Modifiable Risk Factors for Young-Onset Dementia Flagged

Article Type
Changed
Tue, 01/09/2024 - 22:47

 

TOPLINE:

In addition to better known risk factors such as diabetes, stroke, heart disease, and depression, findings of a large study suggested vitamin D deficiency, elevated C-reactive protein (CRP) levels, and social isolation increase the risk for young-onset dementia (YOD).

METHODOLOGY:

  • The study included 356,052 participants younger than 65 years (mean baseline age, 54.6 years) without dementia from the UK Biobank, an ongoing prospective cohort study.
  • Participants underwent a comprehensive baseline assessment, provided biological samples, completed touch screen questionnaires, and underwent a physical examination.
  • Researchers identified incident all-cause YOD cases from hospital inpatient registers or death register linkage.
  • The researchers detected 39 potential risk factors and grouped them into domains of sociodemographic, genetic, lifestyle, environmental, vitamin D and CRP levels, cardiometabolic, psychiatric, and other factors.
  • Researchers analyzed incidence rates of YOD for 5-year age bands starting at age 40 years and separately for men and women.

TAKEAWAY:

  • During a mean follow-up of 8.12 years, there were 485 incident YOD cases (incidence rate of 16.8 per 100,000 person-years; 95% CI 15.4-18.3).
  • The final analysis identified 15 risk factors associated with significantly higher incidence of YOD, including traditional factors like stroke (hazard ratio [HR], 2.07), heart disease (HR, 1.61), diabetes (HR, 1.65), and depression (HR, 3.25) but also less-recognized risk factors like vitamin D deficiency (< 10 ng/mL; HR, 1.59), high CRP levels (> 1 mg/dL; HR, 1.54), and social isolation (infrequent visits to friends or family; HR, 1.53), with lower socioeconomic status (HR, 1.82), having two apolipoprotein E epsilon-4 alleles (HR, 1.87), orthostatic hypotension, which the authors said may be an early sign of Parkinson dementia or Lewy body dementia (HR, 4.20), and hearing impairment (HR, 1.56) also increasing risk.
  • Interestingly, some alcohol use seemed to be protective (moderate or heavy alcohol use had a lower association with YOD than alcohol abstinence, possibly due to the “healthy drinker effect” where people who drink are healthier than abstainers who may have illnesses preventing them from drinking, said the authors), as was higher education level and higher than normative handgrip strength (less strength is a proxy for physical frailty).
  • Men with diabetes had higher YOD risk than those without diabetes, while there was no association with diabetes in women; on the other hand, women with high CRP levels had greater YOD risk than those with low levels, while there was no association with CRP in men.

IN PRACTICE:

“While further exploration of these risk factors is necessary to identify potential underlying mechanisms, addressing these modifiable factors may prove effective in mitigating the risk of developing YOD and can be readily integrated in current dementia prevention initiatives,” the investigators wrote.

SOURCE:

The study was led by Stevie Hendriks, PhD, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands. It was published online in JAMA Neurology.

LIMITATIONS:

The study was observational and so can’t infer causality. Several factors were based on self-reported data, which might be a source of response bias. Factors not considered in the study, for example, family history of dementia and drug (other than alcohol) use disorder, may have confounded associations. Some factors including orthostatic hypotension had few exposed cases, leading to decreased power to detect associations. Hospital and death records may not have captured all YOD cases. The UK Biobank is overrepresented by healthy and White participants, so results may not be generalizable to other racial and ethnic groups. The analyses only focused on all-cause dementia.

DISCLOSURES:

The study was supported by Alzheimer Netherlands. Hendriks has no relevant conflicts of interest; see paper for disclosures of other authors.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

In addition to better known risk factors such as diabetes, stroke, heart disease, and depression, findings of a large study suggested vitamin D deficiency, elevated C-reactive protein (CRP) levels, and social isolation increase the risk for young-onset dementia (YOD).

METHODOLOGY:

  • The study included 356,052 participants younger than 65 years (mean baseline age, 54.6 years) without dementia from the UK Biobank, an ongoing prospective cohort study.
  • Participants underwent a comprehensive baseline assessment, provided biological samples, completed touch screen questionnaires, and underwent a physical examination.
  • Researchers identified incident all-cause YOD cases from hospital inpatient registers or death register linkage.
  • The researchers detected 39 potential risk factors and grouped them into domains of sociodemographic, genetic, lifestyle, environmental, vitamin D and CRP levels, cardiometabolic, psychiatric, and other factors.
  • Researchers analyzed incidence rates of YOD for 5-year age bands starting at age 40 years and separately for men and women.

TAKEAWAY:

  • During a mean follow-up of 8.12 years, there were 485 incident YOD cases (incidence rate of 16.8 per 100,000 person-years; 95% CI 15.4-18.3).
  • The final analysis identified 15 risk factors associated with significantly higher incidence of YOD, including traditional factors like stroke (hazard ratio [HR], 2.07), heart disease (HR, 1.61), diabetes (HR, 1.65), and depression (HR, 3.25) but also less-recognized risk factors like vitamin D deficiency (< 10 ng/mL; HR, 1.59), high CRP levels (> 1 mg/dL; HR, 1.54), and social isolation (infrequent visits to friends or family; HR, 1.53), with lower socioeconomic status (HR, 1.82), having two apolipoprotein E epsilon-4 alleles (HR, 1.87), orthostatic hypotension, which the authors said may be an early sign of Parkinson dementia or Lewy body dementia (HR, 4.20), and hearing impairment (HR, 1.56) also increasing risk.
  • Interestingly, some alcohol use seemed to be protective (moderate or heavy alcohol use had a lower association with YOD than alcohol abstinence, possibly due to the “healthy drinker effect” where people who drink are healthier than abstainers who may have illnesses preventing them from drinking, said the authors), as was higher education level and higher than normative handgrip strength (less strength is a proxy for physical frailty).
  • Men with diabetes had higher YOD risk than those without diabetes, while there was no association with diabetes in women; on the other hand, women with high CRP levels had greater YOD risk than those with low levels, while there was no association with CRP in men.

IN PRACTICE:

“While further exploration of these risk factors is necessary to identify potential underlying mechanisms, addressing these modifiable factors may prove effective in mitigating the risk of developing YOD and can be readily integrated in current dementia prevention initiatives,” the investigators wrote.

SOURCE:

The study was led by Stevie Hendriks, PhD, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands. It was published online in JAMA Neurology.

LIMITATIONS:

The study was observational and so can’t infer causality. Several factors were based on self-reported data, which might be a source of response bias. Factors not considered in the study, for example, family history of dementia and drug (other than alcohol) use disorder, may have confounded associations. Some factors including orthostatic hypotension had few exposed cases, leading to decreased power to detect associations. Hospital and death records may not have captured all YOD cases. The UK Biobank is overrepresented by healthy and White participants, so results may not be generalizable to other racial and ethnic groups. The analyses only focused on all-cause dementia.

DISCLOSURES:

The study was supported by Alzheimer Netherlands. Hendriks has no relevant conflicts of interest; see paper for disclosures of other authors.

A version of this article appeared on Medscape.com.

 

TOPLINE:

In addition to better known risk factors such as diabetes, stroke, heart disease, and depression, findings of a large study suggested vitamin D deficiency, elevated C-reactive protein (CRP) levels, and social isolation increase the risk for young-onset dementia (YOD).

METHODOLOGY:

  • The study included 356,052 participants younger than 65 years (mean baseline age, 54.6 years) without dementia from the UK Biobank, an ongoing prospective cohort study.
  • Participants underwent a comprehensive baseline assessment, provided biological samples, completed touch screen questionnaires, and underwent a physical examination.
  • Researchers identified incident all-cause YOD cases from hospital inpatient registers or death register linkage.
  • The researchers detected 39 potential risk factors and grouped them into domains of sociodemographic, genetic, lifestyle, environmental, vitamin D and CRP levels, cardiometabolic, psychiatric, and other factors.
  • Researchers analyzed incidence rates of YOD for 5-year age bands starting at age 40 years and separately for men and women.

TAKEAWAY:

  • During a mean follow-up of 8.12 years, there were 485 incident YOD cases (incidence rate of 16.8 per 100,000 person-years; 95% CI 15.4-18.3).
  • The final analysis identified 15 risk factors associated with significantly higher incidence of YOD, including traditional factors like stroke (hazard ratio [HR], 2.07), heart disease (HR, 1.61), diabetes (HR, 1.65), and depression (HR, 3.25) but also less-recognized risk factors like vitamin D deficiency (< 10 ng/mL; HR, 1.59), high CRP levels (> 1 mg/dL; HR, 1.54), and social isolation (infrequent visits to friends or family; HR, 1.53), with lower socioeconomic status (HR, 1.82), having two apolipoprotein E epsilon-4 alleles (HR, 1.87), orthostatic hypotension, which the authors said may be an early sign of Parkinson dementia or Lewy body dementia (HR, 4.20), and hearing impairment (HR, 1.56) also increasing risk.
  • Interestingly, some alcohol use seemed to be protective (moderate or heavy alcohol use had a lower association with YOD than alcohol abstinence, possibly due to the “healthy drinker effect” where people who drink are healthier than abstainers who may have illnesses preventing them from drinking, said the authors), as was higher education level and higher than normative handgrip strength (less strength is a proxy for physical frailty).
  • Men with diabetes had higher YOD risk than those without diabetes, while there was no association with diabetes in women; on the other hand, women with high CRP levels had greater YOD risk than those with low levels, while there was no association with CRP in men.

IN PRACTICE:

“While further exploration of these risk factors is necessary to identify potential underlying mechanisms, addressing these modifiable factors may prove effective in mitigating the risk of developing YOD and can be readily integrated in current dementia prevention initiatives,” the investigators wrote.

SOURCE:

The study was led by Stevie Hendriks, PhD, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands. It was published online in JAMA Neurology.

LIMITATIONS:

The study was observational and so can’t infer causality. Several factors were based on self-reported data, which might be a source of response bias. Factors not considered in the study, for example, family history of dementia and drug (other than alcohol) use disorder, may have confounded associations. Some factors including orthostatic hypotension had few exposed cases, leading to decreased power to detect associations. Hospital and death records may not have captured all YOD cases. The UK Biobank is overrepresented by healthy and White participants, so results may not be generalizable to other racial and ethnic groups. The analyses only focused on all-cause dementia.

DISCLOSURES:

The study was supported by Alzheimer Netherlands. Hendriks has no relevant conflicts of interest; see paper for disclosures of other authors.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

African Psychedelic Tied to ‘Remarkable’ Improvement in TBI-Related Psych Symptoms, Functional Disability

Article Type
Changed
Tue, 01/09/2024 - 22:29

The plant-based psychoactive compound ibogaine, combined with magnesium to protect the heart, is linked to improvement in severe psychiatric symptoms including depression, anxiety, and functioning in veterans with traumatic brain injury (TBI), early results from a small study showed.

“The most unique findings we observed are the improvements in disability and cognition. At the start of the study, participants had mild to moderate levels of disability. However, a month after treatment, their average disability rating indicated no disability and cognitive testing indicated improvements in concentration and memory,” study investigator Nolan Williams, MD, Stanford University, Stanford, California, told this news organization.

Also noteworthy were improvements across all participants in posttraumatic stress disorder (PTSD), depression, and anxiety — effects that lasted for at least 1 month after treatment, he said.

“These results are remarkable and exceeded our expectations. There is no drug today that can broadly relieve functional and neuropsychiatric symptoms of TBI as we observed with ibogaine,” Dr. Williams added.

The study was published online on January 5, 2024, in Nature Medicine.
 

‘The Storm Lifted’

Ibogaine is derived from the root bark of the Tabernanthe iboga shrub and related plants and is traditionally used in African spiritual and healing ceremonies.

It is known to interact with multiple neurotransmitter systems and has been studied primarily as a treatment of substance use disorders (SUDs). Some studies of ibogaine for SUDs have also noted improvements in self-reported measures of mood.

In the United States, ibogaine is classified as a Schedule I substance, but legal ibogaine treatments are offered in clinics in Canada and Mexico.

Dr. Williams noted that a handful of US veterans who went to Mexico for ibogaine treatment anecdotally reported improvements a variety of aspects of their lives.

The goal of the current study was to characterize those improvements with structured clinical and neurobiological assessments.

Participants included 30 US Special Operations Forces veterans (SOVs) with predominantly mild TBI from combat/blast exposures and psychiatric symptoms and functional limitations. All of them had independently scheduled themselves for treatment with magnesium and ibogaine at a clinic in Mexico.

Before treatment, the veterans had an average disability rating of 30.2 on the World Health Organization Disability Assessment Scale 2.0, equivalent to mild to moderate disability. One month after ibogaine treatment, that rating improved to 5.1, indicating no disability, the researchers reported.

One month after treatment, participants also experienced average reductions of 88% in PTSD symptoms, 87% in depression symptoms, and 81% in anxiety symptoms relative to before treatment.

Neuropsychological testing revealed improved concentration, information processing, memory, and impulsivity. There was also a substantial reduction in suicidal ideation.

“Before the treatment, I was living life in a blizzard with zero visibility and a cold, hopeless, listless feeling. After ibogaine, the storm lifted,” Sean, a 51-year-old veteran from Arizona with six combat deployments who participated in the study, said in a Stanford news release.

There were no serious side effects of ibogaine, and no instances of heart problems associated with the treatment.

Although the study findings are promising, additional research is needed to address some clear limitations, the researchers noted.

“Most importantly, the study was not controlled and so the relative contribution of any therapeutic benefits from non-ibogaine elements of the experience, such as complementary treatments, group activities, coaching, international travel, expectancy, or other nonspecific effects, cannot be determined,” they wrote.

In addition, follow-up was limited to 1 month, and longer-term data are needed to determine durability of the effects.

“We plan to study this compound further, as well as launch future studies to continue to understand how this drug can be used to treat TBI and possibly as a broader neuro-rehab drug. We will work towards a US-based set of trials to confirm efficacy with a multisite design,” said Dr. Williams.
 

 

 

Promising, but Very Preliminary

Commenting on the study for this news organization, Ramon Diaz-Arrastia, MD, PhD, professor of neurology and director of the Clinical TBI Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, said the results are “promising, but very preliminary.”

Dr. Diaz-Arrastia noted that this was an open-label, nonrandomized study, early phase 2a study with “highly subjective outcome measures and the likelihood of it being a placebo effect is very high.”

Nonetheless, “there is a lot of interest in these ‘psychedelic’ alkaloids, and ibogaine is a good candidate for further study,” Dr. Diaz-Arrastia said.

Also providing perspective, Alan K. Davis, PhD, director of the Center for Psychedelic Drug Research and Education, Ohio State University, Columbus, said “mounting evidence supports the importance of studying this treatment in rigorous clinical trials in the US.”

Dr. Davis and colleagues recently observed that treatment with two naturally occurring psychedelics — ibogaine and 5-MeO-DMT — was associated with reduced depressive and anxiety symptoms in trauma-exposed SOVs, as previously reported by this news organization.

This new study “basically is a replication of what we’ve already published on this topic, and we published data from much larger samples and longer follow up,” said Dr. Davis.

Dr. Davis said it’s “important for the public to know that there are important and serious risks associated with ibogaine therapy, including the possibility of cardiac problems and death. These risks are compounded when people are in clinics or settings where proper screening and medical oversight are not completed.”

“Furthermore, the long-term effectiveness of this treatment is not well established. It may only help in the short term for most people. For many, ongoing clinical aftercare therapy and other forms of treatment may be needed,” Dr. Davis noted.

The study was independently funded by philanthropic gifts from Steve and Genevieve Jurvetson and another anonymous donor. Williams is an inventor on a patent application related to the safety of MISTIC administration as described in the paper and a separate patent related to the use of ibogaine to treat disorders associated with brain aging. Dr. Davis is a board member at Source Resource Foundation and a lead trainer at Fluence. Dr. Diaz-Arrastia has no relevant disclosures.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

The plant-based psychoactive compound ibogaine, combined with magnesium to protect the heart, is linked to improvement in severe psychiatric symptoms including depression, anxiety, and functioning in veterans with traumatic brain injury (TBI), early results from a small study showed.

“The most unique findings we observed are the improvements in disability and cognition. At the start of the study, participants had mild to moderate levels of disability. However, a month after treatment, their average disability rating indicated no disability and cognitive testing indicated improvements in concentration and memory,” study investigator Nolan Williams, MD, Stanford University, Stanford, California, told this news organization.

Also noteworthy were improvements across all participants in posttraumatic stress disorder (PTSD), depression, and anxiety — effects that lasted for at least 1 month after treatment, he said.

“These results are remarkable and exceeded our expectations. There is no drug today that can broadly relieve functional and neuropsychiatric symptoms of TBI as we observed with ibogaine,” Dr. Williams added.

The study was published online on January 5, 2024, in Nature Medicine.
 

‘The Storm Lifted’

Ibogaine is derived from the root bark of the Tabernanthe iboga shrub and related plants and is traditionally used in African spiritual and healing ceremonies.

It is known to interact with multiple neurotransmitter systems and has been studied primarily as a treatment of substance use disorders (SUDs). Some studies of ibogaine for SUDs have also noted improvements in self-reported measures of mood.

In the United States, ibogaine is classified as a Schedule I substance, but legal ibogaine treatments are offered in clinics in Canada and Mexico.

Dr. Williams noted that a handful of US veterans who went to Mexico for ibogaine treatment anecdotally reported improvements a variety of aspects of their lives.

The goal of the current study was to characterize those improvements with structured clinical and neurobiological assessments.

Participants included 30 US Special Operations Forces veterans (SOVs) with predominantly mild TBI from combat/blast exposures and psychiatric symptoms and functional limitations. All of them had independently scheduled themselves for treatment with magnesium and ibogaine at a clinic in Mexico.

Before treatment, the veterans had an average disability rating of 30.2 on the World Health Organization Disability Assessment Scale 2.0, equivalent to mild to moderate disability. One month after ibogaine treatment, that rating improved to 5.1, indicating no disability, the researchers reported.

One month after treatment, participants also experienced average reductions of 88% in PTSD symptoms, 87% in depression symptoms, and 81% in anxiety symptoms relative to before treatment.

Neuropsychological testing revealed improved concentration, information processing, memory, and impulsivity. There was also a substantial reduction in suicidal ideation.

“Before the treatment, I was living life in a blizzard with zero visibility and a cold, hopeless, listless feeling. After ibogaine, the storm lifted,” Sean, a 51-year-old veteran from Arizona with six combat deployments who participated in the study, said in a Stanford news release.

There were no serious side effects of ibogaine, and no instances of heart problems associated with the treatment.

Although the study findings are promising, additional research is needed to address some clear limitations, the researchers noted.

“Most importantly, the study was not controlled and so the relative contribution of any therapeutic benefits from non-ibogaine elements of the experience, such as complementary treatments, group activities, coaching, international travel, expectancy, or other nonspecific effects, cannot be determined,” they wrote.

In addition, follow-up was limited to 1 month, and longer-term data are needed to determine durability of the effects.

“We plan to study this compound further, as well as launch future studies to continue to understand how this drug can be used to treat TBI and possibly as a broader neuro-rehab drug. We will work towards a US-based set of trials to confirm efficacy with a multisite design,” said Dr. Williams.
 

 

 

Promising, but Very Preliminary

Commenting on the study for this news organization, Ramon Diaz-Arrastia, MD, PhD, professor of neurology and director of the Clinical TBI Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, said the results are “promising, but very preliminary.”

Dr. Diaz-Arrastia noted that this was an open-label, nonrandomized study, early phase 2a study with “highly subjective outcome measures and the likelihood of it being a placebo effect is very high.”

Nonetheless, “there is a lot of interest in these ‘psychedelic’ alkaloids, and ibogaine is a good candidate for further study,” Dr. Diaz-Arrastia said.

Also providing perspective, Alan K. Davis, PhD, director of the Center for Psychedelic Drug Research and Education, Ohio State University, Columbus, said “mounting evidence supports the importance of studying this treatment in rigorous clinical trials in the US.”

Dr. Davis and colleagues recently observed that treatment with two naturally occurring psychedelics — ibogaine and 5-MeO-DMT — was associated with reduced depressive and anxiety symptoms in trauma-exposed SOVs, as previously reported by this news organization.

This new study “basically is a replication of what we’ve already published on this topic, and we published data from much larger samples and longer follow up,” said Dr. Davis.

Dr. Davis said it’s “important for the public to know that there are important and serious risks associated with ibogaine therapy, including the possibility of cardiac problems and death. These risks are compounded when people are in clinics or settings where proper screening and medical oversight are not completed.”

“Furthermore, the long-term effectiveness of this treatment is not well established. It may only help in the short term for most people. For many, ongoing clinical aftercare therapy and other forms of treatment may be needed,” Dr. Davis noted.

The study was independently funded by philanthropic gifts from Steve and Genevieve Jurvetson and another anonymous donor. Williams is an inventor on a patent application related to the safety of MISTIC administration as described in the paper and a separate patent related to the use of ibogaine to treat disorders associated with brain aging. Dr. Davis is a board member at Source Resource Foundation and a lead trainer at Fluence. Dr. Diaz-Arrastia has no relevant disclosures.

A version of this article appeared on Medscape.com.

The plant-based psychoactive compound ibogaine, combined with magnesium to protect the heart, is linked to improvement in severe psychiatric symptoms including depression, anxiety, and functioning in veterans with traumatic brain injury (TBI), early results from a small study showed.

“The most unique findings we observed are the improvements in disability and cognition. At the start of the study, participants had mild to moderate levels of disability. However, a month after treatment, their average disability rating indicated no disability and cognitive testing indicated improvements in concentration and memory,” study investigator Nolan Williams, MD, Stanford University, Stanford, California, told this news organization.

Also noteworthy were improvements across all participants in posttraumatic stress disorder (PTSD), depression, and anxiety — effects that lasted for at least 1 month after treatment, he said.

“These results are remarkable and exceeded our expectations. There is no drug today that can broadly relieve functional and neuropsychiatric symptoms of TBI as we observed with ibogaine,” Dr. Williams added.

The study was published online on January 5, 2024, in Nature Medicine.
 

‘The Storm Lifted’

Ibogaine is derived from the root bark of the Tabernanthe iboga shrub and related plants and is traditionally used in African spiritual and healing ceremonies.

It is known to interact with multiple neurotransmitter systems and has been studied primarily as a treatment of substance use disorders (SUDs). Some studies of ibogaine for SUDs have also noted improvements in self-reported measures of mood.

In the United States, ibogaine is classified as a Schedule I substance, but legal ibogaine treatments are offered in clinics in Canada and Mexico.

Dr. Williams noted that a handful of US veterans who went to Mexico for ibogaine treatment anecdotally reported improvements a variety of aspects of their lives.

The goal of the current study was to characterize those improvements with structured clinical and neurobiological assessments.

Participants included 30 US Special Operations Forces veterans (SOVs) with predominantly mild TBI from combat/blast exposures and psychiatric symptoms and functional limitations. All of them had independently scheduled themselves for treatment with magnesium and ibogaine at a clinic in Mexico.

Before treatment, the veterans had an average disability rating of 30.2 on the World Health Organization Disability Assessment Scale 2.0, equivalent to mild to moderate disability. One month after ibogaine treatment, that rating improved to 5.1, indicating no disability, the researchers reported.

One month after treatment, participants also experienced average reductions of 88% in PTSD symptoms, 87% in depression symptoms, and 81% in anxiety symptoms relative to before treatment.

Neuropsychological testing revealed improved concentration, information processing, memory, and impulsivity. There was also a substantial reduction in suicidal ideation.

“Before the treatment, I was living life in a blizzard with zero visibility and a cold, hopeless, listless feeling. After ibogaine, the storm lifted,” Sean, a 51-year-old veteran from Arizona with six combat deployments who participated in the study, said in a Stanford news release.

There were no serious side effects of ibogaine, and no instances of heart problems associated with the treatment.

Although the study findings are promising, additional research is needed to address some clear limitations, the researchers noted.

“Most importantly, the study was not controlled and so the relative contribution of any therapeutic benefits from non-ibogaine elements of the experience, such as complementary treatments, group activities, coaching, international travel, expectancy, or other nonspecific effects, cannot be determined,” they wrote.

In addition, follow-up was limited to 1 month, and longer-term data are needed to determine durability of the effects.

“We plan to study this compound further, as well as launch future studies to continue to understand how this drug can be used to treat TBI and possibly as a broader neuro-rehab drug. We will work towards a US-based set of trials to confirm efficacy with a multisite design,” said Dr. Williams.
 

 

 

Promising, but Very Preliminary

Commenting on the study for this news organization, Ramon Diaz-Arrastia, MD, PhD, professor of neurology and director of the Clinical TBI Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, said the results are “promising, but very preliminary.”

Dr. Diaz-Arrastia noted that this was an open-label, nonrandomized study, early phase 2a study with “highly subjective outcome measures and the likelihood of it being a placebo effect is very high.”

Nonetheless, “there is a lot of interest in these ‘psychedelic’ alkaloids, and ibogaine is a good candidate for further study,” Dr. Diaz-Arrastia said.

Also providing perspective, Alan K. Davis, PhD, director of the Center for Psychedelic Drug Research and Education, Ohio State University, Columbus, said “mounting evidence supports the importance of studying this treatment in rigorous clinical trials in the US.”

Dr. Davis and colleagues recently observed that treatment with two naturally occurring psychedelics — ibogaine and 5-MeO-DMT — was associated with reduced depressive and anxiety symptoms in trauma-exposed SOVs, as previously reported by this news organization.

This new study “basically is a replication of what we’ve already published on this topic, and we published data from much larger samples and longer follow up,” said Dr. Davis.

Dr. Davis said it’s “important for the public to know that there are important and serious risks associated with ibogaine therapy, including the possibility of cardiac problems and death. These risks are compounded when people are in clinics or settings where proper screening and medical oversight are not completed.”

“Furthermore, the long-term effectiveness of this treatment is not well established. It may only help in the short term for most people. For many, ongoing clinical aftercare therapy and other forms of treatment may be needed,” Dr. Davis noted.

The study was independently funded by philanthropic gifts from Steve and Genevieve Jurvetson and another anonymous donor. Williams is an inventor on a patent application related to the safety of MISTIC administration as described in the paper and a separate patent related to the use of ibogaine to treat disorders associated with brain aging. Dr. Davis is a board member at Source Resource Foundation and a lead trainer at Fluence. Dr. Diaz-Arrastia has no relevant disclosures.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM NATURE MEDICINE

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Which Therapies Reduce Daytime Symptoms of Insomnia?

Article Type
Changed
Tue, 01/09/2024 - 13:16

Zolpidem and behavior therapy significantly reduce daytime symptoms of insomnia such as fatigue, functional impairments, and depressive symptoms, data suggested.

In a randomized clinical trial of more than 200 patients with chronic insomnia, behavioral therapy was associated with a 4.7-point reduction in Multidimensional Fatigue Inventory (MFI) score. Zolpidem was associated with a 5.2-point reduction in this score.

“There may be some advantage to starting with behavioral intervention,” study author Charles Morin, PhD, Canada research chair in sleeping disorders at Laval University in Quebec City, told this news organization. “But by the same token, because it takes a bit more time to produce benefits, some patients quit too quickly. So, even if we want to minimize the use of medications because of potential side effects, there may be times where we need to use it.”

The results were published in JAMA Network Open.
 

‘Different Treatment Options’

There is growing awareness that sleep is a critical pillar of good health that is just as important as good nutrition and exercise, said Dr. Morin. Clinicians thus need to pay more attention to the toll of poor sleep on physical and mental health, he added.

For the current study, the investigators randomly assigned 211 adults with chronic insomnia to behavioral therapy, which included sleep restriction and stimulus control procedures, or zolpidem (5-10 mg nightly) for 6 weeks. Participants who achieved insomnia remission by that point were followed for 12 months. Participants who did not achieve remission were randomly assigned to a second-stage psychological therapy or medication therapy (zolpidem or trazodone).

The outcome measures were daytime functional outcomes such as mood disturbances, fatigue, functional impairments of insomnia, and physical and mental health. The researchers assessed these outcomes at baseline, 6 weeks, the end of second-stage therapy, and 3- and 12-month follow-up visits.

Both initial treatments were associated with significant and equivalent reductions in depressive symptoms, fatigue, and functional impairments. Mean change in the Beck Depression Inventory-II was −3.5 for patients in the behavioral therapy arm and −4.3 for patients in the zolpidem arm. Mean change in the MFI score was −4.7 among patients who received behavioral therapy and −5.2 among those who received zolpidem. Mean change in the Work and Social Adjustment Scale, which measured functional impairments, was −5.0 for the behavioral therapy arm and −5.1 for the zolpidem arm.

In addition, both treatments were associated with improvements in mental health, as measured by the Short-Form Health Survey (SF-36). Mean change in the mental health subscale of SF-36 was 3.5 points in the behavioral therapy arm and 2.5 points in the zolpidem arm.

Second-stage treatments were associated with further improvements, and these benefits were maintained throughout the 12 months of follow-up. These findings support adding a second treatment of insomnia as part of efforts to address daytime function, the authors wrote.

“If the first treatment doesn’t work, we should not stop there. There are different treatment options,” said Dr. Morin.

“Future developments of insomnia treatment strategies should take into account the daytime consequences of insomnia,” wrote the investigators. “Additional studies are needed to further investigate the potential benefits of switching treatment modalities and incorporating a therapeutic component that can address psychological and mood disturbances.”

The authors acknowledged that the study was limited by the lack of a control condition and by relatively small sample sizes for each treatment group, which may reduce the statistical power to detect more significant group differences. They also noted that only patients who did not achieve insomnia remission received second-stage therapy, but those who did achieve remission can still have residual daytime impairments (eg, fatigue and mood disturbances) that are associated with future relapse.
 

 

 

Compliance Needed

Commenting on the findings for this news organization, Jocelyn Y. Cheng, MD, vice chair of the public safety committee of the American Academy of Sleep Medicine (AASM) and a researcher at the pharmaceutical firm Eisai, said that the research was designed well and used established and practical assessment tools. Cheng did not participate in the study.

In 2020, AASM published a clinical practice guideline on chronic insomnia disorder that strongly recommended cognitive behavioral therapy (CBT). Some of the guideline’s authors, such as Dr. Morin, conducted the present study.

The current results offer reassurance about cases in which patients may prefer options other than CBT, said Cheng. Therapy and medication each appear to help reduce daytime outcomes of insomnia such as anxiety, she said.

Some patients are reluctant to try CBT, and others may not be able to find or participate in this kind of therapy because of other medical conditions such as traumatic brain injury. CBT “does require compliance and somebody willing to participate and also somebody able to participate,” said Cheng. “So, in that case, medication might be the better way to go [for the] first line.”

This study was funded by the National Institute of Mental Health. Dr. Morin reported receiving grants and personal fees from Eisai and Idorsia, grants from Lallemand Health, and royalties from Mapi Research Trust outside the submitted work. A coauthor reported receiving grants from Janssen Pharmaceuticals, Axsome Pharmaceutics, Attune, Harmony, Neurocrine Biosciences, Reveal Biosensors, the Ray and Dagmar Dolby Family Fund, and the National Institutes of Health; personal fees from Axsome Therapeutics, Big Health, Eisai, Evecxia, Harmony Biosciences, Idorsia, Janssen Pharmaceuticals, Jazz Pharmaceuticals, Millenium Pharmaceuticals, Merck, Neurocrine Biosciences, Neurawell, Pernix, Otsuka Pharmaceuticals, Sage, and Takeda; and stock options from Big Health and Neurawell outside the submitted work. Cheng reported no relevant financial relationships other than her employment by Eisai.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Zolpidem and behavior therapy significantly reduce daytime symptoms of insomnia such as fatigue, functional impairments, and depressive symptoms, data suggested.

In a randomized clinical trial of more than 200 patients with chronic insomnia, behavioral therapy was associated with a 4.7-point reduction in Multidimensional Fatigue Inventory (MFI) score. Zolpidem was associated with a 5.2-point reduction in this score.

“There may be some advantage to starting with behavioral intervention,” study author Charles Morin, PhD, Canada research chair in sleeping disorders at Laval University in Quebec City, told this news organization. “But by the same token, because it takes a bit more time to produce benefits, some patients quit too quickly. So, even if we want to minimize the use of medications because of potential side effects, there may be times where we need to use it.”

The results were published in JAMA Network Open.
 

‘Different Treatment Options’

There is growing awareness that sleep is a critical pillar of good health that is just as important as good nutrition and exercise, said Dr. Morin. Clinicians thus need to pay more attention to the toll of poor sleep on physical and mental health, he added.

For the current study, the investigators randomly assigned 211 adults with chronic insomnia to behavioral therapy, which included sleep restriction and stimulus control procedures, or zolpidem (5-10 mg nightly) for 6 weeks. Participants who achieved insomnia remission by that point were followed for 12 months. Participants who did not achieve remission were randomly assigned to a second-stage psychological therapy or medication therapy (zolpidem or trazodone).

The outcome measures were daytime functional outcomes such as mood disturbances, fatigue, functional impairments of insomnia, and physical and mental health. The researchers assessed these outcomes at baseline, 6 weeks, the end of second-stage therapy, and 3- and 12-month follow-up visits.

Both initial treatments were associated with significant and equivalent reductions in depressive symptoms, fatigue, and functional impairments. Mean change in the Beck Depression Inventory-II was −3.5 for patients in the behavioral therapy arm and −4.3 for patients in the zolpidem arm. Mean change in the MFI score was −4.7 among patients who received behavioral therapy and −5.2 among those who received zolpidem. Mean change in the Work and Social Adjustment Scale, which measured functional impairments, was −5.0 for the behavioral therapy arm and −5.1 for the zolpidem arm.

In addition, both treatments were associated with improvements in mental health, as measured by the Short-Form Health Survey (SF-36). Mean change in the mental health subscale of SF-36 was 3.5 points in the behavioral therapy arm and 2.5 points in the zolpidem arm.

Second-stage treatments were associated with further improvements, and these benefits were maintained throughout the 12 months of follow-up. These findings support adding a second treatment of insomnia as part of efforts to address daytime function, the authors wrote.

“If the first treatment doesn’t work, we should not stop there. There are different treatment options,” said Dr. Morin.

“Future developments of insomnia treatment strategies should take into account the daytime consequences of insomnia,” wrote the investigators. “Additional studies are needed to further investigate the potential benefits of switching treatment modalities and incorporating a therapeutic component that can address psychological and mood disturbances.”

The authors acknowledged that the study was limited by the lack of a control condition and by relatively small sample sizes for each treatment group, which may reduce the statistical power to detect more significant group differences. They also noted that only patients who did not achieve insomnia remission received second-stage therapy, but those who did achieve remission can still have residual daytime impairments (eg, fatigue and mood disturbances) that are associated with future relapse.
 

 

 

Compliance Needed

Commenting on the findings for this news organization, Jocelyn Y. Cheng, MD, vice chair of the public safety committee of the American Academy of Sleep Medicine (AASM) and a researcher at the pharmaceutical firm Eisai, said that the research was designed well and used established and practical assessment tools. Cheng did not participate in the study.

In 2020, AASM published a clinical practice guideline on chronic insomnia disorder that strongly recommended cognitive behavioral therapy (CBT). Some of the guideline’s authors, such as Dr. Morin, conducted the present study.

The current results offer reassurance about cases in which patients may prefer options other than CBT, said Cheng. Therapy and medication each appear to help reduce daytime outcomes of insomnia such as anxiety, she said.

Some patients are reluctant to try CBT, and others may not be able to find or participate in this kind of therapy because of other medical conditions such as traumatic brain injury. CBT “does require compliance and somebody willing to participate and also somebody able to participate,” said Cheng. “So, in that case, medication might be the better way to go [for the] first line.”

This study was funded by the National Institute of Mental Health. Dr. Morin reported receiving grants and personal fees from Eisai and Idorsia, grants from Lallemand Health, and royalties from Mapi Research Trust outside the submitted work. A coauthor reported receiving grants from Janssen Pharmaceuticals, Axsome Pharmaceutics, Attune, Harmony, Neurocrine Biosciences, Reveal Biosensors, the Ray and Dagmar Dolby Family Fund, and the National Institutes of Health; personal fees from Axsome Therapeutics, Big Health, Eisai, Evecxia, Harmony Biosciences, Idorsia, Janssen Pharmaceuticals, Jazz Pharmaceuticals, Millenium Pharmaceuticals, Merck, Neurocrine Biosciences, Neurawell, Pernix, Otsuka Pharmaceuticals, Sage, and Takeda; and stock options from Big Health and Neurawell outside the submitted work. Cheng reported no relevant financial relationships other than her employment by Eisai.

A version of this article appeared on Medscape.com.

Zolpidem and behavior therapy significantly reduce daytime symptoms of insomnia such as fatigue, functional impairments, and depressive symptoms, data suggested.

In a randomized clinical trial of more than 200 patients with chronic insomnia, behavioral therapy was associated with a 4.7-point reduction in Multidimensional Fatigue Inventory (MFI) score. Zolpidem was associated with a 5.2-point reduction in this score.

“There may be some advantage to starting with behavioral intervention,” study author Charles Morin, PhD, Canada research chair in sleeping disorders at Laval University in Quebec City, told this news organization. “But by the same token, because it takes a bit more time to produce benefits, some patients quit too quickly. So, even if we want to minimize the use of medications because of potential side effects, there may be times where we need to use it.”

The results were published in JAMA Network Open.
 

‘Different Treatment Options’

There is growing awareness that sleep is a critical pillar of good health that is just as important as good nutrition and exercise, said Dr. Morin. Clinicians thus need to pay more attention to the toll of poor sleep on physical and mental health, he added.

For the current study, the investigators randomly assigned 211 adults with chronic insomnia to behavioral therapy, which included sleep restriction and stimulus control procedures, or zolpidem (5-10 mg nightly) for 6 weeks. Participants who achieved insomnia remission by that point were followed for 12 months. Participants who did not achieve remission were randomly assigned to a second-stage psychological therapy or medication therapy (zolpidem or trazodone).

The outcome measures were daytime functional outcomes such as mood disturbances, fatigue, functional impairments of insomnia, and physical and mental health. The researchers assessed these outcomes at baseline, 6 weeks, the end of second-stage therapy, and 3- and 12-month follow-up visits.

Both initial treatments were associated with significant and equivalent reductions in depressive symptoms, fatigue, and functional impairments. Mean change in the Beck Depression Inventory-II was −3.5 for patients in the behavioral therapy arm and −4.3 for patients in the zolpidem arm. Mean change in the MFI score was −4.7 among patients who received behavioral therapy and −5.2 among those who received zolpidem. Mean change in the Work and Social Adjustment Scale, which measured functional impairments, was −5.0 for the behavioral therapy arm and −5.1 for the zolpidem arm.

In addition, both treatments were associated with improvements in mental health, as measured by the Short-Form Health Survey (SF-36). Mean change in the mental health subscale of SF-36 was 3.5 points in the behavioral therapy arm and 2.5 points in the zolpidem arm.

Second-stage treatments were associated with further improvements, and these benefits were maintained throughout the 12 months of follow-up. These findings support adding a second treatment of insomnia as part of efforts to address daytime function, the authors wrote.

“If the first treatment doesn’t work, we should not stop there. There are different treatment options,” said Dr. Morin.

“Future developments of insomnia treatment strategies should take into account the daytime consequences of insomnia,” wrote the investigators. “Additional studies are needed to further investigate the potential benefits of switching treatment modalities and incorporating a therapeutic component that can address psychological and mood disturbances.”

The authors acknowledged that the study was limited by the lack of a control condition and by relatively small sample sizes for each treatment group, which may reduce the statistical power to detect more significant group differences. They also noted that only patients who did not achieve insomnia remission received second-stage therapy, but those who did achieve remission can still have residual daytime impairments (eg, fatigue and mood disturbances) that are associated with future relapse.
 

 

 

Compliance Needed

Commenting on the findings for this news organization, Jocelyn Y. Cheng, MD, vice chair of the public safety committee of the American Academy of Sleep Medicine (AASM) and a researcher at the pharmaceutical firm Eisai, said that the research was designed well and used established and practical assessment tools. Cheng did not participate in the study.

In 2020, AASM published a clinical practice guideline on chronic insomnia disorder that strongly recommended cognitive behavioral therapy (CBT). Some of the guideline’s authors, such as Dr. Morin, conducted the present study.

The current results offer reassurance about cases in which patients may prefer options other than CBT, said Cheng. Therapy and medication each appear to help reduce daytime outcomes of insomnia such as anxiety, she said.

Some patients are reluctant to try CBT, and others may not be able to find or participate in this kind of therapy because of other medical conditions such as traumatic brain injury. CBT “does require compliance and somebody willing to participate and also somebody able to participate,” said Cheng. “So, in that case, medication might be the better way to go [for the] first line.”

This study was funded by the National Institute of Mental Health. Dr. Morin reported receiving grants and personal fees from Eisai and Idorsia, grants from Lallemand Health, and royalties from Mapi Research Trust outside the submitted work. A coauthor reported receiving grants from Janssen Pharmaceuticals, Axsome Pharmaceutics, Attune, Harmony, Neurocrine Biosciences, Reveal Biosensors, the Ray and Dagmar Dolby Family Fund, and the National Institutes of Health; personal fees from Axsome Therapeutics, Big Health, Eisai, Evecxia, Harmony Biosciences, Idorsia, Janssen Pharmaceuticals, Jazz Pharmaceuticals, Millenium Pharmaceuticals, Merck, Neurocrine Biosciences, Neurawell, Pernix, Otsuka Pharmaceuticals, Sage, and Takeda; and stock options from Big Health and Neurawell outside the submitted work. Cheng reported no relevant financial relationships other than her employment by Eisai.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Cannabis for Psychiatric Disorders? ‘Not Today,’ Experts Say

Article Type
Changed
Tue, 01/09/2024 - 12:18

This transcript has been edited for clarity.

Stephen M. Strakowski, MD: Hello. Thank you all for joining us today. I’m very excited to have some great guests to talk about what I consider an active controversy. I’m Stephen M. Strakowski. I’m a professor and vice chair of psychiatry at Indiana University, and professor and associate vice president at University of Texas in Austin.

Today we’re going to talk about cannabis. As all of you are aware, everyone’s talking about cannabis. We hear constantly on social media and in interviews, particularly with relevance to psychiatric disorders, that everyone should be thinking about using cannabis. That seems to be the common conversation.

Last week, I had a patient who said, “All my friends tell me I need to be on cannabis.” That was their solution to her problems. With that in mind, let me introduce our guests, who are both experts on this, to talk about the role of cannabis in psychiatric disorders today.

First, I want to welcome Dr. Leslie Hulvershorn. Dr. Hulvershorn is an associate professor and chair at Indiana University in Indianapolis. Dr. Christopher Hammond is an assistant professor and the director of the co-occurring disorders program at Johns Hopkins. Welcome!

Leslie A. Hulvershorn, MD, MSc: Thank you.

Christopher J. Hammond, MD, PhD: Thank you.

Dr. Strakowski: Leslie, as I mentioned, many people are talking about how cannabis could be a good treatment for psychiatric disorders. Is that true?

Dr. Hulvershorn: If you look at what defines a good treatment, what you’re looking for is clinical trials, ideally randomized, placebo-controlled clinical trials.

When we look at research related to cannabis, we see very few of those trials, and we see that the cannabis plant is actually quite complicated and there are many different compounds that come from it. So we need to look at all the different compounds.

If you think about THC, delta 9 or delta 8, depending on the version, that’s the active ingredient that we most often think about when we say “cannabis.” If you look at THC studies, there really is no evidence that I could find that it helps psychiatric disorders.

What we do find is an enormous literature, many hunDr.eds of studies, actually, that show that THC actually worsens or even brings on psychiatric disorders. There’s a separate conversation about other compounds within the cannabis plant, like CBD, cannabidiol, where there’s maybe a signal that certain anxiety disorders might be improved by a compound like that.

Certainly, rare forms of epilepsy have been found to be improved with that compound. It really depends on what you’re looking at within the cannabis plant, but if we’re thinking about THC, the answer really is no, this is not a helpful thing. In fact, it’s probably a harmful thing to be ingesting in terms of psychiatric disorders.

Dr. Strakowski: Thank you, Leslie. Chris, what would you add to that? Do we know anything about the use of cannabis in any psychiatric condition?

Dr. Hammond: I definitely would echo what Leslie said. The popular opinion, that the media and the state legislatures have really, in many ways, put the cart before the horse — they speak about cannabis as a medication for the treatment of psychiatric conditions before we have sufficient evidence to say that it’s safe or effective for these conditions. Most of the evidence that we have, particularly in regard to the cannabinoid compound, delta 9, tetrahyDr.ocannabinol, or THC, suggests that that cannabinoid is associated with adverse mental health outcomes across different categories.

Dr. Strakowski: Our group, a long time ago, conducted a study looking at first episode of mania, and found that regular cannabis use increases the risk for subsequent manic episodes. I’m not aware of many other studies like that.

You referred, Chris, to the safety aspect. If you look at social media, the press, and the conversations where cannabis is talked about, there’s no risk, right? This is something anybody can use. There are no negative consequences. Is that true? I mean, is it really risk free?

Dr. Hammond: Research shows that that’s an inaccurate framing of the safety profile of cannabis. Again, as Leslie put it very well, cannabis is many different compounds. Using this catchall phrase of «cannabis» is not very helpful.

In regard to the main bioactive compounds of the cannabis plant, THC and cannabidiol, or CBD, what we know from studies of THC administration and from medications that have been designed to mimic THC and act on receptors that THC acts on is that those medications have clear side effects and adverse events in a percentage of patients who take them, particularly in regard to precipitating panic attacks, dysphoric episodes, and psychosis in some individuals.

Dr. Hulvershorn: I would add that it really depends on the age of the person that you’re talking about and when they’re first exposed to cannabis. If you’re talking about a person, say, under the age of 14 who uses cannabis, there’s a large amount of concern about the worsening of psychosis and mental health symptoms, but also cognitive features like memory.

There’s a very good study that was conducted in New Zealand that followed a large number of kids over time and showed significant decreases in working memory capacity for kids who used quite heavily.

Then you think about pregnant women. That’s very interesting literature, where people are finding that cannabis not only affects brain development but also a host of other systems in the body. For example, I think the risk for asthma is increased. If you look at the genes in the placenta that are affected, it has much to do with the immune system.

Women who are using cannabis during pregnancy are really exposing their fetus to a range of potential risks that we certainly don’t understand well enough, but there’s enough science that suggests this is really concerning.

If you take a step back and look at animal models, even with things like CBD products, which, again, everybody seems to be buying and they’re viewed as very safe — it’s almost hard to find things without CBD these days.

There we find, for example, in developing rats that testicular development seems to be affected with high doses of CBD. There’s just a huge array of effects, even outside of the psychiatric world, that make me very nervous about anyone using, especially a pregnant woman or a young person.

Then there’s a whole separate literature on adults. It’s hard to find studies that suggest this is a great idea. You’re going to find on the mental health side of things, and the cognitive side of things, many effects as well.

I, personally, am agnostic one way or the other. If cannabis turns out to be helpful, great. We love things that are helpful in medicine. We don’t really care where they come from. I’m not biased politically one way or the other. It’s just when you look at the totality of the literature, it’s hard to feel excited about people using cannabis at any age.

Dr. Hammond: It’s difficult to interpret the literature because of some biases there. It speaks to the importance of thoughtful research being done in this space that takes a neutral approach to assessing cannabis and looking for evidence of both potential benefit and potential harm.

The other piece that I think is of value that builds off what Leslie mentioned is the effects of cannabis and THC. The risk for harm appears to be greater in pregnant women and in young people. For adults, I think, we’re also still trying to understand what the effects are.

The other way of parsing out effects and thinking about them is in terms of the acute effects and the acute response in the moment right after one ingests cannabis vs the long-term effects.

After acute ingestion of cannabis, it can precipitate a psychotic episode, dysphoria or severe depressive symptoms, or severe anxiety, and can cause one to be disoriented, have delayed response time, and affect the ability to Dr.ive. In that capacity, it is related to a higher risk for motor vehicle crashes.

Dr. Strakowski: That’s very interesting. In my practice, and maybe it’s atypical, but half to two thirds of my patients, particularly the younger ones, are using cannabis in some form or another. In my experience, if they’re under 21, they’re more likely to use cannabis than alcohol.

What do we tell our patients? Is there a safe level of use? Do we say to never touch it? How do we manage the social pressure and environment that our patients have to live in?

Dr. Hulvershorn: I think about what we call motivational interviewing and the substance use disorder field, which is a style of interacting with someone that’s very neutral to discuss the pros and the cons. In my practice, people are usually coming to us because of problems related to their substance use.

Not everyone is experiencing those, but for those people, it’s a pretty easy discussion. It sounds like you’re getting into trouble. Your athletic performance is suffering. Your scholastic performance is suffering.

You walk them toward understanding that, wait a minute, if I smoked less weed or no weed, I would probably be doing better in this or that domain of my life. That seems to be the most helpful thing, by allowing them to come to that conclusion.

I think it is a more difficult conversation for people who don’t identify any problems related to their use. What is the right answer? Again, I just go back to saying, “Is this good for you? It’s hard to find the literature that suggests that. Is it neutral for you? Maybe, for some people. Is it harmful for some people? Absolutely.”

I think, for me, the most impactful studies have been those that showed for certain people with certain genetic makeup, cannabis is an absolutely terrible idea. Their risk for psychosis development and things like that are so high. For other people, they could smoke weed all day and never have a problem, based on their genetics — maybe. We don’t know. It’s not like we’re doing blood tests to figure out who you are.

The safest advice, I think, is no use. That’s never going to be bad advice.

Dr. Hammond: I mostly agree with Leslie on this point but feel very, very strongly that — in this era, where in the context of popular media, celebrities and other people are stating that cannabis is good and should be put in everything — clinical providers, especially pediatric providers, need to be extremely grounded in the science, and not let popular media sway our approach and strategy for working with these young people.

There’s two decades worth of data from longitudinal studies that have followed individuals from birth or from preadolescence into their thirties and forties, that show us that, for this association between cannabis use and later adverse mental health outcomes, there is a dose effect there.

The earlier an individual starts using, the more frequent they use, and more persistent their use is over time, those individuals have poorer mental health outcomes compared with individuals who choose to abstain or individuals who use just a few times and stop.

There’s also a signal for higher-THC-potency products being associated with poorer mental health outcomes, particularly when used during adolescence.

I apply a motivational interviewing approach as well to disseminate this information to both the young people and their parents about the risks, and to communicate what the data clearly show in regard to using THC-based cannabinoid products, which is that we don’t have evidence that shows that any use is healthy to the developing brain.

There’s a large amount of evidence that suggests it’s harmful to the developing brain, so the recommendation is not to use, to delay the onset of use, if you want to use, until adulthood. Many youth choose to use. For those young people, we meet them where they’re at and try to work with them on cutting down.

Dr. Strakowski: Thank you both. There’s an interesting effort in different states, with lobbying by celebrities and legislators pushing insurance companies to fund cannabis use broadly, including in a number of psychiatric indications, with no FDA approval at this point. Do you support that? Is that a good idea?

Dr. Hammond: Absolutely not.

Dr. Strakowski: Thank you.

Dr. Hammond: I think that’s a very important statement to make. For the medical and healthcare profession to stand strong related to states requiring insurance companies to cover medical cannabis really opens the door to lawsuits that would force insurance companies to cover other undertested bioactive chemicals and health supplements.

There are insufficient safety data for medical cannabis for FDA approval for any condition right now. The FDA has approved cannabinoid-based medications. Those cannabinoid-based medications have really undergone rigorous safety and efficacy testing, and have been approved for very narrow indications, none of which are psychiatric conditions.

They’ve been approved for chemotherapy-associated nausea and vomiting, treatment-resistant seizures related to two rare seizure disorders that emerge during childhood, and related to tuberous sclerosis, and one related to treating multiple sclerosis–associated spasticity and central neuropathic pain.

Dr. Hulvershorn: Steve, I think it’s important for listeners to be aware that there is a process in place for any therapeutic to become tested and reviewed. We see an industry that stands to make an enormous amount of money, and that is really the motivation for this industry.

These are not folks who are, out of the kindness of their heart, just hoping for better treatments for people. There are many ways you could channel that desire that does not include cannabis making money.

It’s really a profit-motivated industry. They’re very effective at lobbying. The public, unfortunately, has been sort of manipulated by this industry to believe that these are healthy, safe, and natural just because they grow in the ground.

Unfortunately, that’s really the issue. I think people just need to keep that in mind. Someone stands to make a large amount of money off of this. This is a very calculated, strategic approach that goes state by state but is nationally organized, and is potentially, like Chris says, for many reasons, really harmful.

I see it as sort of a bullying approach. Like if your Dr.ug works, Medicaid will pay for it. Medicaid in each state will review the studies. The FDA obviously leads the way. To cut the line without the research is really not helpful — circumventing the process that’s been in place for a long time and works well.

Dr. Hammond: Yes, it sets a dangerous precedent.

Dr. Strakowski: I was going to add the same, that it’s potentially dangerous. Thank you both, Dr.s Hulvershorn and Hammond, for a really good, lively discussion. I know we could talk for a very long time about this situation.

I do think it’s clear for listeners, most of whom are practitioners, that at this point in time, there just really does not seem to be strong evidence for the use of cannabis-based products for any psychiatric condition.

I do think we have to approach the people we’re working with around their psychiatric conditions to manage use and abuse wisely, like we would with any other substance. I appreciate everyone who’s tuned in today to watch us. I hope this is useful for your practice. Thank you.

Stephen M. Strakowski, MD, has disclosed the following relevant financial relationships:

  • Serve(d) as a director, officer, partner, employee, advisor, consultant, or trustee for: Roche; Procter & Gamble; Novartis; Sunovion
  • Received income in an amount equal to or greater than $250 from: Roche; Procter & Gamble; Novartis; Sunovion; Oxford University Press

Leslie A. Hulvershorn, MD, MSc, has disclosed the following relevant financial relationships:

  • Received income in an amount equal to or greater than $250 from: Greenwich Biosciences, educational grant for Summit

Christopher J. Hammond, MD, PhD, has disclosed the following relevant financial relationships:

  • Received research grant from National Institutes of Health Grants; Bench to Bench Award; Substance Abuse and Mental Health Services Administration; Doris Duke.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

This transcript has been edited for clarity.

Stephen M. Strakowski, MD: Hello. Thank you all for joining us today. I’m very excited to have some great guests to talk about what I consider an active controversy. I’m Stephen M. Strakowski. I’m a professor and vice chair of psychiatry at Indiana University, and professor and associate vice president at University of Texas in Austin.

Today we’re going to talk about cannabis. As all of you are aware, everyone’s talking about cannabis. We hear constantly on social media and in interviews, particularly with relevance to psychiatric disorders, that everyone should be thinking about using cannabis. That seems to be the common conversation.

Last week, I had a patient who said, “All my friends tell me I need to be on cannabis.” That was their solution to her problems. With that in mind, let me introduce our guests, who are both experts on this, to talk about the role of cannabis in psychiatric disorders today.

First, I want to welcome Dr. Leslie Hulvershorn. Dr. Hulvershorn is an associate professor and chair at Indiana University in Indianapolis. Dr. Christopher Hammond is an assistant professor and the director of the co-occurring disorders program at Johns Hopkins. Welcome!

Leslie A. Hulvershorn, MD, MSc: Thank you.

Christopher J. Hammond, MD, PhD: Thank you.

Dr. Strakowski: Leslie, as I mentioned, many people are talking about how cannabis could be a good treatment for psychiatric disorders. Is that true?

Dr. Hulvershorn: If you look at what defines a good treatment, what you’re looking for is clinical trials, ideally randomized, placebo-controlled clinical trials.

When we look at research related to cannabis, we see very few of those trials, and we see that the cannabis plant is actually quite complicated and there are many different compounds that come from it. So we need to look at all the different compounds.

If you think about THC, delta 9 or delta 8, depending on the version, that’s the active ingredient that we most often think about when we say “cannabis.” If you look at THC studies, there really is no evidence that I could find that it helps psychiatric disorders.

What we do find is an enormous literature, many hunDr.eds of studies, actually, that show that THC actually worsens or even brings on psychiatric disorders. There’s a separate conversation about other compounds within the cannabis plant, like CBD, cannabidiol, where there’s maybe a signal that certain anxiety disorders might be improved by a compound like that.

Certainly, rare forms of epilepsy have been found to be improved with that compound. It really depends on what you’re looking at within the cannabis plant, but if we’re thinking about THC, the answer really is no, this is not a helpful thing. In fact, it’s probably a harmful thing to be ingesting in terms of psychiatric disorders.

Dr. Strakowski: Thank you, Leslie. Chris, what would you add to that? Do we know anything about the use of cannabis in any psychiatric condition?

Dr. Hammond: I definitely would echo what Leslie said. The popular opinion, that the media and the state legislatures have really, in many ways, put the cart before the horse — they speak about cannabis as a medication for the treatment of psychiatric conditions before we have sufficient evidence to say that it’s safe or effective for these conditions. Most of the evidence that we have, particularly in regard to the cannabinoid compound, delta 9, tetrahyDr.ocannabinol, or THC, suggests that that cannabinoid is associated with adverse mental health outcomes across different categories.

Dr. Strakowski: Our group, a long time ago, conducted a study looking at first episode of mania, and found that regular cannabis use increases the risk for subsequent manic episodes. I’m not aware of many other studies like that.

You referred, Chris, to the safety aspect. If you look at social media, the press, and the conversations where cannabis is talked about, there’s no risk, right? This is something anybody can use. There are no negative consequences. Is that true? I mean, is it really risk free?

Dr. Hammond: Research shows that that’s an inaccurate framing of the safety profile of cannabis. Again, as Leslie put it very well, cannabis is many different compounds. Using this catchall phrase of «cannabis» is not very helpful.

In regard to the main bioactive compounds of the cannabis plant, THC and cannabidiol, or CBD, what we know from studies of THC administration and from medications that have been designed to mimic THC and act on receptors that THC acts on is that those medications have clear side effects and adverse events in a percentage of patients who take them, particularly in regard to precipitating panic attacks, dysphoric episodes, and psychosis in some individuals.

Dr. Hulvershorn: I would add that it really depends on the age of the person that you’re talking about and when they’re first exposed to cannabis. If you’re talking about a person, say, under the age of 14 who uses cannabis, there’s a large amount of concern about the worsening of psychosis and mental health symptoms, but also cognitive features like memory.

There’s a very good study that was conducted in New Zealand that followed a large number of kids over time and showed significant decreases in working memory capacity for kids who used quite heavily.

Then you think about pregnant women. That’s very interesting literature, where people are finding that cannabis not only affects brain development but also a host of other systems in the body. For example, I think the risk for asthma is increased. If you look at the genes in the placenta that are affected, it has much to do with the immune system.

Women who are using cannabis during pregnancy are really exposing their fetus to a range of potential risks that we certainly don’t understand well enough, but there’s enough science that suggests this is really concerning.

If you take a step back and look at animal models, even with things like CBD products, which, again, everybody seems to be buying and they’re viewed as very safe — it’s almost hard to find things without CBD these days.

There we find, for example, in developing rats that testicular development seems to be affected with high doses of CBD. There’s just a huge array of effects, even outside of the psychiatric world, that make me very nervous about anyone using, especially a pregnant woman or a young person.

Then there’s a whole separate literature on adults. It’s hard to find studies that suggest this is a great idea. You’re going to find on the mental health side of things, and the cognitive side of things, many effects as well.

I, personally, am agnostic one way or the other. If cannabis turns out to be helpful, great. We love things that are helpful in medicine. We don’t really care where they come from. I’m not biased politically one way or the other. It’s just when you look at the totality of the literature, it’s hard to feel excited about people using cannabis at any age.

Dr. Hammond: It’s difficult to interpret the literature because of some biases there. It speaks to the importance of thoughtful research being done in this space that takes a neutral approach to assessing cannabis and looking for evidence of both potential benefit and potential harm.

The other piece that I think is of value that builds off what Leslie mentioned is the effects of cannabis and THC. The risk for harm appears to be greater in pregnant women and in young people. For adults, I think, we’re also still trying to understand what the effects are.

The other way of parsing out effects and thinking about them is in terms of the acute effects and the acute response in the moment right after one ingests cannabis vs the long-term effects.

After acute ingestion of cannabis, it can precipitate a psychotic episode, dysphoria or severe depressive symptoms, or severe anxiety, and can cause one to be disoriented, have delayed response time, and affect the ability to Dr.ive. In that capacity, it is related to a higher risk for motor vehicle crashes.

Dr. Strakowski: That’s very interesting. In my practice, and maybe it’s atypical, but half to two thirds of my patients, particularly the younger ones, are using cannabis in some form or another. In my experience, if they’re under 21, they’re more likely to use cannabis than alcohol.

What do we tell our patients? Is there a safe level of use? Do we say to never touch it? How do we manage the social pressure and environment that our patients have to live in?

Dr. Hulvershorn: I think about what we call motivational interviewing and the substance use disorder field, which is a style of interacting with someone that’s very neutral to discuss the pros and the cons. In my practice, people are usually coming to us because of problems related to their substance use.

Not everyone is experiencing those, but for those people, it’s a pretty easy discussion. It sounds like you’re getting into trouble. Your athletic performance is suffering. Your scholastic performance is suffering.

You walk them toward understanding that, wait a minute, if I smoked less weed or no weed, I would probably be doing better in this or that domain of my life. That seems to be the most helpful thing, by allowing them to come to that conclusion.

I think it is a more difficult conversation for people who don’t identify any problems related to their use. What is the right answer? Again, I just go back to saying, “Is this good for you? It’s hard to find the literature that suggests that. Is it neutral for you? Maybe, for some people. Is it harmful for some people? Absolutely.”

I think, for me, the most impactful studies have been those that showed for certain people with certain genetic makeup, cannabis is an absolutely terrible idea. Their risk for psychosis development and things like that are so high. For other people, they could smoke weed all day and never have a problem, based on their genetics — maybe. We don’t know. It’s not like we’re doing blood tests to figure out who you are.

The safest advice, I think, is no use. That’s never going to be bad advice.

Dr. Hammond: I mostly agree with Leslie on this point but feel very, very strongly that — in this era, where in the context of popular media, celebrities and other people are stating that cannabis is good and should be put in everything — clinical providers, especially pediatric providers, need to be extremely grounded in the science, and not let popular media sway our approach and strategy for working with these young people.

There’s two decades worth of data from longitudinal studies that have followed individuals from birth or from preadolescence into their thirties and forties, that show us that, for this association between cannabis use and later adverse mental health outcomes, there is a dose effect there.

The earlier an individual starts using, the more frequent they use, and more persistent their use is over time, those individuals have poorer mental health outcomes compared with individuals who choose to abstain or individuals who use just a few times and stop.

There’s also a signal for higher-THC-potency products being associated with poorer mental health outcomes, particularly when used during adolescence.

I apply a motivational interviewing approach as well to disseminate this information to both the young people and their parents about the risks, and to communicate what the data clearly show in regard to using THC-based cannabinoid products, which is that we don’t have evidence that shows that any use is healthy to the developing brain.

There’s a large amount of evidence that suggests it’s harmful to the developing brain, so the recommendation is not to use, to delay the onset of use, if you want to use, until adulthood. Many youth choose to use. For those young people, we meet them where they’re at and try to work with them on cutting down.

Dr. Strakowski: Thank you both. There’s an interesting effort in different states, with lobbying by celebrities and legislators pushing insurance companies to fund cannabis use broadly, including in a number of psychiatric indications, with no FDA approval at this point. Do you support that? Is that a good idea?

Dr. Hammond: Absolutely not.

Dr. Strakowski: Thank you.

Dr. Hammond: I think that’s a very important statement to make. For the medical and healthcare profession to stand strong related to states requiring insurance companies to cover medical cannabis really opens the door to lawsuits that would force insurance companies to cover other undertested bioactive chemicals and health supplements.

There are insufficient safety data for medical cannabis for FDA approval for any condition right now. The FDA has approved cannabinoid-based medications. Those cannabinoid-based medications have really undergone rigorous safety and efficacy testing, and have been approved for very narrow indications, none of which are psychiatric conditions.

They’ve been approved for chemotherapy-associated nausea and vomiting, treatment-resistant seizures related to two rare seizure disorders that emerge during childhood, and related to tuberous sclerosis, and one related to treating multiple sclerosis–associated spasticity and central neuropathic pain.

Dr. Hulvershorn: Steve, I think it’s important for listeners to be aware that there is a process in place for any therapeutic to become tested and reviewed. We see an industry that stands to make an enormous amount of money, and that is really the motivation for this industry.

These are not folks who are, out of the kindness of their heart, just hoping for better treatments for people. There are many ways you could channel that desire that does not include cannabis making money.

It’s really a profit-motivated industry. They’re very effective at lobbying. The public, unfortunately, has been sort of manipulated by this industry to believe that these are healthy, safe, and natural just because they grow in the ground.

Unfortunately, that’s really the issue. I think people just need to keep that in mind. Someone stands to make a large amount of money off of this. This is a very calculated, strategic approach that goes state by state but is nationally organized, and is potentially, like Chris says, for many reasons, really harmful.

I see it as sort of a bullying approach. Like if your Dr.ug works, Medicaid will pay for it. Medicaid in each state will review the studies. The FDA obviously leads the way. To cut the line without the research is really not helpful — circumventing the process that’s been in place for a long time and works well.

Dr. Hammond: Yes, it sets a dangerous precedent.

Dr. Strakowski: I was going to add the same, that it’s potentially dangerous. Thank you both, Dr.s Hulvershorn and Hammond, for a really good, lively discussion. I know we could talk for a very long time about this situation.

I do think it’s clear for listeners, most of whom are practitioners, that at this point in time, there just really does not seem to be strong evidence for the use of cannabis-based products for any psychiatric condition.

I do think we have to approach the people we’re working with around their psychiatric conditions to manage use and abuse wisely, like we would with any other substance. I appreciate everyone who’s tuned in today to watch us. I hope this is useful for your practice. Thank you.

Stephen M. Strakowski, MD, has disclosed the following relevant financial relationships:

  • Serve(d) as a director, officer, partner, employee, advisor, consultant, or trustee for: Roche; Procter & Gamble; Novartis; Sunovion
  • Received income in an amount equal to or greater than $250 from: Roche; Procter & Gamble; Novartis; Sunovion; Oxford University Press

Leslie A. Hulvershorn, MD, MSc, has disclosed the following relevant financial relationships:

  • Received income in an amount equal to or greater than $250 from: Greenwich Biosciences, educational grant for Summit

Christopher J. Hammond, MD, PhD, has disclosed the following relevant financial relationships:

  • Received research grant from National Institutes of Health Grants; Bench to Bench Award; Substance Abuse and Mental Health Services Administration; Doris Duke.

A version of this article appeared on Medscape.com.

This transcript has been edited for clarity.

Stephen M. Strakowski, MD: Hello. Thank you all for joining us today. I’m very excited to have some great guests to talk about what I consider an active controversy. I’m Stephen M. Strakowski. I’m a professor and vice chair of psychiatry at Indiana University, and professor and associate vice president at University of Texas in Austin.

Today we’re going to talk about cannabis. As all of you are aware, everyone’s talking about cannabis. We hear constantly on social media and in interviews, particularly with relevance to psychiatric disorders, that everyone should be thinking about using cannabis. That seems to be the common conversation.

Last week, I had a patient who said, “All my friends tell me I need to be on cannabis.” That was their solution to her problems. With that in mind, let me introduce our guests, who are both experts on this, to talk about the role of cannabis in psychiatric disorders today.

First, I want to welcome Dr. Leslie Hulvershorn. Dr. Hulvershorn is an associate professor and chair at Indiana University in Indianapolis. Dr. Christopher Hammond is an assistant professor and the director of the co-occurring disorders program at Johns Hopkins. Welcome!

Leslie A. Hulvershorn, MD, MSc: Thank you.

Christopher J. Hammond, MD, PhD: Thank you.

Dr. Strakowski: Leslie, as I mentioned, many people are talking about how cannabis could be a good treatment for psychiatric disorders. Is that true?

Dr. Hulvershorn: If you look at what defines a good treatment, what you’re looking for is clinical trials, ideally randomized, placebo-controlled clinical trials.

When we look at research related to cannabis, we see very few of those trials, and we see that the cannabis plant is actually quite complicated and there are many different compounds that come from it. So we need to look at all the different compounds.

If you think about THC, delta 9 or delta 8, depending on the version, that’s the active ingredient that we most often think about when we say “cannabis.” If you look at THC studies, there really is no evidence that I could find that it helps psychiatric disorders.

What we do find is an enormous literature, many hunDr.eds of studies, actually, that show that THC actually worsens or even brings on psychiatric disorders. There’s a separate conversation about other compounds within the cannabis plant, like CBD, cannabidiol, where there’s maybe a signal that certain anxiety disorders might be improved by a compound like that.

Certainly, rare forms of epilepsy have been found to be improved with that compound. It really depends on what you’re looking at within the cannabis plant, but if we’re thinking about THC, the answer really is no, this is not a helpful thing. In fact, it’s probably a harmful thing to be ingesting in terms of psychiatric disorders.

Dr. Strakowski: Thank you, Leslie. Chris, what would you add to that? Do we know anything about the use of cannabis in any psychiatric condition?

Dr. Hammond: I definitely would echo what Leslie said. The popular opinion, that the media and the state legislatures have really, in many ways, put the cart before the horse — they speak about cannabis as a medication for the treatment of psychiatric conditions before we have sufficient evidence to say that it’s safe or effective for these conditions. Most of the evidence that we have, particularly in regard to the cannabinoid compound, delta 9, tetrahyDr.ocannabinol, or THC, suggests that that cannabinoid is associated with adverse mental health outcomes across different categories.

Dr. Strakowski: Our group, a long time ago, conducted a study looking at first episode of mania, and found that regular cannabis use increases the risk for subsequent manic episodes. I’m not aware of many other studies like that.

You referred, Chris, to the safety aspect. If you look at social media, the press, and the conversations where cannabis is talked about, there’s no risk, right? This is something anybody can use. There are no negative consequences. Is that true? I mean, is it really risk free?

Dr. Hammond: Research shows that that’s an inaccurate framing of the safety profile of cannabis. Again, as Leslie put it very well, cannabis is many different compounds. Using this catchall phrase of «cannabis» is not very helpful.

In regard to the main bioactive compounds of the cannabis plant, THC and cannabidiol, or CBD, what we know from studies of THC administration and from medications that have been designed to mimic THC and act on receptors that THC acts on is that those medications have clear side effects and adverse events in a percentage of patients who take them, particularly in regard to precipitating panic attacks, dysphoric episodes, and psychosis in some individuals.

Dr. Hulvershorn: I would add that it really depends on the age of the person that you’re talking about and when they’re first exposed to cannabis. If you’re talking about a person, say, under the age of 14 who uses cannabis, there’s a large amount of concern about the worsening of psychosis and mental health symptoms, but also cognitive features like memory.

There’s a very good study that was conducted in New Zealand that followed a large number of kids over time and showed significant decreases in working memory capacity for kids who used quite heavily.

Then you think about pregnant women. That’s very interesting literature, where people are finding that cannabis not only affects brain development but also a host of other systems in the body. For example, I think the risk for asthma is increased. If you look at the genes in the placenta that are affected, it has much to do with the immune system.

Women who are using cannabis during pregnancy are really exposing their fetus to a range of potential risks that we certainly don’t understand well enough, but there’s enough science that suggests this is really concerning.

If you take a step back and look at animal models, even with things like CBD products, which, again, everybody seems to be buying and they’re viewed as very safe — it’s almost hard to find things without CBD these days.

There we find, for example, in developing rats that testicular development seems to be affected with high doses of CBD. There’s just a huge array of effects, even outside of the psychiatric world, that make me very nervous about anyone using, especially a pregnant woman or a young person.

Then there’s a whole separate literature on adults. It’s hard to find studies that suggest this is a great idea. You’re going to find on the mental health side of things, and the cognitive side of things, many effects as well.

I, personally, am agnostic one way or the other. If cannabis turns out to be helpful, great. We love things that are helpful in medicine. We don’t really care where they come from. I’m not biased politically one way or the other. It’s just when you look at the totality of the literature, it’s hard to feel excited about people using cannabis at any age.

Dr. Hammond: It’s difficult to interpret the literature because of some biases there. It speaks to the importance of thoughtful research being done in this space that takes a neutral approach to assessing cannabis and looking for evidence of both potential benefit and potential harm.

The other piece that I think is of value that builds off what Leslie mentioned is the effects of cannabis and THC. The risk for harm appears to be greater in pregnant women and in young people. For adults, I think, we’re also still trying to understand what the effects are.

The other way of parsing out effects and thinking about them is in terms of the acute effects and the acute response in the moment right after one ingests cannabis vs the long-term effects.

After acute ingestion of cannabis, it can precipitate a psychotic episode, dysphoria or severe depressive symptoms, or severe anxiety, and can cause one to be disoriented, have delayed response time, and affect the ability to Dr.ive. In that capacity, it is related to a higher risk for motor vehicle crashes.

Dr. Strakowski: That’s very interesting. In my practice, and maybe it’s atypical, but half to two thirds of my patients, particularly the younger ones, are using cannabis in some form or another. In my experience, if they’re under 21, they’re more likely to use cannabis than alcohol.

What do we tell our patients? Is there a safe level of use? Do we say to never touch it? How do we manage the social pressure and environment that our patients have to live in?

Dr. Hulvershorn: I think about what we call motivational interviewing and the substance use disorder field, which is a style of interacting with someone that’s very neutral to discuss the pros and the cons. In my practice, people are usually coming to us because of problems related to their substance use.

Not everyone is experiencing those, but for those people, it’s a pretty easy discussion. It sounds like you’re getting into trouble. Your athletic performance is suffering. Your scholastic performance is suffering.

You walk them toward understanding that, wait a minute, if I smoked less weed or no weed, I would probably be doing better in this or that domain of my life. That seems to be the most helpful thing, by allowing them to come to that conclusion.

I think it is a more difficult conversation for people who don’t identify any problems related to their use. What is the right answer? Again, I just go back to saying, “Is this good for you? It’s hard to find the literature that suggests that. Is it neutral for you? Maybe, for some people. Is it harmful for some people? Absolutely.”

I think, for me, the most impactful studies have been those that showed for certain people with certain genetic makeup, cannabis is an absolutely terrible idea. Their risk for psychosis development and things like that are so high. For other people, they could smoke weed all day and never have a problem, based on their genetics — maybe. We don’t know. It’s not like we’re doing blood tests to figure out who you are.

The safest advice, I think, is no use. That’s never going to be bad advice.

Dr. Hammond: I mostly agree with Leslie on this point but feel very, very strongly that — in this era, where in the context of popular media, celebrities and other people are stating that cannabis is good and should be put in everything — clinical providers, especially pediatric providers, need to be extremely grounded in the science, and not let popular media sway our approach and strategy for working with these young people.

There’s two decades worth of data from longitudinal studies that have followed individuals from birth or from preadolescence into their thirties and forties, that show us that, for this association between cannabis use and later adverse mental health outcomes, there is a dose effect there.

The earlier an individual starts using, the more frequent they use, and more persistent their use is over time, those individuals have poorer mental health outcomes compared with individuals who choose to abstain or individuals who use just a few times and stop.

There’s also a signal for higher-THC-potency products being associated with poorer mental health outcomes, particularly when used during adolescence.

I apply a motivational interviewing approach as well to disseminate this information to both the young people and their parents about the risks, and to communicate what the data clearly show in regard to using THC-based cannabinoid products, which is that we don’t have evidence that shows that any use is healthy to the developing brain.

There’s a large amount of evidence that suggests it’s harmful to the developing brain, so the recommendation is not to use, to delay the onset of use, if you want to use, until adulthood. Many youth choose to use. For those young people, we meet them where they’re at and try to work with them on cutting down.

Dr. Strakowski: Thank you both. There’s an interesting effort in different states, with lobbying by celebrities and legislators pushing insurance companies to fund cannabis use broadly, including in a number of psychiatric indications, with no FDA approval at this point. Do you support that? Is that a good idea?

Dr. Hammond: Absolutely not.

Dr. Strakowski: Thank you.

Dr. Hammond: I think that’s a very important statement to make. For the medical and healthcare profession to stand strong related to states requiring insurance companies to cover medical cannabis really opens the door to lawsuits that would force insurance companies to cover other undertested bioactive chemicals and health supplements.

There are insufficient safety data for medical cannabis for FDA approval for any condition right now. The FDA has approved cannabinoid-based medications. Those cannabinoid-based medications have really undergone rigorous safety and efficacy testing, and have been approved for very narrow indications, none of which are psychiatric conditions.

They’ve been approved for chemotherapy-associated nausea and vomiting, treatment-resistant seizures related to two rare seizure disorders that emerge during childhood, and related to tuberous sclerosis, and one related to treating multiple sclerosis–associated spasticity and central neuropathic pain.

Dr. Hulvershorn: Steve, I think it’s important for listeners to be aware that there is a process in place for any therapeutic to become tested and reviewed. We see an industry that stands to make an enormous amount of money, and that is really the motivation for this industry.

These are not folks who are, out of the kindness of their heart, just hoping for better treatments for people. There are many ways you could channel that desire that does not include cannabis making money.

It’s really a profit-motivated industry. They’re very effective at lobbying. The public, unfortunately, has been sort of manipulated by this industry to believe that these are healthy, safe, and natural just because they grow in the ground.

Unfortunately, that’s really the issue. I think people just need to keep that in mind. Someone stands to make a large amount of money off of this. This is a very calculated, strategic approach that goes state by state but is nationally organized, and is potentially, like Chris says, for many reasons, really harmful.

I see it as sort of a bullying approach. Like if your Dr.ug works, Medicaid will pay for it. Medicaid in each state will review the studies. The FDA obviously leads the way. To cut the line without the research is really not helpful — circumventing the process that’s been in place for a long time and works well.

Dr. Hammond: Yes, it sets a dangerous precedent.

Dr. Strakowski: I was going to add the same, that it’s potentially dangerous. Thank you both, Dr.s Hulvershorn and Hammond, for a really good, lively discussion. I know we could talk for a very long time about this situation.

I do think it’s clear for listeners, most of whom are practitioners, that at this point in time, there just really does not seem to be strong evidence for the use of cannabis-based products for any psychiatric condition.

I do think we have to approach the people we’re working with around their psychiatric conditions to manage use and abuse wisely, like we would with any other substance. I appreciate everyone who’s tuned in today to watch us. I hope this is useful for your practice. Thank you.

Stephen M. Strakowski, MD, has disclosed the following relevant financial relationships:

  • Serve(d) as a director, officer, partner, employee, advisor, consultant, or trustee for: Roche; Procter & Gamble; Novartis; Sunovion
  • Received income in an amount equal to or greater than $250 from: Roche; Procter & Gamble; Novartis; Sunovion; Oxford University Press

Leslie A. Hulvershorn, MD, MSc, has disclosed the following relevant financial relationships:

  • Received income in an amount equal to or greater than $250 from: Greenwich Biosciences, educational grant for Summit

Christopher J. Hammond, MD, PhD, has disclosed the following relevant financial relationships:

  • Received research grant from National Institutes of Health Grants; Bench to Bench Award; Substance Abuse and Mental Health Services Administration; Doris Duke.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Poor Oral Health Tied to Worse Brain Health

Article Type
Changed
Tue, 01/09/2024 - 13:03

Proper care of teeth and gums may offer benefits beyond oral health, including improving brain health, new research suggests.

In a large observational study of middle-aged adults without stroke or dementia, poor oral health was strongly associated with multiple neuroimaging markers of white matter injury.

“Because the neuroimaging markers evaluated in this study precede and are established risk factors of stroke and dementia, our results suggest that oral health, an easily modifiable process, may be a promising target for very early interventions focused on improving brain health,” wrote the authors, led by Cyprien A. Rivier, MD, MS, with the Department of Neurology, Yale University School of Medicine, New Haven, Connecticut.

The study was published online on December 20, 2023, in Neurology.

Research data came from 40,175 adults (mean age, 55 years; 53% women) with no history of stroke or dementia who enrolled in the UK Biobank from 2006 to 2010 and had brain MRI between 2014 and 2016.

Altogether, 5470 (14%) participants had poor oral health, defined as the presence of dentures or loose teeth. Those with poor (vs optimal) oral health were older, more likely to be male, and had higher prevalence of hypertension, hypercholesterolemia, diabetes, overweight/obesity, and current or past smoking history.

In a multivariable model, poor oral health was associated with a 9% increase in white matter hyperintensity (WMH) volume (P < .001), a well-established marker of clinically silent cerebrovascular disease.

Poor oral health was also associated with a 10% change in aggregate fractional anisotropy (FA) score (P < .001) and a 5% change in aggregate mean diffusivity (MD) score (P < .001), two diffusion tensor imaging metrics that accurately represent white matter disintegrity.

Genetic analyses using Mendelian randomization confirmed these associations. Individuals who were genetically prone to poor oral health had a 30% increase in WMH volume (P < .001), 43% change in aggregate FA score (P < .001), and 10% change in aggregate MD score (P < .01), the researchers reported.

These findings, they noted, add to prior epidemiologic evidence for an association between poor oral health and a higher risk for clinical outcomes related to brain health, including cognitive decline.

‘Huge Dividends’

The authors of an accompanying editorial praised the authors for looking at the consequences of poor oral health in a “new and powerful way by using as their outcome MRI-defined white matter injury, which is associated with, but antedates by many years, cognitive decline and stroke.”

“The fact that these imaging changes are seen in asymptomatic persons offers the hope that if the association is causal, interventions to improve oral health could pay huge dividends in subsequent brain health,” wrote Steven J. Kittner, MD, MPH, and Breana L. Taylor, MD, with the Department of Neurology, University of Maryland School of Medicine in Baltimore.

“The mechanisms mediating the relationship between the oral health genetic risk score and white matter injury are likely to be complex, but the authors have taken an important step forward in addressing a hypothesis of immense public health importance,” they added.

Data from the World Health Organization suggested that oral diseases, which are largely preventable, affect nearly 3.5 billion people globally, with three out of four people affected in middle-income countries.

Funding for the study was provided in part by grants from the National Institutes of Health, the American Heart Association, and the Neurocritical Care Society Research Fellowship. The authors and editorialists disclosed no relevant conflicts of interest.

Megan Brooks has disclosed no relevant financial relationships.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Proper care of teeth and gums may offer benefits beyond oral health, including improving brain health, new research suggests.

In a large observational study of middle-aged adults without stroke or dementia, poor oral health was strongly associated with multiple neuroimaging markers of white matter injury.

“Because the neuroimaging markers evaluated in this study precede and are established risk factors of stroke and dementia, our results suggest that oral health, an easily modifiable process, may be a promising target for very early interventions focused on improving brain health,” wrote the authors, led by Cyprien A. Rivier, MD, MS, with the Department of Neurology, Yale University School of Medicine, New Haven, Connecticut.

The study was published online on December 20, 2023, in Neurology.

Research data came from 40,175 adults (mean age, 55 years; 53% women) with no history of stroke or dementia who enrolled in the UK Biobank from 2006 to 2010 and had brain MRI between 2014 and 2016.

Altogether, 5470 (14%) participants had poor oral health, defined as the presence of dentures or loose teeth. Those with poor (vs optimal) oral health were older, more likely to be male, and had higher prevalence of hypertension, hypercholesterolemia, diabetes, overweight/obesity, and current or past smoking history.

In a multivariable model, poor oral health was associated with a 9% increase in white matter hyperintensity (WMH) volume (P < .001), a well-established marker of clinically silent cerebrovascular disease.

Poor oral health was also associated with a 10% change in aggregate fractional anisotropy (FA) score (P < .001) and a 5% change in aggregate mean diffusivity (MD) score (P < .001), two diffusion tensor imaging metrics that accurately represent white matter disintegrity.

Genetic analyses using Mendelian randomization confirmed these associations. Individuals who were genetically prone to poor oral health had a 30% increase in WMH volume (P < .001), 43% change in aggregate FA score (P < .001), and 10% change in aggregate MD score (P < .01), the researchers reported.

These findings, they noted, add to prior epidemiologic evidence for an association between poor oral health and a higher risk for clinical outcomes related to brain health, including cognitive decline.

‘Huge Dividends’

The authors of an accompanying editorial praised the authors for looking at the consequences of poor oral health in a “new and powerful way by using as their outcome MRI-defined white matter injury, which is associated with, but antedates by many years, cognitive decline and stroke.”

“The fact that these imaging changes are seen in asymptomatic persons offers the hope that if the association is causal, interventions to improve oral health could pay huge dividends in subsequent brain health,” wrote Steven J. Kittner, MD, MPH, and Breana L. Taylor, MD, with the Department of Neurology, University of Maryland School of Medicine in Baltimore.

“The mechanisms mediating the relationship between the oral health genetic risk score and white matter injury are likely to be complex, but the authors have taken an important step forward in addressing a hypothesis of immense public health importance,” they added.

Data from the World Health Organization suggested that oral diseases, which are largely preventable, affect nearly 3.5 billion people globally, with three out of four people affected in middle-income countries.

Funding for the study was provided in part by grants from the National Institutes of Health, the American Heart Association, and the Neurocritical Care Society Research Fellowship. The authors and editorialists disclosed no relevant conflicts of interest.

Megan Brooks has disclosed no relevant financial relationships.
 

A version of this article appeared on Medscape.com.

Proper care of teeth and gums may offer benefits beyond oral health, including improving brain health, new research suggests.

In a large observational study of middle-aged adults without stroke or dementia, poor oral health was strongly associated with multiple neuroimaging markers of white matter injury.

“Because the neuroimaging markers evaluated in this study precede and are established risk factors of stroke and dementia, our results suggest that oral health, an easily modifiable process, may be a promising target for very early interventions focused on improving brain health,” wrote the authors, led by Cyprien A. Rivier, MD, MS, with the Department of Neurology, Yale University School of Medicine, New Haven, Connecticut.

The study was published online on December 20, 2023, in Neurology.

Research data came from 40,175 adults (mean age, 55 years; 53% women) with no history of stroke or dementia who enrolled in the UK Biobank from 2006 to 2010 and had brain MRI between 2014 and 2016.

Altogether, 5470 (14%) participants had poor oral health, defined as the presence of dentures or loose teeth. Those with poor (vs optimal) oral health were older, more likely to be male, and had higher prevalence of hypertension, hypercholesterolemia, diabetes, overweight/obesity, and current or past smoking history.

In a multivariable model, poor oral health was associated with a 9% increase in white matter hyperintensity (WMH) volume (P < .001), a well-established marker of clinically silent cerebrovascular disease.

Poor oral health was also associated with a 10% change in aggregate fractional anisotropy (FA) score (P < .001) and a 5% change in aggregate mean diffusivity (MD) score (P < .001), two diffusion tensor imaging metrics that accurately represent white matter disintegrity.

Genetic analyses using Mendelian randomization confirmed these associations. Individuals who were genetically prone to poor oral health had a 30% increase in WMH volume (P < .001), 43% change in aggregate FA score (P < .001), and 10% change in aggregate MD score (P < .01), the researchers reported.

These findings, they noted, add to prior epidemiologic evidence for an association between poor oral health and a higher risk for clinical outcomes related to brain health, including cognitive decline.

‘Huge Dividends’

The authors of an accompanying editorial praised the authors for looking at the consequences of poor oral health in a “new and powerful way by using as their outcome MRI-defined white matter injury, which is associated with, but antedates by many years, cognitive decline and stroke.”

“The fact that these imaging changes are seen in asymptomatic persons offers the hope that if the association is causal, interventions to improve oral health could pay huge dividends in subsequent brain health,” wrote Steven J. Kittner, MD, MPH, and Breana L. Taylor, MD, with the Department of Neurology, University of Maryland School of Medicine in Baltimore.

“The mechanisms mediating the relationship between the oral health genetic risk score and white matter injury are likely to be complex, but the authors have taken an important step forward in addressing a hypothesis of immense public health importance,” they added.

Data from the World Health Organization suggested that oral diseases, which are largely preventable, affect nearly 3.5 billion people globally, with three out of four people affected in middle-income countries.

Funding for the study was provided in part by grants from the National Institutes of Health, the American Heart Association, and the Neurocritical Care Society Research Fellowship. The authors and editorialists disclosed no relevant conflicts of interest.

Megan Brooks has disclosed no relevant financial relationships.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Yes, Patients Are Getting More Complicated

Article Type
Changed
Wed, 01/24/2024 - 15:03

This transcript has been edited for clarity.

The first time I saw a patient in the hospital was in 2004, twenty years ago, when I was a third-year med student. I mean, look at that guy. The things I could tell him.

Since that time, I have spent countless hours in the hospital as a resident, a renal fellow, and finally as an attending. And I’m sure many of you in the medical community feel the same thing I do, which is that patients are much more complicated now than they used to be. I’ll listen to an intern present a new case on rounds and she’ll have an assessment and plan that encompasses a dozen individual medical problems. Sometimes I have to literally be like, “Wait, why is this patient here again?”

But until now, I had no data to convince myself that this feeling was real — that hospitalized patients are getting more and more complicated, or that they only seem more complicated because I’m getting older. Maybe I was better able to keep track of things when I was an intern rather than now as an attending, spending just a couple months of the year in the hospital. I mean, after all, if patients were getting more complicated, surely hospitals would know this and allocate more resources to patient care, right?

Right?

It’s not an illusion. At least not according to this paper, Population-Based Trends in Complexity of Hospital Inpatients, appearing in JAMA Internal Medicine, which examines about 15 years of inpatient hospital admissions in British Columbia.

I like Canada for this study for two reasons: First, their electronic health record system is province-wide, so they don’t have issues of getting data from hospital A vs hospital B. All the data are there — in this case, more than 3 million nonelective hospital admissions from British Columbia. Second, there is universal healthcare. We don’t have to worry about insurance companies changing, or the start of a new program like the Affordable Care Act. It’s just a cleaner set-up.

Of course, complexity is hard to define, and the authors here decide to look at a variety of metrics I think we can agree are tied into complexity. These include things like patient age, comorbidities, medications, frequency of hospitalization, and so on. They also looked at outcomes associated with hospitalization: Did the patient require the ICU? Did they survive? Were they readmitted?

And the tale of the tape is as clear as that British Columbian air: Over the past 15 years, your average hospitalized patient is about 3 years older, is twice as likely to have kidney disease, 70% more likely to have diabetes, is on more medications (particularly anticoagulants), and is much more likely to be admitted through the emergency room. They’ve also spent more time in the hospital in the past year.

Given the increased complexity, you might expect that the outcomes for these patients are worse than years ago, but the data do not bear that out. In fact, inpatient mortality is lower now than it was 15 years ago, although 30-day postdischarge mortality is higher. Put those together and it turns out that death rates are pretty stable: 9% of people admitted for nonelective reasons to the hospital will die within 30 days. It’s just that nowadays, we tend to discharge them before that happens.

Why are our patients getting more complex? Some of it is demographics; the population is aging, after all. Some of it relates to the increasing burden of comorbidities like diabetes and kidney disease, which are associated with the obesity epidemic. But in some ways, we’re a victim of our own success. We have the ability to keep people alive today who would not have survived 15 years ago. We have better treatments for metastatic cancer, less-invasive therapies for heart disease, better protocolized ICU care.

Given all that, does it make any sense that many of our hospitals are at skeleton-crew staffing levels? That hospitalists report taking care of more patients than they ever have before?

There’s been so much talk about burnout in the health professions lately. Maybe something people need to start acknowledging — particularly those who haven’t practiced on the front lines for a decade or two — is that the job is, quite simply, harder now. As patients become more complex, we need more resources, human and otherwise, to care for them.

F. Perry Wilson, MD, MSCE, is an associate professor of medicine and public health and director of Yale’s Clinical and Translational Research Accelerator. His science communication work can be found in the Huffington Post, on NPR, and here on Medscape. He tweets @fperrywilson and his bookHow Medicine Works and When It Doesn’tis available now. He has disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

This transcript has been edited for clarity.

The first time I saw a patient in the hospital was in 2004, twenty years ago, when I was a third-year med student. I mean, look at that guy. The things I could tell him.

Since that time, I have spent countless hours in the hospital as a resident, a renal fellow, and finally as an attending. And I’m sure many of you in the medical community feel the same thing I do, which is that patients are much more complicated now than they used to be. I’ll listen to an intern present a new case on rounds and she’ll have an assessment and plan that encompasses a dozen individual medical problems. Sometimes I have to literally be like, “Wait, why is this patient here again?”

But until now, I had no data to convince myself that this feeling was real — that hospitalized patients are getting more and more complicated, or that they only seem more complicated because I’m getting older. Maybe I was better able to keep track of things when I was an intern rather than now as an attending, spending just a couple months of the year in the hospital. I mean, after all, if patients were getting more complicated, surely hospitals would know this and allocate more resources to patient care, right?

Right?

It’s not an illusion. At least not according to this paper, Population-Based Trends in Complexity of Hospital Inpatients, appearing in JAMA Internal Medicine, which examines about 15 years of inpatient hospital admissions in British Columbia.

I like Canada for this study for two reasons: First, their electronic health record system is province-wide, so they don’t have issues of getting data from hospital A vs hospital B. All the data are there — in this case, more than 3 million nonelective hospital admissions from British Columbia. Second, there is universal healthcare. We don’t have to worry about insurance companies changing, or the start of a new program like the Affordable Care Act. It’s just a cleaner set-up.

Of course, complexity is hard to define, and the authors here decide to look at a variety of metrics I think we can agree are tied into complexity. These include things like patient age, comorbidities, medications, frequency of hospitalization, and so on. They also looked at outcomes associated with hospitalization: Did the patient require the ICU? Did they survive? Were they readmitted?

And the tale of the tape is as clear as that British Columbian air: Over the past 15 years, your average hospitalized patient is about 3 years older, is twice as likely to have kidney disease, 70% more likely to have diabetes, is on more medications (particularly anticoagulants), and is much more likely to be admitted through the emergency room. They’ve also spent more time in the hospital in the past year.

Given the increased complexity, you might expect that the outcomes for these patients are worse than years ago, but the data do not bear that out. In fact, inpatient mortality is lower now than it was 15 years ago, although 30-day postdischarge mortality is higher. Put those together and it turns out that death rates are pretty stable: 9% of people admitted for nonelective reasons to the hospital will die within 30 days. It’s just that nowadays, we tend to discharge them before that happens.

Why are our patients getting more complex? Some of it is demographics; the population is aging, after all. Some of it relates to the increasing burden of comorbidities like diabetes and kidney disease, which are associated with the obesity epidemic. But in some ways, we’re a victim of our own success. We have the ability to keep people alive today who would not have survived 15 years ago. We have better treatments for metastatic cancer, less-invasive therapies for heart disease, better protocolized ICU care.

Given all that, does it make any sense that many of our hospitals are at skeleton-crew staffing levels? That hospitalists report taking care of more patients than they ever have before?

There’s been so much talk about burnout in the health professions lately. Maybe something people need to start acknowledging — particularly those who haven’t practiced on the front lines for a decade or two — is that the job is, quite simply, harder now. As patients become more complex, we need more resources, human and otherwise, to care for them.

F. Perry Wilson, MD, MSCE, is an associate professor of medicine and public health and director of Yale’s Clinical and Translational Research Accelerator. His science communication work can be found in the Huffington Post, on NPR, and here on Medscape. He tweets @fperrywilson and his bookHow Medicine Works and When It Doesn’tis available now. He has disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

This transcript has been edited for clarity.

The first time I saw a patient in the hospital was in 2004, twenty years ago, when I was a third-year med student. I mean, look at that guy. The things I could tell him.

Since that time, I have spent countless hours in the hospital as a resident, a renal fellow, and finally as an attending. And I’m sure many of you in the medical community feel the same thing I do, which is that patients are much more complicated now than they used to be. I’ll listen to an intern present a new case on rounds and she’ll have an assessment and plan that encompasses a dozen individual medical problems. Sometimes I have to literally be like, “Wait, why is this patient here again?”

But until now, I had no data to convince myself that this feeling was real — that hospitalized patients are getting more and more complicated, or that they only seem more complicated because I’m getting older. Maybe I was better able to keep track of things when I was an intern rather than now as an attending, spending just a couple months of the year in the hospital. I mean, after all, if patients were getting more complicated, surely hospitals would know this and allocate more resources to patient care, right?

Right?

It’s not an illusion. At least not according to this paper, Population-Based Trends in Complexity of Hospital Inpatients, appearing in JAMA Internal Medicine, which examines about 15 years of inpatient hospital admissions in British Columbia.

I like Canada for this study for two reasons: First, their electronic health record system is province-wide, so they don’t have issues of getting data from hospital A vs hospital B. All the data are there — in this case, more than 3 million nonelective hospital admissions from British Columbia. Second, there is universal healthcare. We don’t have to worry about insurance companies changing, or the start of a new program like the Affordable Care Act. It’s just a cleaner set-up.

Of course, complexity is hard to define, and the authors here decide to look at a variety of metrics I think we can agree are tied into complexity. These include things like patient age, comorbidities, medications, frequency of hospitalization, and so on. They also looked at outcomes associated with hospitalization: Did the patient require the ICU? Did they survive? Were they readmitted?

And the tale of the tape is as clear as that British Columbian air: Over the past 15 years, your average hospitalized patient is about 3 years older, is twice as likely to have kidney disease, 70% more likely to have diabetes, is on more medications (particularly anticoagulants), and is much more likely to be admitted through the emergency room. They’ve also spent more time in the hospital in the past year.

Given the increased complexity, you might expect that the outcomes for these patients are worse than years ago, but the data do not bear that out. In fact, inpatient mortality is lower now than it was 15 years ago, although 30-day postdischarge mortality is higher. Put those together and it turns out that death rates are pretty stable: 9% of people admitted for nonelective reasons to the hospital will die within 30 days. It’s just that nowadays, we tend to discharge them before that happens.

Why are our patients getting more complex? Some of it is demographics; the population is aging, after all. Some of it relates to the increasing burden of comorbidities like diabetes and kidney disease, which are associated with the obesity epidemic. But in some ways, we’re a victim of our own success. We have the ability to keep people alive today who would not have survived 15 years ago. We have better treatments for metastatic cancer, less-invasive therapies for heart disease, better protocolized ICU care.

Given all that, does it make any sense that many of our hospitals are at skeleton-crew staffing levels? That hospitalists report taking care of more patients than they ever have before?

There’s been so much talk about burnout in the health professions lately. Maybe something people need to start acknowledging — particularly those who haven’t practiced on the front lines for a decade or two — is that the job is, quite simply, harder now. As patients become more complex, we need more resources, human and otherwise, to care for them.

F. Perry Wilson, MD, MSCE, is an associate professor of medicine and public health and director of Yale’s Clinical and Translational Research Accelerator. His science communication work can be found in the Huffington Post, on NPR, and here on Medscape. He tweets @fperrywilson and his bookHow Medicine Works and When It Doesn’tis available now. He has disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Intermittent Energy Restriction Tied to Gut, Brain Changes

Article Type
Changed
Tue, 01/09/2024 - 11:10

 

TOPLINE:

In people with obesity, weight loss by intermittent energy restriction (IER) has multiple, dynamic effects on the brain-gut-microbiome (BGM) axis, including reduced activity in brain regions affecting eating behavior and increased microbial diversity in the gut, over the short term, new research suggested.

METHODOLOGY:

  • Researchers studied 25 individuals with obesity in China who successfully lost weight during a three-phase IER intervention. In the first phase, participants were on a normal diet without restriction for 4 days. In the second, they were on a tightly controlled diet of clinically formulated IER meals every other day that decreased stepwise in caloric value to one quarter of their basic energy intake over 32 days. The last phase was a 30-day low-controlled fasting period.
  • Blood and stool samples were collected at baseline, at the midpoint and endpoint of the tightly controlled fasting phase, and at the endpoint of the low-controlled fasting phase.
  • A functional MRI was used to determine the activity of specific brain regions, and metagenomic sequencing was performed to identify differentially abundant gut microbes and pathways from stool samples.

TAKEAWAY:

  • Patients lost weight (7.6 kg on average) and showed sustained, significant reductions on several measures, including body mass index, body fat, systolic blood pressure, and serum levels of glycosylated hemoglobin during the IER. Diastolic blood pressure, serum levels of fasting plasma glucose, total cholesterol, various lipids, and levels of several key liver enzymes were significantly decreased at at least one timepoint during the IER.
  • IER reduced the activity of obesity-related brain regions (ie, the inferior frontal orbital gyrus in the cognitive control circuit, the putamen in the emotion and learning circuit, and the anterior cingulate cortex in the sensory circuit) at different timepoints during the intervention. No significant changes were observed in brain activity in the reward circuit.
  • Gut microbial diversity increased during the tightly controlled fasting phase. The abundance of the probiotic Faecalibacterium prausnitziiParabacteroides distasonis, and Bacterokles uniformis was elevated during this phase. The abundance of pathogenic Escherichia coli was reduced across multiple timepoints. A correlation analysis revealed longitudinal correlations between gut bacteria abundance alterations and brain activity changes.
  • Overall, there was a dynamical alteration of the BGM axis during weight loss using IER, although whether changes in the gut microbiome drive changes in the brain, or vice versa, is still unknown.

IN PRACTICE:

“IER induced constant, significant reductions in the activity of eating behavior-related brain regions…[and] significant, dynamic changes in the abundance of some gut bacteria. Importantly, gut microbiota alterations correlated with brain activity changes across different timepoints in IER intervention. These data suggest that the dynamic interplay between the brain and gut microbiota plays an important role in weight loss,” the authors wrote.

SOURCE:

Jing Zhou, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China, led the study, which was published online on December 30, 2023, in Frontiers in Cellular and Infection Microbiology.

LIMITATIONS:

The study examines BGM axis changes during weight loss only in the short term and does not establish causation. Longer follow-up is needed to establish the BGM axis changes that may influence long-term weight loss.

DISCLOSURES:

This work was supported by the National Natural Science Foundation of China, the National Key R&D Program of China, Young and Middle-Aged Health Science and Technology Innovative Talent Cultivation Project of Henan Provincial Leading Talents, and the Medical Science and Technology Research Program of Henan Province. One coauthor was employed by a supplement company and another by a biotech company. No other disclosures were reported.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

In people with obesity, weight loss by intermittent energy restriction (IER) has multiple, dynamic effects on the brain-gut-microbiome (BGM) axis, including reduced activity in brain regions affecting eating behavior and increased microbial diversity in the gut, over the short term, new research suggested.

METHODOLOGY:

  • Researchers studied 25 individuals with obesity in China who successfully lost weight during a three-phase IER intervention. In the first phase, participants were on a normal diet without restriction for 4 days. In the second, they were on a tightly controlled diet of clinically formulated IER meals every other day that decreased stepwise in caloric value to one quarter of their basic energy intake over 32 days. The last phase was a 30-day low-controlled fasting period.
  • Blood and stool samples were collected at baseline, at the midpoint and endpoint of the tightly controlled fasting phase, and at the endpoint of the low-controlled fasting phase.
  • A functional MRI was used to determine the activity of specific brain regions, and metagenomic sequencing was performed to identify differentially abundant gut microbes and pathways from stool samples.

TAKEAWAY:

  • Patients lost weight (7.6 kg on average) and showed sustained, significant reductions on several measures, including body mass index, body fat, systolic blood pressure, and serum levels of glycosylated hemoglobin during the IER. Diastolic blood pressure, serum levels of fasting plasma glucose, total cholesterol, various lipids, and levels of several key liver enzymes were significantly decreased at at least one timepoint during the IER.
  • IER reduced the activity of obesity-related brain regions (ie, the inferior frontal orbital gyrus in the cognitive control circuit, the putamen in the emotion and learning circuit, and the anterior cingulate cortex in the sensory circuit) at different timepoints during the intervention. No significant changes were observed in brain activity in the reward circuit.
  • Gut microbial diversity increased during the tightly controlled fasting phase. The abundance of the probiotic Faecalibacterium prausnitziiParabacteroides distasonis, and Bacterokles uniformis was elevated during this phase. The abundance of pathogenic Escherichia coli was reduced across multiple timepoints. A correlation analysis revealed longitudinal correlations between gut bacteria abundance alterations and brain activity changes.
  • Overall, there was a dynamical alteration of the BGM axis during weight loss using IER, although whether changes in the gut microbiome drive changes in the brain, or vice versa, is still unknown.

IN PRACTICE:

“IER induced constant, significant reductions in the activity of eating behavior-related brain regions…[and] significant, dynamic changes in the abundance of some gut bacteria. Importantly, gut microbiota alterations correlated with brain activity changes across different timepoints in IER intervention. These data suggest that the dynamic interplay between the brain and gut microbiota plays an important role in weight loss,” the authors wrote.

SOURCE:

Jing Zhou, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China, led the study, which was published online on December 30, 2023, in Frontiers in Cellular and Infection Microbiology.

LIMITATIONS:

The study examines BGM axis changes during weight loss only in the short term and does not establish causation. Longer follow-up is needed to establish the BGM axis changes that may influence long-term weight loss.

DISCLOSURES:

This work was supported by the National Natural Science Foundation of China, the National Key R&D Program of China, Young and Middle-Aged Health Science and Technology Innovative Talent Cultivation Project of Henan Provincial Leading Talents, and the Medical Science and Technology Research Program of Henan Province. One coauthor was employed by a supplement company and another by a biotech company. No other disclosures were reported.

A version of this article appeared on Medscape.com.

 

TOPLINE:

In people with obesity, weight loss by intermittent energy restriction (IER) has multiple, dynamic effects on the brain-gut-microbiome (BGM) axis, including reduced activity in brain regions affecting eating behavior and increased microbial diversity in the gut, over the short term, new research suggested.

METHODOLOGY:

  • Researchers studied 25 individuals with obesity in China who successfully lost weight during a three-phase IER intervention. In the first phase, participants were on a normal diet without restriction for 4 days. In the second, they were on a tightly controlled diet of clinically formulated IER meals every other day that decreased stepwise in caloric value to one quarter of their basic energy intake over 32 days. The last phase was a 30-day low-controlled fasting period.
  • Blood and stool samples were collected at baseline, at the midpoint and endpoint of the tightly controlled fasting phase, and at the endpoint of the low-controlled fasting phase.
  • A functional MRI was used to determine the activity of specific brain regions, and metagenomic sequencing was performed to identify differentially abundant gut microbes and pathways from stool samples.

TAKEAWAY:

  • Patients lost weight (7.6 kg on average) and showed sustained, significant reductions on several measures, including body mass index, body fat, systolic blood pressure, and serum levels of glycosylated hemoglobin during the IER. Diastolic blood pressure, serum levels of fasting plasma glucose, total cholesterol, various lipids, and levels of several key liver enzymes were significantly decreased at at least one timepoint during the IER.
  • IER reduced the activity of obesity-related brain regions (ie, the inferior frontal orbital gyrus in the cognitive control circuit, the putamen in the emotion and learning circuit, and the anterior cingulate cortex in the sensory circuit) at different timepoints during the intervention. No significant changes were observed in brain activity in the reward circuit.
  • Gut microbial diversity increased during the tightly controlled fasting phase. The abundance of the probiotic Faecalibacterium prausnitziiParabacteroides distasonis, and Bacterokles uniformis was elevated during this phase. The abundance of pathogenic Escherichia coli was reduced across multiple timepoints. A correlation analysis revealed longitudinal correlations between gut bacteria abundance alterations and brain activity changes.
  • Overall, there was a dynamical alteration of the BGM axis during weight loss using IER, although whether changes in the gut microbiome drive changes in the brain, or vice versa, is still unknown.

IN PRACTICE:

“IER induced constant, significant reductions in the activity of eating behavior-related brain regions…[and] significant, dynamic changes in the abundance of some gut bacteria. Importantly, gut microbiota alterations correlated with brain activity changes across different timepoints in IER intervention. These data suggest that the dynamic interplay between the brain and gut microbiota plays an important role in weight loss,” the authors wrote.

SOURCE:

Jing Zhou, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China, led the study, which was published online on December 30, 2023, in Frontiers in Cellular and Infection Microbiology.

LIMITATIONS:

The study examines BGM axis changes during weight loss only in the short term and does not establish causation. Longer follow-up is needed to establish the BGM axis changes that may influence long-term weight loss.

DISCLOSURES:

This work was supported by the National Natural Science Foundation of China, the National Key R&D Program of China, Young and Middle-Aged Health Science and Technology Innovative Talent Cultivation Project of Henan Provincial Leading Talents, and the Medical Science and Technology Research Program of Henan Province. One coauthor was employed by a supplement company and another by a biotech company. No other disclosures were reported.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Dieting and Gout: Intensive Weight Loss Not Especially Helpful for Symptoms

Article Type
Changed
Tue, 01/09/2024 - 22:02

 

TOPLINE:

An intensive weight loss program is safe for individuals with gout and obesity but does not ease gout symptoms compared with a “control diet” with basic nutritional counseling.

METHODOLOGY:

  • Weight loss is recommended as a gout management strategy, despite little clinical evidence.
  • Researchers recruited 61 patients with gout and obesity to participate in a 16-week, randomized, nonblinded, parallel-group trial in Denmark.
  • A total of 29 participants were assigned to an intensive, low-calorie diet with provided meal replacements.
  • Another 32 participants were assigned to the “control diet” with basic nutritional counseling.

TAKEAWAY:

  • Patients in the intensive group lost more weight (−15.4 kg/34 lbs) than those the control group (−7.7 kg/17 lbs).
  • There were no differences in pain, fatigue, or gout flares between the two groups.
  • Weight loss was associated with reduction in serum urate (SU).
  • Patients in the intervention group had a numerically larger mean SU change (−0.6 mg/dL) than the control group (−0.3 mg/dL), but this difference was not statistically significant.

IN PRACTICE:

Weight loss can lower SU levels, but this did not translate to improved gout symptoms.

SOURCE:

Robin Christensen, PhD, and Kristian Zobbe, MD, PhD, of the Parker Institute at Bispebjerg and Frederiksberg Hospital in Copenhagen, Denmark, were co-first authors of the study, published on January 2, 2024, in Arthritis & Rheumatology.

LIMITATIONS:

The study had a relatively small sample size and short-term intervention period, which may have made it difficult to detect differences between the intervention and control groups. Patients in the control group lost a significant amount of weight, which also affected comparisons between the two groups.

DISCLOSURES:

Several of the authors disclosed financial relationships with pharmaceutical companies. The Parker Institute, which funded the study, is supported by grants from the Oak Foundation and the Danish Rheumatism Association.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

An intensive weight loss program is safe for individuals with gout and obesity but does not ease gout symptoms compared with a “control diet” with basic nutritional counseling.

METHODOLOGY:

  • Weight loss is recommended as a gout management strategy, despite little clinical evidence.
  • Researchers recruited 61 patients with gout and obesity to participate in a 16-week, randomized, nonblinded, parallel-group trial in Denmark.
  • A total of 29 participants were assigned to an intensive, low-calorie diet with provided meal replacements.
  • Another 32 participants were assigned to the “control diet” with basic nutritional counseling.

TAKEAWAY:

  • Patients in the intensive group lost more weight (−15.4 kg/34 lbs) than those the control group (−7.7 kg/17 lbs).
  • There were no differences in pain, fatigue, or gout flares between the two groups.
  • Weight loss was associated with reduction in serum urate (SU).
  • Patients in the intervention group had a numerically larger mean SU change (−0.6 mg/dL) than the control group (−0.3 mg/dL), but this difference was not statistically significant.

IN PRACTICE:

Weight loss can lower SU levels, but this did not translate to improved gout symptoms.

SOURCE:

Robin Christensen, PhD, and Kristian Zobbe, MD, PhD, of the Parker Institute at Bispebjerg and Frederiksberg Hospital in Copenhagen, Denmark, were co-first authors of the study, published on January 2, 2024, in Arthritis & Rheumatology.

LIMITATIONS:

The study had a relatively small sample size and short-term intervention period, which may have made it difficult to detect differences between the intervention and control groups. Patients in the control group lost a significant amount of weight, which also affected comparisons between the two groups.

DISCLOSURES:

Several of the authors disclosed financial relationships with pharmaceutical companies. The Parker Institute, which funded the study, is supported by grants from the Oak Foundation and the Danish Rheumatism Association.

A version of this article appeared on Medscape.com.

 

TOPLINE:

An intensive weight loss program is safe for individuals with gout and obesity but does not ease gout symptoms compared with a “control diet” with basic nutritional counseling.

METHODOLOGY:

  • Weight loss is recommended as a gout management strategy, despite little clinical evidence.
  • Researchers recruited 61 patients with gout and obesity to participate in a 16-week, randomized, nonblinded, parallel-group trial in Denmark.
  • A total of 29 participants were assigned to an intensive, low-calorie diet with provided meal replacements.
  • Another 32 participants were assigned to the “control diet” with basic nutritional counseling.

TAKEAWAY:

  • Patients in the intensive group lost more weight (−15.4 kg/34 lbs) than those the control group (−7.7 kg/17 lbs).
  • There were no differences in pain, fatigue, or gout flares between the two groups.
  • Weight loss was associated with reduction in serum urate (SU).
  • Patients in the intervention group had a numerically larger mean SU change (−0.6 mg/dL) than the control group (−0.3 mg/dL), but this difference was not statistically significant.

IN PRACTICE:

Weight loss can lower SU levels, but this did not translate to improved gout symptoms.

SOURCE:

Robin Christensen, PhD, and Kristian Zobbe, MD, PhD, of the Parker Institute at Bispebjerg and Frederiksberg Hospital in Copenhagen, Denmark, were co-first authors of the study, published on January 2, 2024, in Arthritis & Rheumatology.

LIMITATIONS:

The study had a relatively small sample size and short-term intervention period, which may have made it difficult to detect differences between the intervention and control groups. Patients in the control group lost a significant amount of weight, which also affected comparisons between the two groups.

DISCLOSURES:

Several of the authors disclosed financial relationships with pharmaceutical companies. The Parker Institute, which funded the study, is supported by grants from the Oak Foundation and the Danish Rheumatism Association.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Optimal Follow-up After Fertility-Sparing Cervical Cancer Surgery

Article Type
Changed
Tue, 01/09/2024 - 23:14

 

TOPLINE:

The frequency of follow-up after fertility-sparing surgery for cervical cancer can be tailored based on high-risk human papillomavirus (HPV) tests and cytology.

METHODOLOGY:

  • Among patients with early-stage cervical cancer, the optimal follow-up strategy to detect recurrence after fertility-sparing surgery remains unclear. The authors wanted to find out if follow-up could be tailored to the patient’s risk for recurrence instead of using the current inefficient one-size-fits-all approach.
  • The retrospective cohort study, which used data from the Netherlands Cancer Registry and the Dutch Nationwide Pathology Databank, included 1462 patients aged 18-40 years with early-stage cervical cancer who received fertility-sparing surgery (large loop excision of the transformation zone, conization, or trachelectomy) between 2000 and 2020.
  • The primary endpoint was the cumulative incidence of recurrent cervical intraepithelial neoplasia grade 2 or worse (CIN2+), including recurrent cervical cancer.
  • The authors stratified the likelihood of recurrence by cytology and high-risk HPV results at the first follow-up visit within 12 months of fertility-sparing surgery; they also compared the cumulative incidence of recurrence — the number of new cases divided by all at-risk individuals over a specific interval — at four timepoints in 2 years (6, 12, 18, and 24 months).

TAKEAWAY:

  • Overall, the 10-year recurrence-free survival for CIN2+ was 89.3%. Patients with high-grade cytology at the first follow-up had worse 10-year recurrence-free survival for CIN2+ (43.1%) than those who had normal (92.1%) and low-grade cytology (84.6%). Similarly for HPV status, patients positive for high-risk HPV at the first follow-up had worse 10-year recurrence-free survival rates for CIN2+ (73.6%) than those negative for high-risk HPV (91.1%).
  • Patients negative for both high-risk HPV and high-grade cytology 6-24 months after fertility-sparing surgery had a cumulative incidence of recurrence of 0.0%-0.7% within 6 months of follow-up compared with 0.0%-33.3% among patients negative for high-risk HPV but who had high-grade cytology.
  • By contrast, patients positive for high-risk HPV but not high-grade cytology had a cumulative incidence of recurrence of 0.0%-15.4% within 6 months of any follow-up visit compared with 50.0%-100.0% among those with both high-risk HPV and high-grade cytology.
  • Patients who remained free of high-risk HPV and high-grade cytology at their 6-month and 12-month follow-ups had no disease recurrence over the next 6 months.

IN PRACTICE:

“Patients who are negative for high-risk HPV with normal or low-grade cytology at 6-24 months after fertility-sparing surgery could be offered a prolonged follow-up interval of 6 months,” the authors concluded, adding that this “group comprises 80% of all patients receiving fertility-sparing surgery.”

“Reducing the number of follow-up visits, and subsequently the number of follow-up tests, in patients with low risk for recurrence on the basis of co-testing has the potential to substantially reduce healthcare costs,” the authors explained.

SOURCE:

The study, led by Teska N. Schuurman, MD, of the Netherlands Cancer Institute, Amsterdam, was published in the December 2023 issue of The Lancet Oncology.

LIMITATIONS:

The retrospective design of the study meant that analysis was limited to available records, so data on patients’ symptoms, physical examinations, or colposcopic findings were not available. Follow-up biopsies, considered the gold standard for diagnosing recurrence, are not routine in the Netherlands, so recurrence could have been underreported.

DISCLOSURES:

The authors declared no competing interests.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

The frequency of follow-up after fertility-sparing surgery for cervical cancer can be tailored based on high-risk human papillomavirus (HPV) tests and cytology.

METHODOLOGY:

  • Among patients with early-stage cervical cancer, the optimal follow-up strategy to detect recurrence after fertility-sparing surgery remains unclear. The authors wanted to find out if follow-up could be tailored to the patient’s risk for recurrence instead of using the current inefficient one-size-fits-all approach.
  • The retrospective cohort study, which used data from the Netherlands Cancer Registry and the Dutch Nationwide Pathology Databank, included 1462 patients aged 18-40 years with early-stage cervical cancer who received fertility-sparing surgery (large loop excision of the transformation zone, conization, or trachelectomy) between 2000 and 2020.
  • The primary endpoint was the cumulative incidence of recurrent cervical intraepithelial neoplasia grade 2 or worse (CIN2+), including recurrent cervical cancer.
  • The authors stratified the likelihood of recurrence by cytology and high-risk HPV results at the first follow-up visit within 12 months of fertility-sparing surgery; they also compared the cumulative incidence of recurrence — the number of new cases divided by all at-risk individuals over a specific interval — at four timepoints in 2 years (6, 12, 18, and 24 months).

TAKEAWAY:

  • Overall, the 10-year recurrence-free survival for CIN2+ was 89.3%. Patients with high-grade cytology at the first follow-up had worse 10-year recurrence-free survival for CIN2+ (43.1%) than those who had normal (92.1%) and low-grade cytology (84.6%). Similarly for HPV status, patients positive for high-risk HPV at the first follow-up had worse 10-year recurrence-free survival rates for CIN2+ (73.6%) than those negative for high-risk HPV (91.1%).
  • Patients negative for both high-risk HPV and high-grade cytology 6-24 months after fertility-sparing surgery had a cumulative incidence of recurrence of 0.0%-0.7% within 6 months of follow-up compared with 0.0%-33.3% among patients negative for high-risk HPV but who had high-grade cytology.
  • By contrast, patients positive for high-risk HPV but not high-grade cytology had a cumulative incidence of recurrence of 0.0%-15.4% within 6 months of any follow-up visit compared with 50.0%-100.0% among those with both high-risk HPV and high-grade cytology.
  • Patients who remained free of high-risk HPV and high-grade cytology at their 6-month and 12-month follow-ups had no disease recurrence over the next 6 months.

IN PRACTICE:

“Patients who are negative for high-risk HPV with normal or low-grade cytology at 6-24 months after fertility-sparing surgery could be offered a prolonged follow-up interval of 6 months,” the authors concluded, adding that this “group comprises 80% of all patients receiving fertility-sparing surgery.”

“Reducing the number of follow-up visits, and subsequently the number of follow-up tests, in patients with low risk for recurrence on the basis of co-testing has the potential to substantially reduce healthcare costs,” the authors explained.

SOURCE:

The study, led by Teska N. Schuurman, MD, of the Netherlands Cancer Institute, Amsterdam, was published in the December 2023 issue of The Lancet Oncology.

LIMITATIONS:

The retrospective design of the study meant that analysis was limited to available records, so data on patients’ symptoms, physical examinations, or colposcopic findings were not available. Follow-up biopsies, considered the gold standard for diagnosing recurrence, are not routine in the Netherlands, so recurrence could have been underreported.

DISCLOSURES:

The authors declared no competing interests.
 

A version of this article appeared on Medscape.com.

 

TOPLINE:

The frequency of follow-up after fertility-sparing surgery for cervical cancer can be tailored based on high-risk human papillomavirus (HPV) tests and cytology.

METHODOLOGY:

  • Among patients with early-stage cervical cancer, the optimal follow-up strategy to detect recurrence after fertility-sparing surgery remains unclear. The authors wanted to find out if follow-up could be tailored to the patient’s risk for recurrence instead of using the current inefficient one-size-fits-all approach.
  • The retrospective cohort study, which used data from the Netherlands Cancer Registry and the Dutch Nationwide Pathology Databank, included 1462 patients aged 18-40 years with early-stage cervical cancer who received fertility-sparing surgery (large loop excision of the transformation zone, conization, or trachelectomy) between 2000 and 2020.
  • The primary endpoint was the cumulative incidence of recurrent cervical intraepithelial neoplasia grade 2 or worse (CIN2+), including recurrent cervical cancer.
  • The authors stratified the likelihood of recurrence by cytology and high-risk HPV results at the first follow-up visit within 12 months of fertility-sparing surgery; they also compared the cumulative incidence of recurrence — the number of new cases divided by all at-risk individuals over a specific interval — at four timepoints in 2 years (6, 12, 18, and 24 months).

TAKEAWAY:

  • Overall, the 10-year recurrence-free survival for CIN2+ was 89.3%. Patients with high-grade cytology at the first follow-up had worse 10-year recurrence-free survival for CIN2+ (43.1%) than those who had normal (92.1%) and low-grade cytology (84.6%). Similarly for HPV status, patients positive for high-risk HPV at the first follow-up had worse 10-year recurrence-free survival rates for CIN2+ (73.6%) than those negative for high-risk HPV (91.1%).
  • Patients negative for both high-risk HPV and high-grade cytology 6-24 months after fertility-sparing surgery had a cumulative incidence of recurrence of 0.0%-0.7% within 6 months of follow-up compared with 0.0%-33.3% among patients negative for high-risk HPV but who had high-grade cytology.
  • By contrast, patients positive for high-risk HPV but not high-grade cytology had a cumulative incidence of recurrence of 0.0%-15.4% within 6 months of any follow-up visit compared with 50.0%-100.0% among those with both high-risk HPV and high-grade cytology.
  • Patients who remained free of high-risk HPV and high-grade cytology at their 6-month and 12-month follow-ups had no disease recurrence over the next 6 months.

IN PRACTICE:

“Patients who are negative for high-risk HPV with normal or low-grade cytology at 6-24 months after fertility-sparing surgery could be offered a prolonged follow-up interval of 6 months,” the authors concluded, adding that this “group comprises 80% of all patients receiving fertility-sparing surgery.”

“Reducing the number of follow-up visits, and subsequently the number of follow-up tests, in patients with low risk for recurrence on the basis of co-testing has the potential to substantially reduce healthcare costs,” the authors explained.

SOURCE:

The study, led by Teska N. Schuurman, MD, of the Netherlands Cancer Institute, Amsterdam, was published in the December 2023 issue of The Lancet Oncology.

LIMITATIONS:

The retrospective design of the study meant that analysis was limited to available records, so data on patients’ symptoms, physical examinations, or colposcopic findings were not available. Follow-up biopsies, considered the gold standard for diagnosing recurrence, are not routine in the Netherlands, so recurrence could have been underreported.

DISCLOSURES:

The authors declared no competing interests.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article