had interesting studies this month. I think the most spectacular one was published in Science on long COVID. Thank you very much for listening and watching. I’m Christoph Diener from University Duisburg-Essen.
Dr. Diener is Professor, Department of Neurology, Stroke Center-Headache Center, University Duisburg-Essen, Essen, Germany. He disclosed ties with Abbott; Addex Pharma; Alder; Allergan; Almirall; Amgen; Autonomic Technology; AstraZeneca; Bayer Vital; Berlin Chemie; Bristol-Myers Squibb; Boehringer Ingelheim; Chordate; CoAxia; Corimmun; Covidien; Coherex; CoLucid; Daiichi-Sankyo; D-Pharml Electrocore; Fresenius; GlaxoSmithKline; Grunenthal; Janssen-Cilag; Labrys Biologics Lilly; La Roche; 3M Medica; MSD; Medtronic; Menarini; MindFrame; Minster; Neuroscore; Neurobiological Technologies; Novartis; Novo-Nordisk; Johnson & Johnson; Knoll; Paion; Parke-Davis; Pierre Fabre; Pfizer Inc; Schaper and Brummer; sanofi-aventis; Schering-Plough; Servier; Solvay; Syngis; St. Jude; Talecris; Thrombogenics; WebMD Global; Weber and Weber; Wyeth; and Yamanouchi.
A version of this article appeared on Medscape.com.
Many Older Adults Don’t Receive Palliative Care Before Death
A prognostic tool may facilitate the early identification of older adults in the community who would benefit from palliative care in their final years, new research from Canada suggested.
The analysis of data from close to a quarter million community-dwelling older adults in Ontario with at least one interRAI (Resident Assessment Instrument) home care assessment showed that only half of those with an estimated survival of fewer than 3 months received at least one palliative home care visit before death.
“One of the challenges and a barrier to accessing palliative home care is the difficulty of predicting survival,” Amy Hsu, PhD, an investigator at the Bruyère Research Institute in Ottawa, Ontario, Canada, told this news organization. “Clinicians are good at prognosticating when a patient might be entering their last 3-6 weeks of life, but they have a harder time predicting if someone will survive 6 months or longer.”
The team developed the Risk Evaluation for Support: Predictions for Elder-life in their Communities Tool (RESPECT) to see whether access to predicted survival data could inform conversations about a patient’s status and palliative care needs.
The study was published online in the Canadian Medical Association Journal.
Setting Care Goals
Researchers analyzed population health administrative data from Ontario involving home care clients who received at least one interRAI Home Care assessment between April 2018 and September 2019. The cohort included 247,377 adults (62% women) with a mean age of 80.1 years at the time of assessment. Comorbidities, including congestive heart failure, coronary artery disease, cancer, and chronic obstructive pulmonary disease, as well as symptoms of health instability, were more prevalent among those at higher risk of dying.
The team used an updated, validated version of RESPECT to predict survival.
Only 2.6% of home care clients had received a clinician diagnosis of an end-stage disease, which was more prevalent among those at highest mortality risk (77.9%). Most clients (74.5%) required extensive assistance in performing instrumental activities of daily living (ADLs, score ≤ 4), and half (50.3%) were less able to perform ADLs in the last 3 months of life.
Within the cohort, 75% of patients with a predicted median survival of fewer than 3 months, 55.4% of those with a predicted median survival between 3 and 6 months, and 40.7% of those with a predicted median survival between 6 and 12 months died within 6 months of the home care assessment.
Among decedents, 50.6% of those with a RESPECT-estimated median survival of fewer than 3 months received at least one nonphysician palliative home care visit before death. Less than a third (27.8%) received at least one palliative home care visit from a physician.
The proportion of those who received at least one nonphysician visit fell to 38.7% among those with a median survival of between 3 and 6 months and to 29.5% among those with a median survival of between 6 and 12 months.
Patients who received at least one palliative home care visit (from either physicians or nonphysician home care providers) within 6 months of an assessment had clinical characteristics similar to those who did not receive a visit. However, those who did not receive palliative home care were more likely to not have been identified by a clinician as being in their past 6 months of life.
“These results reinforce the role of clinicians in identifying older adults who may be in their last 6 months of life as an important component for the receipt of palliative home care and highlight the value of RESPECT in supplementing clinicians’ assessments of prognosis,” the authors wrote.
“Our goal is to use data and tools like RESPECT to help individuals living with a life-limiting illness have conversations about what their end-of-life care goals and wishes may be and discuss whether a referral to palliative care is appropriate or needed,” Dr. Hsu added. “Data about life expectancy could be helpful for framing these conversations.”
The researchers are working with partners in home, community care, and long-term care to implement RESPECT in their settings.
‘Valuable Tool’
Guohua Li, MD, DrPH, professor of epidemiology and anesthesiology at Columbia University Mailman School of Public Health and Vagelos College of Physicians and Surgeons in New York City, commented on the findings for this news organization. He noted that the study is “rigorously designed and meticulously analyzed. The findings are of high validity and population health significance.”
The findings are comparable with what is seen in the United States and Canada, he said, where about 50% of terminally ill patients die at home or in hospice. However, palliative care outside of North America “varies greatly, and in many developing countries, [it] is still in its infancy.”
As a mortality risk prediction algorithm, “RESPECT seems to perform reasonably well,” he said. “If incorporated into the electronic health record, it could be a valuable tool for clinicians to identify patients with less than 6 months of life expectancy and deliver palliative care to these patients. RESPECT appears to be particularly beneficial for home care patients without a clinically diagnosed terminal disease.”
That said, he added, “RESPECT should be viewed as a clinical decision support tool. It is no substitute for clinicians or clinical judgment. Based on the data presented in the paper, the algorithm tends to overestimate the short-term mortality risk for home care patients, therefore resulting in many false alarms.”
The study was supported by the Canadian Institutes of Health Research and the Associated Medical Services. Dr. Hsu is an executive lead on the steering committee of the Ontario Centres for Learning, Research, and Innovation in Long-Term Care. Funding for the centers comes from the Ontario Ministry of Health and Ministry of Long-Term Care and is partially administered by the Bruyère Research Institute. Dr. Li reported no relevant financial interests.
A version of this article appeared on Medscape.com.
A prognostic tool may facilitate the early identification of older adults in the community who would benefit from palliative care in their final years, new research from Canada suggested.
The analysis of data from close to a quarter million community-dwelling older adults in Ontario with at least one interRAI (Resident Assessment Instrument) home care assessment showed that only half of those with an estimated survival of fewer than 3 months received at least one palliative home care visit before death.
“One of the challenges and a barrier to accessing palliative home care is the difficulty of predicting survival,” Amy Hsu, PhD, an investigator at the Bruyère Research Institute in Ottawa, Ontario, Canada, told this news organization. “Clinicians are good at prognosticating when a patient might be entering their last 3-6 weeks of life, but they have a harder time predicting if someone will survive 6 months or longer.”
The team developed the Risk Evaluation for Support: Predictions for Elder-life in their Communities Tool (RESPECT) to see whether access to predicted survival data could inform conversations about a patient’s status and palliative care needs.
The study was published online in the Canadian Medical Association Journal.
Setting Care Goals
Researchers analyzed population health administrative data from Ontario involving home care clients who received at least one interRAI Home Care assessment between April 2018 and September 2019. The cohort included 247,377 adults (62% women) with a mean age of 80.1 years at the time of assessment. Comorbidities, including congestive heart failure, coronary artery disease, cancer, and chronic obstructive pulmonary disease, as well as symptoms of health instability, were more prevalent among those at higher risk of dying.
The team used an updated, validated version of RESPECT to predict survival.
Only 2.6% of home care clients had received a clinician diagnosis of an end-stage disease, which was more prevalent among those at highest mortality risk (77.9%). Most clients (74.5%) required extensive assistance in performing instrumental activities of daily living (ADLs, score ≤ 4), and half (50.3%) were less able to perform ADLs in the last 3 months of life.
Within the cohort, 75% of patients with a predicted median survival of fewer than 3 months, 55.4% of those with a predicted median survival between 3 and 6 months, and 40.7% of those with a predicted median survival between 6 and 12 months died within 6 months of the home care assessment.
Among decedents, 50.6% of those with a RESPECT-estimated median survival of fewer than 3 months received at least one nonphysician palliative home care visit before death. Less than a third (27.8%) received at least one palliative home care visit from a physician.
The proportion of those who received at least one nonphysician visit fell to 38.7% among those with a median survival of between 3 and 6 months and to 29.5% among those with a median survival of between 6 and 12 months.
Patients who received at least one palliative home care visit (from either physicians or nonphysician home care providers) within 6 months of an assessment had clinical characteristics similar to those who did not receive a visit. However, those who did not receive palliative home care were more likely to not have been identified by a clinician as being in their past 6 months of life.
“These results reinforce the role of clinicians in identifying older adults who may be in their last 6 months of life as an important component for the receipt of palliative home care and highlight the value of RESPECT in supplementing clinicians’ assessments of prognosis,” the authors wrote.
“Our goal is to use data and tools like RESPECT to help individuals living with a life-limiting illness have conversations about what their end-of-life care goals and wishes may be and discuss whether a referral to palliative care is appropriate or needed,” Dr. Hsu added. “Data about life expectancy could be helpful for framing these conversations.”
The researchers are working with partners in home, community care, and long-term care to implement RESPECT in their settings.
‘Valuable Tool’
Guohua Li, MD, DrPH, professor of epidemiology and anesthesiology at Columbia University Mailman School of Public Health and Vagelos College of Physicians and Surgeons in New York City, commented on the findings for this news organization. He noted that the study is “rigorously designed and meticulously analyzed. The findings are of high validity and population health significance.”
The findings are comparable with what is seen in the United States and Canada, he said, where about 50% of terminally ill patients die at home or in hospice. However, palliative care outside of North America “varies greatly, and in many developing countries, [it] is still in its infancy.”
As a mortality risk prediction algorithm, “RESPECT seems to perform reasonably well,” he said. “If incorporated into the electronic health record, it could be a valuable tool for clinicians to identify patients with less than 6 months of life expectancy and deliver palliative care to these patients. RESPECT appears to be particularly beneficial for home care patients without a clinically diagnosed terminal disease.”
That said, he added, “RESPECT should be viewed as a clinical decision support tool. It is no substitute for clinicians or clinical judgment. Based on the data presented in the paper, the algorithm tends to overestimate the short-term mortality risk for home care patients, therefore resulting in many false alarms.”
The study was supported by the Canadian Institutes of Health Research and the Associated Medical Services. Dr. Hsu is an executive lead on the steering committee of the Ontario Centres for Learning, Research, and Innovation in Long-Term Care. Funding for the centers comes from the Ontario Ministry of Health and Ministry of Long-Term Care and is partially administered by the Bruyère Research Institute. Dr. Li reported no relevant financial interests.
A version of this article appeared on Medscape.com.
A prognostic tool may facilitate the early identification of older adults in the community who would benefit from palliative care in their final years, new research from Canada suggested.
The analysis of data from close to a quarter million community-dwelling older adults in Ontario with at least one interRAI (Resident Assessment Instrument) home care assessment showed that only half of those with an estimated survival of fewer than 3 months received at least one palliative home care visit before death.
“One of the challenges and a barrier to accessing palliative home care is the difficulty of predicting survival,” Amy Hsu, PhD, an investigator at the Bruyère Research Institute in Ottawa, Ontario, Canada, told this news organization. “Clinicians are good at prognosticating when a patient might be entering their last 3-6 weeks of life, but they have a harder time predicting if someone will survive 6 months or longer.”
The team developed the Risk Evaluation for Support: Predictions for Elder-life in their Communities Tool (RESPECT) to see whether access to predicted survival data could inform conversations about a patient’s status and palliative care needs.
The study was published online in the Canadian Medical Association Journal.
Setting Care Goals
Researchers analyzed population health administrative data from Ontario involving home care clients who received at least one interRAI Home Care assessment between April 2018 and September 2019. The cohort included 247,377 adults (62% women) with a mean age of 80.1 years at the time of assessment. Comorbidities, including congestive heart failure, coronary artery disease, cancer, and chronic obstructive pulmonary disease, as well as symptoms of health instability, were more prevalent among those at higher risk of dying.
The team used an updated, validated version of RESPECT to predict survival.
Only 2.6% of home care clients had received a clinician diagnosis of an end-stage disease, which was more prevalent among those at highest mortality risk (77.9%). Most clients (74.5%) required extensive assistance in performing instrumental activities of daily living (ADLs, score ≤ 4), and half (50.3%) were less able to perform ADLs in the last 3 months of life.
Within the cohort, 75% of patients with a predicted median survival of fewer than 3 months, 55.4% of those with a predicted median survival between 3 and 6 months, and 40.7% of those with a predicted median survival between 6 and 12 months died within 6 months of the home care assessment.
Among decedents, 50.6% of those with a RESPECT-estimated median survival of fewer than 3 months received at least one nonphysician palliative home care visit before death. Less than a third (27.8%) received at least one palliative home care visit from a physician.
The proportion of those who received at least one nonphysician visit fell to 38.7% among those with a median survival of between 3 and 6 months and to 29.5% among those with a median survival of between 6 and 12 months.
Patients who received at least one palliative home care visit (from either physicians or nonphysician home care providers) within 6 months of an assessment had clinical characteristics similar to those who did not receive a visit. However, those who did not receive palliative home care were more likely to not have been identified by a clinician as being in their past 6 months of life.
“These results reinforce the role of clinicians in identifying older adults who may be in their last 6 months of life as an important component for the receipt of palliative home care and highlight the value of RESPECT in supplementing clinicians’ assessments of prognosis,” the authors wrote.
“Our goal is to use data and tools like RESPECT to help individuals living with a life-limiting illness have conversations about what their end-of-life care goals and wishes may be and discuss whether a referral to palliative care is appropriate or needed,” Dr. Hsu added. “Data about life expectancy could be helpful for framing these conversations.”
The researchers are working with partners in home, community care, and long-term care to implement RESPECT in their settings.
‘Valuable Tool’
Guohua Li, MD, DrPH, professor of epidemiology and anesthesiology at Columbia University Mailman School of Public Health and Vagelos College of Physicians and Surgeons in New York City, commented on the findings for this news organization. He noted that the study is “rigorously designed and meticulously analyzed. The findings are of high validity and population health significance.”
The findings are comparable with what is seen in the United States and Canada, he said, where about 50% of terminally ill patients die at home or in hospice. However, palliative care outside of North America “varies greatly, and in many developing countries, [it] is still in its infancy.”
As a mortality risk prediction algorithm, “RESPECT seems to perform reasonably well,” he said. “If incorporated into the electronic health record, it could be a valuable tool for clinicians to identify patients with less than 6 months of life expectancy and deliver palliative care to these patients. RESPECT appears to be particularly beneficial for home care patients without a clinically diagnosed terminal disease.”
That said, he added, “RESPECT should be viewed as a clinical decision support tool. It is no substitute for clinicians or clinical judgment. Based on the data presented in the paper, the algorithm tends to overestimate the short-term mortality risk for home care patients, therefore resulting in many false alarms.”
The study was supported by the Canadian Institutes of Health Research and the Associated Medical Services. Dr. Hsu is an executive lead on the steering committee of the Ontario Centres for Learning, Research, and Innovation in Long-Term Care. Funding for the centers comes from the Ontario Ministry of Health and Ministry of Long-Term Care and is partially administered by the Bruyère Research Institute. Dr. Li reported no relevant financial interests.
A version of this article appeared on Medscape.com.
FROM THE CANADIAN MEDICAL ASSOCIATION JOURNAL