How Do Novel CRC Blood Tests Fare Against Established Tests?

Article Type
Changed
Wed, 11/27/2024 - 04:15

TOPLINE:

Novel first-generation cell-free DNA blood (cf-bDNA) tests for colorectal cancer (CRC) cost more and are less effective than colonoscopy or stool tests, a new analysis suggests.

METHODOLOGY:

  • Researchers estimated the clinical and economic impacts of emerging blood- and stool-based CRC screening tests with established alternatives in average-risk adults aged 45 years and older.
  • The established screening tools were colonoscopy, a fecal immunochemical test (FIT), and a multitarget stool DNA test (MT-sDNA, Exact Sciences Cologuard).
  • The four emerging screening methods were two cf-bDNA tests (Guardant Shield and Freenome); an enhanced, a next-generation multitarget stool test (ngMT-sDNA), and a novel FIT-RNA test (Geneoscopy ColoSense).

TAKEAWAY:

  • Assuming 100% participation in all screening steps, colonoscopy and FIT yielded reductions of more than 70% in CRC incidence and 75% in mortality vs no screening.
  • The MT-sDNA test reduced CRC incidence by 68% and mortality by 73%, with similar rates for the ngMT-sDNA and FIT-RNA tests vs no screening. The cf-bDNA tests yielded CRC incidence and mortality reductions of only 42% and 56%.
  • Colonoscopy and FIT were more effective and less costly than the cf-bDNA and MT-sDNA tests, and the MT-sDNA test was more effective and less costly than the cf-bDNA test.
  • Population benefits from blood tests were seen only in those who declined colonoscopy and stool tests. Substituting a blood test for those already using colonoscopy or stool tests led to worse population-level outcomes.

IN PRACTICE:

“First-generation novel cf-bDNA tests have the potential to decrease meaningfully the incidence and mortality of CRC compared with no screening but substantially less profoundly than screening colonoscopy or stool tests. Net population benefit or harm can follow incorporation of first-generation cf-bDNA CRC screening tests into practice, depending on the balance between bringing unscreened persons into screening (addition) vs shifting persons away from the more effective strategies of colonoscopy or stool testing (substitution),” the authors concluded.

SOURCE:

The study, with first author Uri Ladabaum, MD, MS, Stanford University School of Medicine, California, was published online in Annals of Internal Medicine.

LIMITATIONS:

Limitations included test-specific participation patterns being unknown over time. 

DISCLOSURES:

Disclosure forms for the authors are available with the article online. Funding was provided by the Gorrindo Family Fund.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

TOPLINE:

Novel first-generation cell-free DNA blood (cf-bDNA) tests for colorectal cancer (CRC) cost more and are less effective than colonoscopy or stool tests, a new analysis suggests.

METHODOLOGY:

  • Researchers estimated the clinical and economic impacts of emerging blood- and stool-based CRC screening tests with established alternatives in average-risk adults aged 45 years and older.
  • The established screening tools were colonoscopy, a fecal immunochemical test (FIT), and a multitarget stool DNA test (MT-sDNA, Exact Sciences Cologuard).
  • The four emerging screening methods were two cf-bDNA tests (Guardant Shield and Freenome); an enhanced, a next-generation multitarget stool test (ngMT-sDNA), and a novel FIT-RNA test (Geneoscopy ColoSense).

TAKEAWAY:

  • Assuming 100% participation in all screening steps, colonoscopy and FIT yielded reductions of more than 70% in CRC incidence and 75% in mortality vs no screening.
  • The MT-sDNA test reduced CRC incidence by 68% and mortality by 73%, with similar rates for the ngMT-sDNA and FIT-RNA tests vs no screening. The cf-bDNA tests yielded CRC incidence and mortality reductions of only 42% and 56%.
  • Colonoscopy and FIT were more effective and less costly than the cf-bDNA and MT-sDNA tests, and the MT-sDNA test was more effective and less costly than the cf-bDNA test.
  • Population benefits from blood tests were seen only in those who declined colonoscopy and stool tests. Substituting a blood test for those already using colonoscopy or stool tests led to worse population-level outcomes.

IN PRACTICE:

“First-generation novel cf-bDNA tests have the potential to decrease meaningfully the incidence and mortality of CRC compared with no screening but substantially less profoundly than screening colonoscopy or stool tests. Net population benefit or harm can follow incorporation of first-generation cf-bDNA CRC screening tests into practice, depending on the balance between bringing unscreened persons into screening (addition) vs shifting persons away from the more effective strategies of colonoscopy or stool testing (substitution),” the authors concluded.

SOURCE:

The study, with first author Uri Ladabaum, MD, MS, Stanford University School of Medicine, California, was published online in Annals of Internal Medicine.

LIMITATIONS:

Limitations included test-specific participation patterns being unknown over time. 

DISCLOSURES:

Disclosure forms for the authors are available with the article online. Funding was provided by the Gorrindo Family Fund.
 

A version of this article appeared on Medscape.com.

TOPLINE:

Novel first-generation cell-free DNA blood (cf-bDNA) tests for colorectal cancer (CRC) cost more and are less effective than colonoscopy or stool tests, a new analysis suggests.

METHODOLOGY:

  • Researchers estimated the clinical and economic impacts of emerging blood- and stool-based CRC screening tests with established alternatives in average-risk adults aged 45 years and older.
  • The established screening tools were colonoscopy, a fecal immunochemical test (FIT), and a multitarget stool DNA test (MT-sDNA, Exact Sciences Cologuard).
  • The four emerging screening methods were two cf-bDNA tests (Guardant Shield and Freenome); an enhanced, a next-generation multitarget stool test (ngMT-sDNA), and a novel FIT-RNA test (Geneoscopy ColoSense).

TAKEAWAY:

  • Assuming 100% participation in all screening steps, colonoscopy and FIT yielded reductions of more than 70% in CRC incidence and 75% in mortality vs no screening.
  • The MT-sDNA test reduced CRC incidence by 68% and mortality by 73%, with similar rates for the ngMT-sDNA and FIT-RNA tests vs no screening. The cf-bDNA tests yielded CRC incidence and mortality reductions of only 42% and 56%.
  • Colonoscopy and FIT were more effective and less costly than the cf-bDNA and MT-sDNA tests, and the MT-sDNA test was more effective and less costly than the cf-bDNA test.
  • Population benefits from blood tests were seen only in those who declined colonoscopy and stool tests. Substituting a blood test for those already using colonoscopy or stool tests led to worse population-level outcomes.

IN PRACTICE:

“First-generation novel cf-bDNA tests have the potential to decrease meaningfully the incidence and mortality of CRC compared with no screening but substantially less profoundly than screening colonoscopy or stool tests. Net population benefit or harm can follow incorporation of first-generation cf-bDNA CRC screening tests into practice, depending on the balance between bringing unscreened persons into screening (addition) vs shifting persons away from the more effective strategies of colonoscopy or stool testing (substitution),” the authors concluded.

SOURCE:

The study, with first author Uri Ladabaum, MD, MS, Stanford University School of Medicine, California, was published online in Annals of Internal Medicine.

LIMITATIONS:

Limitations included test-specific participation patterns being unknown over time. 

DISCLOSURES:

Disclosure forms for the authors are available with the article online. Funding was provided by the Gorrindo Family Fund.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Mon, 11/18/2024 - 14:03
Un-Gate On Date
Mon, 11/18/2024 - 14:03
Use ProPublica
CFC Schedule Remove Status
Mon, 11/18/2024 - 14:03
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Mon, 11/18/2024 - 14:03

Revumenib Approved for R/R Acute Leukemia With KMT2A Translocation

Article Type
Changed
Wed, 11/27/2024 - 04:09

The Food and Drug Administration has approved revumenib (Revuforj — Syndax Pharmaceuticals) for relapsed or refractory acute leukemia with a KMT2A gene translocation in adult and pediatric patients 1 year or older.

The approval makes the oral small-molecule menin inhibitor the first pharmaceutical to carry the indication. It blocks the binding of menin to mutated KMT2A fusion proteins, tamping down the process that leads to the disease.

Although a relatively uncommon form of leukemia, KMT2A rearrangements are a major driver of acute leukemia in infants.

Approval was based on a single-arm of the open-label AUGMENT-101 trial with 104 adult and pediatric patients with the mutation. Pediatric patients were at least 30 days old.

The rate of complete remission (CR) plus CR with partial hematologic recovery was 21.2% (22 patients) with a median duration of 6.4 months. The median time to remission was 1.9 months.

Eighty-three patients required blood cell and/or platelet transfusions at baseline; 12 (14%) did not need transfusions for 56 days afterward. Of the 21 who were transfusion free at baseline, 10 (48%) remained so over the same period.

The most common adverse reactions in 20% or more of patients were hemorrhage, nausea, increased phosphate, musculoskeletal pain, infection, increased aspartate aminotransferase, febrile neutropenia, increased alanine aminotransferase, increased intact parathyroid hormone, bacterial infection, diarrhea, differentiation syndrome, electrocardiogram QT prolonged, decreased phosphate, increased triglycerides, decreased potassium, decreased appetite, constipation, edema, viral infection, fatigue, and increased alkaline phosphatase.

The recommended dose varies by weight and concomitant use of strong CYP3A4 inhibitors. Because of an anticipated delay in commercial availability, the lowest strength dose of revumenib will be available through an expanded access program for patients who weigh < 40 kg.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

The Food and Drug Administration has approved revumenib (Revuforj — Syndax Pharmaceuticals) for relapsed or refractory acute leukemia with a KMT2A gene translocation in adult and pediatric patients 1 year or older.

The approval makes the oral small-molecule menin inhibitor the first pharmaceutical to carry the indication. It blocks the binding of menin to mutated KMT2A fusion proteins, tamping down the process that leads to the disease.

Although a relatively uncommon form of leukemia, KMT2A rearrangements are a major driver of acute leukemia in infants.

Approval was based on a single-arm of the open-label AUGMENT-101 trial with 104 adult and pediatric patients with the mutation. Pediatric patients were at least 30 days old.

The rate of complete remission (CR) plus CR with partial hematologic recovery was 21.2% (22 patients) with a median duration of 6.4 months. The median time to remission was 1.9 months.

Eighty-three patients required blood cell and/or platelet transfusions at baseline; 12 (14%) did not need transfusions for 56 days afterward. Of the 21 who were transfusion free at baseline, 10 (48%) remained so over the same period.

The most common adverse reactions in 20% or more of patients were hemorrhage, nausea, increased phosphate, musculoskeletal pain, infection, increased aspartate aminotransferase, febrile neutropenia, increased alanine aminotransferase, increased intact parathyroid hormone, bacterial infection, diarrhea, differentiation syndrome, electrocardiogram QT prolonged, decreased phosphate, increased triglycerides, decreased potassium, decreased appetite, constipation, edema, viral infection, fatigue, and increased alkaline phosphatase.

The recommended dose varies by weight and concomitant use of strong CYP3A4 inhibitors. Because of an anticipated delay in commercial availability, the lowest strength dose of revumenib will be available through an expanded access program for patients who weigh < 40 kg.

A version of this article appeared on Medscape.com.

The Food and Drug Administration has approved revumenib (Revuforj — Syndax Pharmaceuticals) for relapsed or refractory acute leukemia with a KMT2A gene translocation in adult and pediatric patients 1 year or older.

The approval makes the oral small-molecule menin inhibitor the first pharmaceutical to carry the indication. It blocks the binding of menin to mutated KMT2A fusion proteins, tamping down the process that leads to the disease.

Although a relatively uncommon form of leukemia, KMT2A rearrangements are a major driver of acute leukemia in infants.

Approval was based on a single-arm of the open-label AUGMENT-101 trial with 104 adult and pediatric patients with the mutation. Pediatric patients were at least 30 days old.

The rate of complete remission (CR) plus CR with partial hematologic recovery was 21.2% (22 patients) with a median duration of 6.4 months. The median time to remission was 1.9 months.

Eighty-three patients required blood cell and/or platelet transfusions at baseline; 12 (14%) did not need transfusions for 56 days afterward. Of the 21 who were transfusion free at baseline, 10 (48%) remained so over the same period.

The most common adverse reactions in 20% or more of patients were hemorrhage, nausea, increased phosphate, musculoskeletal pain, infection, increased aspartate aminotransferase, febrile neutropenia, increased alanine aminotransferase, increased intact parathyroid hormone, bacterial infection, diarrhea, differentiation syndrome, electrocardiogram QT prolonged, decreased phosphate, increased triglycerides, decreased potassium, decreased appetite, constipation, edema, viral infection, fatigue, and increased alkaline phosphatase.

The recommended dose varies by weight and concomitant use of strong CYP3A4 inhibitors. Because of an anticipated delay in commercial availability, the lowest strength dose of revumenib will be available through an expanded access program for patients who weigh < 40 kg.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Mon, 11/18/2024 - 13:01
Un-Gate On Date
Mon, 11/18/2024 - 13:01
Use ProPublica
CFC Schedule Remove Status
Mon, 11/18/2024 - 13:01
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Mon, 11/18/2024 - 13:01

Thrombocytosis and Cancer Risk: Management in Primary Care

Article Type
Changed
Wed, 11/27/2024 - 02:20

This transcript has been edited for clarity.

In this podcast, I’m going to talk about unexplained high platelet counts, or thrombocytosis, and the risk for cancer in primary care. Let’s start with a typical case we all might see in primary care.

Louisa is 47 years old and is the chief financial officer for a tech startup company. She presents to us in primary care feeling tired all the time — a very common presentation in primary care — with associated reduced appetite. Past medical history includes irritable bowel syndrome, and she’s an ex-smoker.

Systemic inquiry is unremarkable. Specifically, there is no history of weight loss. Louisa has not been prescribed any medication and uses over-the-counter remedies for her irritable bowel syndrome. Examination is also unremarkable. Blood tests were checked, which were all reassuring, except for a platelet count of 612 × 109 cells/L (usual normal range, about 150-450).

What do we do next? Do we refer for an urgent chest x-ray to exclude lung cancer? Do we check a quantitative immunohistochemical fecal occult blood test (qFIT) to identify any occult bleeding in her stool? Do we refer for a routine upper gastrointestinal endoscopy or pelvic ultrasound scan to exclude any upper gastrointestinal or endometrial malignancy?

Do we simply repeat the bloods? If so, do we repeat them routinely or urgently, and indeed, which ones should we recheck?

Louisa has an unexplained thrombocytosis. How do we manage this in primary care? Thrombocytosis is generally defined as a raised platelet count over 450. Importantly, thrombocytosis is a common incidental finding in around 2% of those over 40 years of age attending primary care. Reassuringly, 80%-90% of thrombocytosis is reactive, secondary to acute blood loss, infection, or inflammation, and the majority of cases resolve within 3 months.

Why the concern with Louisa then? Although most cases are reactive, clinical guidance (for example, NICE suspected cancer guidance in the UK and Scottish suspected cancer guidance in Scotland) reminds us that unexplained thrombocytosis is a risk marker for some solid-tumor malignancies.

Previous studies have demonstrated that unexplained thrombocytosis is associated with a 1-year cancer incidence of 11.6% in males and 6.2% in females, well exceeding the standard 3% threshold warranting investigation for underlying malignancy. However, thrombocytosis should not be used as a stand-alone diagnostic or screening test for cancer, or indeed to rule out cancer.

Instead, unexplained thrombocytosis should prompt us to think cancer. The Scottish suspected cancer referral guidelines include thrombocytosis in the investigation criteria for what they call the LEGO-C cancers — L for lung, E for endometrial, G for gastric, O for oesophageal, and C for colorectal, which is a useful reminder for us all.

What further history, examination, and investigations might we consider in primary care if we identify an unexplained high platelet count? As always, we should use our clinical judgment and trust our clinical acumen.

We should consider all the possible underlying causes, including infection, inflammation, and blood loss, including menstrual blood loss in women; myeloproliferative disorders such as polycythemia rubra vera, chronic myeloid leukemia, and essential thrombocythemia; and, of course, underlying malignancy. If a likely underlying reversible cause is present (for example, a recent lower respiratory tract infection), simply repeating the full blood count in 4-6 weeks is quite appropriate to see if the thrombocytosis has resolved.

Remember, 80%-90% of cases are reactive thrombocytosis, and most cases resolve within 3 months. If thrombocytosis is unexplained or not resolving, consider checking ferritin levels to exclude iron deficiency. Consider checking C-reactive protein (CRP) levels to exclude any inflammation, and also consider checking a blood film to exclude any hematologic disorders, in addition, of course, to more detailed history-taking and examination to elicit any red flags.

We can also consider a JAK2 gene mutation test, if it is available to you locally, or a hematology referral if we suspect a myeloproliferative disorder. JAK2 is a genetic mutation that may be present in people with essential thrombocythemia and can indicate a diagnosis of polycythemia rubra vera.

Subsequent to this, and again using our clinical judgment, we then need to exclude the LEGO-C cancers. Consider urgent chest x-ray to exclude lung cancer or pelvic ultrasound in women to exclude endometrial cancer. Also, we should consider an upper gastrointestinal endoscopy, particularly in those individuals who have associated upper gastrointestinal symptoms and/or weight loss.

Finally, consider a qFIT to identify any occult bleeding in the stool, again if it’s available to you, or certainly if not, urgent lower gastrointestinal investigations to exclude colorectal cancer.

Alongside these possible investigations, as always, we should safety-net appropriately within agreed timeframes and check for resolution of the thrombocytosis according to the condition being suspected. Remember, most cases resolve within 3 months.

Returning to Louisa, what did I do? After seeing a platelet count of 600, I subsequently telephoned her and reexplored her history, which yielded nil else of note. Specifically, there was no history of unexplained weight loss, no history of upper or lower gastrointestinal symptoms, and certainly nothing significantly different from her usual irritable bowel syndrome symptoms. There were also no respiratory or genitourinary symptoms of note.

I did arrange for Louisa to undergo a chest x-ray over the next few days, though, as she was an ex-smoker. This was subsequently reported as normal. I appreciate chest x-rays have poor sensitivity for detecting lung cancer, as highlighted in a number of recent papers, but it was mutually agreed with Louisa that we would simply repeat her blood test in around 6 weeks. As well as repeating the full blood count, I arranged to check her ferritin, CRP, and a blood film, and then I was planning to reassess her clinically in person.

These bloods and my subsequent clinical review were reassuring. In fact, her platelet count had normalized after that 6 weeks had elapsed. Her thrombocytosis had resolved.

I didn’t arrange any further follow-up for her, but I did give her the usual safety netting advice to re-present to me or one of my colleagues if she does develop any worrying symptoms or signs.

I appreciate these scenarios are not always this straightforward, but I wanted to outline what investigations and referrals we may need to consider in primary care if we encounter an unexplained high platelet count.

There are a couple of quality-improvement activities for us all to consider in primary care. Consider as a team how we would respond to an incidental finding of thrombocytosis on a full blood count. Also consider what are our safety-netting options for those found to have raised platelet counts but no other symptoms or risk factors for underlying malignancy.

Finally, I’ve produced a Medscape UK primary care hack or clinical aide-memoire on managing unexplained thrombocytosis and associated cancer risk in primary care for all healthcare professionals working in primary care. This can be found online. I hope you find this resource helpful.

Dr. Kevin Fernando, General practitioner partner with specialist interests in cardiovascular, renal, and metabolic medicine, North Berwick Group Practice in Scotland, has disclosed relevant financial relationships with Amarin, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Dexcom, Lilly, Menarini, Novartis, Novo Nordisk, Roche Diagnostics, Embecta, Roche Diabetes Care, Sanofi Menarini, and Daiichi Sankyo.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

This transcript has been edited for clarity.

In this podcast, I’m going to talk about unexplained high platelet counts, or thrombocytosis, and the risk for cancer in primary care. Let’s start with a typical case we all might see in primary care.

Louisa is 47 years old and is the chief financial officer for a tech startup company. She presents to us in primary care feeling tired all the time — a very common presentation in primary care — with associated reduced appetite. Past medical history includes irritable bowel syndrome, and she’s an ex-smoker.

Systemic inquiry is unremarkable. Specifically, there is no history of weight loss. Louisa has not been prescribed any medication and uses over-the-counter remedies for her irritable bowel syndrome. Examination is also unremarkable. Blood tests were checked, which were all reassuring, except for a platelet count of 612 × 109 cells/L (usual normal range, about 150-450).

What do we do next? Do we refer for an urgent chest x-ray to exclude lung cancer? Do we check a quantitative immunohistochemical fecal occult blood test (qFIT) to identify any occult bleeding in her stool? Do we refer for a routine upper gastrointestinal endoscopy or pelvic ultrasound scan to exclude any upper gastrointestinal or endometrial malignancy?

Do we simply repeat the bloods? If so, do we repeat them routinely or urgently, and indeed, which ones should we recheck?

Louisa has an unexplained thrombocytosis. How do we manage this in primary care? Thrombocytosis is generally defined as a raised platelet count over 450. Importantly, thrombocytosis is a common incidental finding in around 2% of those over 40 years of age attending primary care. Reassuringly, 80%-90% of thrombocytosis is reactive, secondary to acute blood loss, infection, or inflammation, and the majority of cases resolve within 3 months.

Why the concern with Louisa then? Although most cases are reactive, clinical guidance (for example, NICE suspected cancer guidance in the UK and Scottish suspected cancer guidance in Scotland) reminds us that unexplained thrombocytosis is a risk marker for some solid-tumor malignancies.

Previous studies have demonstrated that unexplained thrombocytosis is associated with a 1-year cancer incidence of 11.6% in males and 6.2% in females, well exceeding the standard 3% threshold warranting investigation for underlying malignancy. However, thrombocytosis should not be used as a stand-alone diagnostic or screening test for cancer, or indeed to rule out cancer.

Instead, unexplained thrombocytosis should prompt us to think cancer. The Scottish suspected cancer referral guidelines include thrombocytosis in the investigation criteria for what they call the LEGO-C cancers — L for lung, E for endometrial, G for gastric, O for oesophageal, and C for colorectal, which is a useful reminder for us all.

What further history, examination, and investigations might we consider in primary care if we identify an unexplained high platelet count? As always, we should use our clinical judgment and trust our clinical acumen.

We should consider all the possible underlying causes, including infection, inflammation, and blood loss, including menstrual blood loss in women; myeloproliferative disorders such as polycythemia rubra vera, chronic myeloid leukemia, and essential thrombocythemia; and, of course, underlying malignancy. If a likely underlying reversible cause is present (for example, a recent lower respiratory tract infection), simply repeating the full blood count in 4-6 weeks is quite appropriate to see if the thrombocytosis has resolved.

Remember, 80%-90% of cases are reactive thrombocytosis, and most cases resolve within 3 months. If thrombocytosis is unexplained or not resolving, consider checking ferritin levels to exclude iron deficiency. Consider checking C-reactive protein (CRP) levels to exclude any inflammation, and also consider checking a blood film to exclude any hematologic disorders, in addition, of course, to more detailed history-taking and examination to elicit any red flags.

We can also consider a JAK2 gene mutation test, if it is available to you locally, or a hematology referral if we suspect a myeloproliferative disorder. JAK2 is a genetic mutation that may be present in people with essential thrombocythemia and can indicate a diagnosis of polycythemia rubra vera.

Subsequent to this, and again using our clinical judgment, we then need to exclude the LEGO-C cancers. Consider urgent chest x-ray to exclude lung cancer or pelvic ultrasound in women to exclude endometrial cancer. Also, we should consider an upper gastrointestinal endoscopy, particularly in those individuals who have associated upper gastrointestinal symptoms and/or weight loss.

Finally, consider a qFIT to identify any occult bleeding in the stool, again if it’s available to you, or certainly if not, urgent lower gastrointestinal investigations to exclude colorectal cancer.

Alongside these possible investigations, as always, we should safety-net appropriately within agreed timeframes and check for resolution of the thrombocytosis according to the condition being suspected. Remember, most cases resolve within 3 months.

Returning to Louisa, what did I do? After seeing a platelet count of 600, I subsequently telephoned her and reexplored her history, which yielded nil else of note. Specifically, there was no history of unexplained weight loss, no history of upper or lower gastrointestinal symptoms, and certainly nothing significantly different from her usual irritable bowel syndrome symptoms. There were also no respiratory or genitourinary symptoms of note.

I did arrange for Louisa to undergo a chest x-ray over the next few days, though, as she was an ex-smoker. This was subsequently reported as normal. I appreciate chest x-rays have poor sensitivity for detecting lung cancer, as highlighted in a number of recent papers, but it was mutually agreed with Louisa that we would simply repeat her blood test in around 6 weeks. As well as repeating the full blood count, I arranged to check her ferritin, CRP, and a blood film, and then I was planning to reassess her clinically in person.

These bloods and my subsequent clinical review were reassuring. In fact, her platelet count had normalized after that 6 weeks had elapsed. Her thrombocytosis had resolved.

I didn’t arrange any further follow-up for her, but I did give her the usual safety netting advice to re-present to me or one of my colleagues if she does develop any worrying symptoms or signs.

I appreciate these scenarios are not always this straightforward, but I wanted to outline what investigations and referrals we may need to consider in primary care if we encounter an unexplained high platelet count.

There are a couple of quality-improvement activities for us all to consider in primary care. Consider as a team how we would respond to an incidental finding of thrombocytosis on a full blood count. Also consider what are our safety-netting options for those found to have raised platelet counts but no other symptoms or risk factors for underlying malignancy.

Finally, I’ve produced a Medscape UK primary care hack or clinical aide-memoire on managing unexplained thrombocytosis and associated cancer risk in primary care for all healthcare professionals working in primary care. This can be found online. I hope you find this resource helpful.

Dr. Kevin Fernando, General practitioner partner with specialist interests in cardiovascular, renal, and metabolic medicine, North Berwick Group Practice in Scotland, has disclosed relevant financial relationships with Amarin, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Dexcom, Lilly, Menarini, Novartis, Novo Nordisk, Roche Diagnostics, Embecta, Roche Diabetes Care, Sanofi Menarini, and Daiichi Sankyo.

A version of this article first appeared on Medscape.com.

This transcript has been edited for clarity.

In this podcast, I’m going to talk about unexplained high platelet counts, or thrombocytosis, and the risk for cancer in primary care. Let’s start with a typical case we all might see in primary care.

Louisa is 47 years old and is the chief financial officer for a tech startup company. She presents to us in primary care feeling tired all the time — a very common presentation in primary care — with associated reduced appetite. Past medical history includes irritable bowel syndrome, and she’s an ex-smoker.

Systemic inquiry is unremarkable. Specifically, there is no history of weight loss. Louisa has not been prescribed any medication and uses over-the-counter remedies for her irritable bowel syndrome. Examination is also unremarkable. Blood tests were checked, which were all reassuring, except for a platelet count of 612 × 109 cells/L (usual normal range, about 150-450).

What do we do next? Do we refer for an urgent chest x-ray to exclude lung cancer? Do we check a quantitative immunohistochemical fecal occult blood test (qFIT) to identify any occult bleeding in her stool? Do we refer for a routine upper gastrointestinal endoscopy or pelvic ultrasound scan to exclude any upper gastrointestinal or endometrial malignancy?

Do we simply repeat the bloods? If so, do we repeat them routinely or urgently, and indeed, which ones should we recheck?

Louisa has an unexplained thrombocytosis. How do we manage this in primary care? Thrombocytosis is generally defined as a raised platelet count over 450. Importantly, thrombocytosis is a common incidental finding in around 2% of those over 40 years of age attending primary care. Reassuringly, 80%-90% of thrombocytosis is reactive, secondary to acute blood loss, infection, or inflammation, and the majority of cases resolve within 3 months.

Why the concern with Louisa then? Although most cases are reactive, clinical guidance (for example, NICE suspected cancer guidance in the UK and Scottish suspected cancer guidance in Scotland) reminds us that unexplained thrombocytosis is a risk marker for some solid-tumor malignancies.

Previous studies have demonstrated that unexplained thrombocytosis is associated with a 1-year cancer incidence of 11.6% in males and 6.2% in females, well exceeding the standard 3% threshold warranting investigation for underlying malignancy. However, thrombocytosis should not be used as a stand-alone diagnostic or screening test for cancer, or indeed to rule out cancer.

Instead, unexplained thrombocytosis should prompt us to think cancer. The Scottish suspected cancer referral guidelines include thrombocytosis in the investigation criteria for what they call the LEGO-C cancers — L for lung, E for endometrial, G for gastric, O for oesophageal, and C for colorectal, which is a useful reminder for us all.

What further history, examination, and investigations might we consider in primary care if we identify an unexplained high platelet count? As always, we should use our clinical judgment and trust our clinical acumen.

We should consider all the possible underlying causes, including infection, inflammation, and blood loss, including menstrual blood loss in women; myeloproliferative disorders such as polycythemia rubra vera, chronic myeloid leukemia, and essential thrombocythemia; and, of course, underlying malignancy. If a likely underlying reversible cause is present (for example, a recent lower respiratory tract infection), simply repeating the full blood count in 4-6 weeks is quite appropriate to see if the thrombocytosis has resolved.

Remember, 80%-90% of cases are reactive thrombocytosis, and most cases resolve within 3 months. If thrombocytosis is unexplained or not resolving, consider checking ferritin levels to exclude iron deficiency. Consider checking C-reactive protein (CRP) levels to exclude any inflammation, and also consider checking a blood film to exclude any hematologic disorders, in addition, of course, to more detailed history-taking and examination to elicit any red flags.

We can also consider a JAK2 gene mutation test, if it is available to you locally, or a hematology referral if we suspect a myeloproliferative disorder. JAK2 is a genetic mutation that may be present in people with essential thrombocythemia and can indicate a diagnosis of polycythemia rubra vera.

Subsequent to this, and again using our clinical judgment, we then need to exclude the LEGO-C cancers. Consider urgent chest x-ray to exclude lung cancer or pelvic ultrasound in women to exclude endometrial cancer. Also, we should consider an upper gastrointestinal endoscopy, particularly in those individuals who have associated upper gastrointestinal symptoms and/or weight loss.

Finally, consider a qFIT to identify any occult bleeding in the stool, again if it’s available to you, or certainly if not, urgent lower gastrointestinal investigations to exclude colorectal cancer.

Alongside these possible investigations, as always, we should safety-net appropriately within agreed timeframes and check for resolution of the thrombocytosis according to the condition being suspected. Remember, most cases resolve within 3 months.

Returning to Louisa, what did I do? After seeing a platelet count of 600, I subsequently telephoned her and reexplored her history, which yielded nil else of note. Specifically, there was no history of unexplained weight loss, no history of upper or lower gastrointestinal symptoms, and certainly nothing significantly different from her usual irritable bowel syndrome symptoms. There were also no respiratory or genitourinary symptoms of note.

I did arrange for Louisa to undergo a chest x-ray over the next few days, though, as she was an ex-smoker. This was subsequently reported as normal. I appreciate chest x-rays have poor sensitivity for detecting lung cancer, as highlighted in a number of recent papers, but it was mutually agreed with Louisa that we would simply repeat her blood test in around 6 weeks. As well as repeating the full blood count, I arranged to check her ferritin, CRP, and a blood film, and then I was planning to reassess her clinically in person.

These bloods and my subsequent clinical review were reassuring. In fact, her platelet count had normalized after that 6 weeks had elapsed. Her thrombocytosis had resolved.

I didn’t arrange any further follow-up for her, but I did give her the usual safety netting advice to re-present to me or one of my colleagues if she does develop any worrying symptoms or signs.

I appreciate these scenarios are not always this straightforward, but I wanted to outline what investigations and referrals we may need to consider in primary care if we encounter an unexplained high platelet count.

There are a couple of quality-improvement activities for us all to consider in primary care. Consider as a team how we would respond to an incidental finding of thrombocytosis on a full blood count. Also consider what are our safety-netting options for those found to have raised platelet counts but no other symptoms or risk factors for underlying malignancy.

Finally, I’ve produced a Medscape UK primary care hack or clinical aide-memoire on managing unexplained thrombocytosis and associated cancer risk in primary care for all healthcare professionals working in primary care. This can be found online. I hope you find this resource helpful.

Dr. Kevin Fernando, General practitioner partner with specialist interests in cardiovascular, renal, and metabolic medicine, North Berwick Group Practice in Scotland, has disclosed relevant financial relationships with Amarin, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Dexcom, Lilly, Menarini, Novartis, Novo Nordisk, Roche Diagnostics, Embecta, Roche Diabetes Care, Sanofi Menarini, and Daiichi Sankyo.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Mon, 11/18/2024 - 10:37
Un-Gate On Date
Mon, 11/18/2024 - 10:37
Use ProPublica
CFC Schedule Remove Status
Mon, 11/18/2024 - 10:37
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Mon, 11/18/2024 - 10:37

Abuse of the Safety-Net 340B Drug Pricing Program: Why Should Physicians Care?

Article Type
Changed
Wed, 11/27/2024 - 04:09

The 340B Drug Pricing Program began as a noble endeavor, a lifeline designed to help safety-net providers deliver affordable care to America’s most vulnerable populations. However, over the years, this well-intentioned program has strayed from its original purpose, becoming a lucrative space where profits often outweigh patients. Loopholes, lax oversight, and unchecked expansion have allowed some powerful players, such as certain disproportionate share hospitals and their “child sites” as well as for-profit pharmacies, to exploit the system. What was once a program to uplift underserved communities now risks becoming a case study in how good intentions can go astray without accountability.

What exactly is this “340B program” that has captured headlines and the interest of legislatures around the country? What ensures that pharmaceutical manufacturers continue to participate in this program? How lucrative is it? How have underserved populations benefited and how is that measured? 
 

Dr. Madelaine A. Feldman

The 340B Drug Pricing Program was established in 1992 under the Public Health Service Act. Its primary goal is to enable covered entities (such as hospitals and clinics serving low-income and uninsured patients) to purchase outpatient drugs from pharmaceutical manufacturers at significantly reduced prices in order to support their care of the low-income and underserved populations. Drug makers are required to participate in this program as a condition of their participation in Medicaid and Medicare Part B and offer these steep discounts to covered entities if they want their medications to be available to 38% of patients nationwide. 

The hospitals that make up 78% of the program’s spending are known as disproportionate share hospitals (DSHs). These hospitals must be nonprofit and have at least an 11.75% “disproportionate” share of low-income Medicare or Medicaid inpatients. The other types of non-hospital entities qualifying for 340B pricing are known as initial “federal grantees.” Some examples include federally qualified health centers (FQHC), Ryan White HIV/AIDS program grantees, and other types of specialized clinics, such as hemophilia treatment centers. It needs to be noted up front that it is not these initial non-hospital federal grantees that need more oversight or reform, since according to the Health Resources and Services Administration (HRSA) 2023 report they make up only 22% of all program spending. It is the large, predominantly DSH health systems that are profiting immensely through exponential growth of their clinics and contract pharmacies. However, these health systems have not been able to show exactly who are their eligible patients and how they have been benefiting them.

When the 340B program was established to offer financial relief to hospitals and clinics taking care of the uninsured, it allowed them to save 20%-50% on drug purchases, which could be reinvested in patient care services. It was hoped that savings from the program could be used to provide free or low-cost medications, free vaccines, and other essential health services, essentially allowing safety-net providers to serve their communities despite financial constraints. The initial grantees are fulfilling that mission, but there are concerns regarding DSHs. (See the Coalition of State Rheumatology Organization’s 340B explanatory statement and policy position for more.)

 

Why Should Independent Practice Physicians Care About This?

Independent doctors should care about the lack of oversight in the 340B program because it affects healthcare costs, patient assistance, market competition, and access to affordable care for underserved and uninsured patients.

It also plays a strong hand in the healthcare consolidation that continues to threaten private physician practices. These acquisitions threaten the viability of independent practices in a variety of specialties across the United States, including rheumatology. HRSA allows 340B-covered entities to register their off-campus outpatient facilities, or child sites, under their 340B designation. Covered entities can acquire drugs at the 340B price, while imposing markups on the reimbursement they submit to private insurance. The additional revenue these covered entities can pocket provides them with a cash flow advantage that physician practices and outpatient clinics will never be able to actualize. This uneven playing field may make rheumatology practices more susceptible to hospital acquisitions. In fact, between 2016 and 2022, large 340B hospitals were responsible for approximately 80% of hospital acquisitions.

Perhaps the most important reason that we should all be concerned about the trajectory of this well-meaning program is that we have seen patients with hospital debt being sued by DSHs who receive 340B discounts so that they can take care of the low-income patients they are suing. We have seen Medicaid patients be turned away from a DSH clinic after being discharged from that hospital, because the hospital had reached its disproportionate share (11.75%) of inpatient Medicare and Medicaid patients. While not illegal, that type of behavior by covered entities is WRONG! Oversight and reform are needed if the 340B program is going to live up to its purpose and not be just another well-intentioned program not fulfilling its mission.

 

Areas of Concern

There has been controversy regarding the limited oversight of the 340B program by HRSA, leading to abuse of the program. There are deep concerns regarding a lack of transparency in how savings from the program are being used, and there are concerns about the challenges associated with accurate tracking and reporting of 340B discounts, possibly leading to the duplication of discounts for both Medicaid and 340B. For example, a “duplicate discount” occurs if a manufacturer sells medications to a DSH at the 340B price and later pays a Medicaid rebate on the same drug. The extent of duplicate discounts in the 340B program is unknown. However, an audit of 1,536 cases conducted by HRSA between 2012 and 2019 found 429 instances of noncompliance related to duplicate discounts, which is nearly 30% of cases.

DSHs and their contracted pharmacies have been accused of exploiting the program by increasing the number of contract pharmacies and expanding the number of offsite outpatient clinics to maximize profits. As of mid-2024, the number of 340B contract pharmacies, counted by Drug Channels Institute (DCI), numbered 32,883 unique locations. According to DCI, the top five pharmacies in the program happen also to be among the top pharmacy revenue generators and are “for-profit.” They are CVS, Walgreens, Walmart, Express Scripts, and Optum RX. Additionally, a study in JAMA Health Forum showed that, from 2011 to 2019, contract pharmacies in areas with the lowest income decreased by 5.6% while those in the most affluent neighborhoods grew by 5%. 

There also has been tremendous growth in the number of covered entities in the 340B program, which grew from just over 8,100 in 2000 to 50,000 in 2020. Before 2004, DSHs made up less than 10% of these entities, but by 2020, they accounted for over 60%. Another study shows that DSHs are expanding their offsite outpatient clinics (“child clinics”) into the affluent neighborhoods serving commercially insured patients who are not low income, to capture the high commercial reimbursements for medications they acquired at steeply discounted prices. This clearly is diverting care away from the intended beneficiaries of the 340B program. 

Furthermore, DSHs have been acquiring specialty practices that prescribe some of the most expensive drugs, in order to take advantage of commercial reimbursement for medications that were acquired at the 340B discount price. Independent oncology practices have complained specifically about this happening in their area, where in some cases the DSHs have “stolen” their patients to profit off of the 340B pricing margins. This has the unintended consequence of increasing government spending, according to a study in the New England Journal of Medicine that showed price markups at 340B eligible hospitals were 6.59 times as high as those in independent physician practices after accounting for drug, patient, and geographic factors.

 

Legal Challenges and Legislation

On May 21, 2024, the US Court of Appeals for the DC Circuit issued a unanimous decision in favor of drug manufacturers, finding that certain manufacturer restrictions on the use of contract pharmacies under the 340B drug pricing program are permissible. The court’s decision follows a lower court (3rd Circuit) ruling which concluded that the 340B statute does not require manufacturers to deliver 340B drugs to an “unlimited number of contract pharmacies.” We’re still awaiting a decision from the 7th Circuit Court on a similar issue. If the 7th Circuit agrees with the government, creating a split decision, there is an increase in the likelihood that the Supreme Court would take up the case.

Johnson & Johnson has also sued the federal government for blocking their proposed use of a rebate model for DSHs that purchase through 340B two of its medications, Stelara and Xarelto, whose maximum fair price was negotiated through the Inflation Reduction Act’s Medicare Drug Price Negotiation Program. J&J states this would ensure that the claims are actually acquired and dispensed by a covered 340B entity, as well as ensuring there are no duplicate discounts as statutorily required by the IRA. When initially proposed, HRSA threatened to remove J&J’s access to Medicare and Medicaid if it pursued this change. J&J’s suit challenges that decision.

However, seven states (Arkansas, Kansas, Louisiana, Minnesota, Missouri, Mississippi, and West Virginia) have been active on this issue, passing laws to prevent manufacturers from limiting contract pharmacies’ ability to acquire 340B-discounted drugs. The model legislation also bans restrictions on the “number, location, ownership, or type of 340B contract pharmacy.”

It should also be noted that there are states that are looking for ways to encourage certain independent private practice specialties (such as gastroenterology and rheumatology) to see Medicaid patients, as well as increase testing for sexually transmitted diseases, by offering the possibility of obtaining 340B pricing in their clinics. 

Shifting our focus to Congress, six bipartisan Senators, known as the Group of 6, are working to modernize the 340B program, which hasn’t been updated since the original law in 1992. In 2024, legislation was introduced (see here and here) to reform a number of the features of the 340B drug discount program, including transparency, contract pharmacy requirements, and federal agency oversight.

 

Who’s Guarding the Hen House?

The Government Accountability Office and the Office of Inspector General over the last 5-10 years have asked HRSA to better define an “eligible” patient, to have more specifics concerning hospital eligibility criteria, and to have better oversight of the program to avoid duplicate discounts. HRSA has said that it doesn’t have the ability or the funding to achieve some of these goals. Consequently, little has been done on any of these fronts, creating frustration among pharmaceutical manufacturers and those calling for more oversight of the program to ensure that eligible patients are receiving the benefit of 340B pricing. Again, these frustrations are not pointed at the initial federally qualified centers or “grantees.”

HRSA now audits 200 covered entities a year, which is less than 2% of entities participating in the 340B program. HRSA expects the 340B entities themselves to have an oversight committee in place to ensure compliance with program requirements. 

So essentially, the fox is guarding the hen house?

Dr. Feldman is a rheumatologist in private practice with The Rheumatology Group in New Orleans. She is the CSRO’s vice president of advocacy and government affairs and its immediate past president, as well as past chair of the Alliance for Safe Biologic Medicines and a past member of the American College of Rheumatology insurance subcommittee. You can reach her at rhnews@mdedge.com.

Publications
Topics
Sections

The 340B Drug Pricing Program began as a noble endeavor, a lifeline designed to help safety-net providers deliver affordable care to America’s most vulnerable populations. However, over the years, this well-intentioned program has strayed from its original purpose, becoming a lucrative space where profits often outweigh patients. Loopholes, lax oversight, and unchecked expansion have allowed some powerful players, such as certain disproportionate share hospitals and their “child sites” as well as for-profit pharmacies, to exploit the system. What was once a program to uplift underserved communities now risks becoming a case study in how good intentions can go astray without accountability.

What exactly is this “340B program” that has captured headlines and the interest of legislatures around the country? What ensures that pharmaceutical manufacturers continue to participate in this program? How lucrative is it? How have underserved populations benefited and how is that measured? 
 

Dr. Madelaine A. Feldman

The 340B Drug Pricing Program was established in 1992 under the Public Health Service Act. Its primary goal is to enable covered entities (such as hospitals and clinics serving low-income and uninsured patients) to purchase outpatient drugs from pharmaceutical manufacturers at significantly reduced prices in order to support their care of the low-income and underserved populations. Drug makers are required to participate in this program as a condition of their participation in Medicaid and Medicare Part B and offer these steep discounts to covered entities if they want their medications to be available to 38% of patients nationwide. 

The hospitals that make up 78% of the program’s spending are known as disproportionate share hospitals (DSHs). These hospitals must be nonprofit and have at least an 11.75% “disproportionate” share of low-income Medicare or Medicaid inpatients. The other types of non-hospital entities qualifying for 340B pricing are known as initial “federal grantees.” Some examples include federally qualified health centers (FQHC), Ryan White HIV/AIDS program grantees, and other types of specialized clinics, such as hemophilia treatment centers. It needs to be noted up front that it is not these initial non-hospital federal grantees that need more oversight or reform, since according to the Health Resources and Services Administration (HRSA) 2023 report they make up only 22% of all program spending. It is the large, predominantly DSH health systems that are profiting immensely through exponential growth of their clinics and contract pharmacies. However, these health systems have not been able to show exactly who are their eligible patients and how they have been benefiting them.

When the 340B program was established to offer financial relief to hospitals and clinics taking care of the uninsured, it allowed them to save 20%-50% on drug purchases, which could be reinvested in patient care services. It was hoped that savings from the program could be used to provide free or low-cost medications, free vaccines, and other essential health services, essentially allowing safety-net providers to serve their communities despite financial constraints. The initial grantees are fulfilling that mission, but there are concerns regarding DSHs. (See the Coalition of State Rheumatology Organization’s 340B explanatory statement and policy position for more.)

 

Why Should Independent Practice Physicians Care About This?

Independent doctors should care about the lack of oversight in the 340B program because it affects healthcare costs, patient assistance, market competition, and access to affordable care for underserved and uninsured patients.

It also plays a strong hand in the healthcare consolidation that continues to threaten private physician practices. These acquisitions threaten the viability of independent practices in a variety of specialties across the United States, including rheumatology. HRSA allows 340B-covered entities to register their off-campus outpatient facilities, or child sites, under their 340B designation. Covered entities can acquire drugs at the 340B price, while imposing markups on the reimbursement they submit to private insurance. The additional revenue these covered entities can pocket provides them with a cash flow advantage that physician practices and outpatient clinics will never be able to actualize. This uneven playing field may make rheumatology practices more susceptible to hospital acquisitions. In fact, between 2016 and 2022, large 340B hospitals were responsible for approximately 80% of hospital acquisitions.

Perhaps the most important reason that we should all be concerned about the trajectory of this well-meaning program is that we have seen patients with hospital debt being sued by DSHs who receive 340B discounts so that they can take care of the low-income patients they are suing. We have seen Medicaid patients be turned away from a DSH clinic after being discharged from that hospital, because the hospital had reached its disproportionate share (11.75%) of inpatient Medicare and Medicaid patients. While not illegal, that type of behavior by covered entities is WRONG! Oversight and reform are needed if the 340B program is going to live up to its purpose and not be just another well-intentioned program not fulfilling its mission.

 

Areas of Concern

There has been controversy regarding the limited oversight of the 340B program by HRSA, leading to abuse of the program. There are deep concerns regarding a lack of transparency in how savings from the program are being used, and there are concerns about the challenges associated with accurate tracking and reporting of 340B discounts, possibly leading to the duplication of discounts for both Medicaid and 340B. For example, a “duplicate discount” occurs if a manufacturer sells medications to a DSH at the 340B price and later pays a Medicaid rebate on the same drug. The extent of duplicate discounts in the 340B program is unknown. However, an audit of 1,536 cases conducted by HRSA between 2012 and 2019 found 429 instances of noncompliance related to duplicate discounts, which is nearly 30% of cases.

DSHs and their contracted pharmacies have been accused of exploiting the program by increasing the number of contract pharmacies and expanding the number of offsite outpatient clinics to maximize profits. As of mid-2024, the number of 340B contract pharmacies, counted by Drug Channels Institute (DCI), numbered 32,883 unique locations. According to DCI, the top five pharmacies in the program happen also to be among the top pharmacy revenue generators and are “for-profit.” They are CVS, Walgreens, Walmart, Express Scripts, and Optum RX. Additionally, a study in JAMA Health Forum showed that, from 2011 to 2019, contract pharmacies in areas with the lowest income decreased by 5.6% while those in the most affluent neighborhoods grew by 5%. 

There also has been tremendous growth in the number of covered entities in the 340B program, which grew from just over 8,100 in 2000 to 50,000 in 2020. Before 2004, DSHs made up less than 10% of these entities, but by 2020, they accounted for over 60%. Another study shows that DSHs are expanding their offsite outpatient clinics (“child clinics”) into the affluent neighborhoods serving commercially insured patients who are not low income, to capture the high commercial reimbursements for medications they acquired at steeply discounted prices. This clearly is diverting care away from the intended beneficiaries of the 340B program. 

Furthermore, DSHs have been acquiring specialty practices that prescribe some of the most expensive drugs, in order to take advantage of commercial reimbursement for medications that were acquired at the 340B discount price. Independent oncology practices have complained specifically about this happening in their area, where in some cases the DSHs have “stolen” their patients to profit off of the 340B pricing margins. This has the unintended consequence of increasing government spending, according to a study in the New England Journal of Medicine that showed price markups at 340B eligible hospitals were 6.59 times as high as those in independent physician practices after accounting for drug, patient, and geographic factors.

 

Legal Challenges and Legislation

On May 21, 2024, the US Court of Appeals for the DC Circuit issued a unanimous decision in favor of drug manufacturers, finding that certain manufacturer restrictions on the use of contract pharmacies under the 340B drug pricing program are permissible. The court’s decision follows a lower court (3rd Circuit) ruling which concluded that the 340B statute does not require manufacturers to deliver 340B drugs to an “unlimited number of contract pharmacies.” We’re still awaiting a decision from the 7th Circuit Court on a similar issue. If the 7th Circuit agrees with the government, creating a split decision, there is an increase in the likelihood that the Supreme Court would take up the case.

Johnson & Johnson has also sued the federal government for blocking their proposed use of a rebate model for DSHs that purchase through 340B two of its medications, Stelara and Xarelto, whose maximum fair price was negotiated through the Inflation Reduction Act’s Medicare Drug Price Negotiation Program. J&J states this would ensure that the claims are actually acquired and dispensed by a covered 340B entity, as well as ensuring there are no duplicate discounts as statutorily required by the IRA. When initially proposed, HRSA threatened to remove J&J’s access to Medicare and Medicaid if it pursued this change. J&J’s suit challenges that decision.

However, seven states (Arkansas, Kansas, Louisiana, Minnesota, Missouri, Mississippi, and West Virginia) have been active on this issue, passing laws to prevent manufacturers from limiting contract pharmacies’ ability to acquire 340B-discounted drugs. The model legislation also bans restrictions on the “number, location, ownership, or type of 340B contract pharmacy.”

It should also be noted that there are states that are looking for ways to encourage certain independent private practice specialties (such as gastroenterology and rheumatology) to see Medicaid patients, as well as increase testing for sexually transmitted diseases, by offering the possibility of obtaining 340B pricing in their clinics. 

Shifting our focus to Congress, six bipartisan Senators, known as the Group of 6, are working to modernize the 340B program, which hasn’t been updated since the original law in 1992. In 2024, legislation was introduced (see here and here) to reform a number of the features of the 340B drug discount program, including transparency, contract pharmacy requirements, and federal agency oversight.

 

Who’s Guarding the Hen House?

The Government Accountability Office and the Office of Inspector General over the last 5-10 years have asked HRSA to better define an “eligible” patient, to have more specifics concerning hospital eligibility criteria, and to have better oversight of the program to avoid duplicate discounts. HRSA has said that it doesn’t have the ability or the funding to achieve some of these goals. Consequently, little has been done on any of these fronts, creating frustration among pharmaceutical manufacturers and those calling for more oversight of the program to ensure that eligible patients are receiving the benefit of 340B pricing. Again, these frustrations are not pointed at the initial federally qualified centers or “grantees.”

HRSA now audits 200 covered entities a year, which is less than 2% of entities participating in the 340B program. HRSA expects the 340B entities themselves to have an oversight committee in place to ensure compliance with program requirements. 

So essentially, the fox is guarding the hen house?

Dr. Feldman is a rheumatologist in private practice with The Rheumatology Group in New Orleans. She is the CSRO’s vice president of advocacy and government affairs and its immediate past president, as well as past chair of the Alliance for Safe Biologic Medicines and a past member of the American College of Rheumatology insurance subcommittee. You can reach her at rhnews@mdedge.com.

The 340B Drug Pricing Program began as a noble endeavor, a lifeline designed to help safety-net providers deliver affordable care to America’s most vulnerable populations. However, over the years, this well-intentioned program has strayed from its original purpose, becoming a lucrative space where profits often outweigh patients. Loopholes, lax oversight, and unchecked expansion have allowed some powerful players, such as certain disproportionate share hospitals and their “child sites” as well as for-profit pharmacies, to exploit the system. What was once a program to uplift underserved communities now risks becoming a case study in how good intentions can go astray without accountability.

What exactly is this “340B program” that has captured headlines and the interest of legislatures around the country? What ensures that pharmaceutical manufacturers continue to participate in this program? How lucrative is it? How have underserved populations benefited and how is that measured? 
 

Dr. Madelaine A. Feldman

The 340B Drug Pricing Program was established in 1992 under the Public Health Service Act. Its primary goal is to enable covered entities (such as hospitals and clinics serving low-income and uninsured patients) to purchase outpatient drugs from pharmaceutical manufacturers at significantly reduced prices in order to support their care of the low-income and underserved populations. Drug makers are required to participate in this program as a condition of their participation in Medicaid and Medicare Part B and offer these steep discounts to covered entities if they want their medications to be available to 38% of patients nationwide. 

The hospitals that make up 78% of the program’s spending are known as disproportionate share hospitals (DSHs). These hospitals must be nonprofit and have at least an 11.75% “disproportionate” share of low-income Medicare or Medicaid inpatients. The other types of non-hospital entities qualifying for 340B pricing are known as initial “federal grantees.” Some examples include federally qualified health centers (FQHC), Ryan White HIV/AIDS program grantees, and other types of specialized clinics, such as hemophilia treatment centers. It needs to be noted up front that it is not these initial non-hospital federal grantees that need more oversight or reform, since according to the Health Resources and Services Administration (HRSA) 2023 report they make up only 22% of all program spending. It is the large, predominantly DSH health systems that are profiting immensely through exponential growth of their clinics and contract pharmacies. However, these health systems have not been able to show exactly who are their eligible patients and how they have been benefiting them.

When the 340B program was established to offer financial relief to hospitals and clinics taking care of the uninsured, it allowed them to save 20%-50% on drug purchases, which could be reinvested in patient care services. It was hoped that savings from the program could be used to provide free or low-cost medications, free vaccines, and other essential health services, essentially allowing safety-net providers to serve their communities despite financial constraints. The initial grantees are fulfilling that mission, but there are concerns regarding DSHs. (See the Coalition of State Rheumatology Organization’s 340B explanatory statement and policy position for more.)

 

Why Should Independent Practice Physicians Care About This?

Independent doctors should care about the lack of oversight in the 340B program because it affects healthcare costs, patient assistance, market competition, and access to affordable care for underserved and uninsured patients.

It also plays a strong hand in the healthcare consolidation that continues to threaten private physician practices. These acquisitions threaten the viability of independent practices in a variety of specialties across the United States, including rheumatology. HRSA allows 340B-covered entities to register their off-campus outpatient facilities, or child sites, under their 340B designation. Covered entities can acquire drugs at the 340B price, while imposing markups on the reimbursement they submit to private insurance. The additional revenue these covered entities can pocket provides them with a cash flow advantage that physician practices and outpatient clinics will never be able to actualize. This uneven playing field may make rheumatology practices more susceptible to hospital acquisitions. In fact, between 2016 and 2022, large 340B hospitals were responsible for approximately 80% of hospital acquisitions.

Perhaps the most important reason that we should all be concerned about the trajectory of this well-meaning program is that we have seen patients with hospital debt being sued by DSHs who receive 340B discounts so that they can take care of the low-income patients they are suing. We have seen Medicaid patients be turned away from a DSH clinic after being discharged from that hospital, because the hospital had reached its disproportionate share (11.75%) of inpatient Medicare and Medicaid patients. While not illegal, that type of behavior by covered entities is WRONG! Oversight and reform are needed if the 340B program is going to live up to its purpose and not be just another well-intentioned program not fulfilling its mission.

 

Areas of Concern

There has been controversy regarding the limited oversight of the 340B program by HRSA, leading to abuse of the program. There are deep concerns regarding a lack of transparency in how savings from the program are being used, and there are concerns about the challenges associated with accurate tracking and reporting of 340B discounts, possibly leading to the duplication of discounts for both Medicaid and 340B. For example, a “duplicate discount” occurs if a manufacturer sells medications to a DSH at the 340B price and later pays a Medicaid rebate on the same drug. The extent of duplicate discounts in the 340B program is unknown. However, an audit of 1,536 cases conducted by HRSA between 2012 and 2019 found 429 instances of noncompliance related to duplicate discounts, which is nearly 30% of cases.

DSHs and their contracted pharmacies have been accused of exploiting the program by increasing the number of contract pharmacies and expanding the number of offsite outpatient clinics to maximize profits. As of mid-2024, the number of 340B contract pharmacies, counted by Drug Channels Institute (DCI), numbered 32,883 unique locations. According to DCI, the top five pharmacies in the program happen also to be among the top pharmacy revenue generators and are “for-profit.” They are CVS, Walgreens, Walmart, Express Scripts, and Optum RX. Additionally, a study in JAMA Health Forum showed that, from 2011 to 2019, contract pharmacies in areas with the lowest income decreased by 5.6% while those in the most affluent neighborhoods grew by 5%. 

There also has been tremendous growth in the number of covered entities in the 340B program, which grew from just over 8,100 in 2000 to 50,000 in 2020. Before 2004, DSHs made up less than 10% of these entities, but by 2020, they accounted for over 60%. Another study shows that DSHs are expanding their offsite outpatient clinics (“child clinics”) into the affluent neighborhoods serving commercially insured patients who are not low income, to capture the high commercial reimbursements for medications they acquired at steeply discounted prices. This clearly is diverting care away from the intended beneficiaries of the 340B program. 

Furthermore, DSHs have been acquiring specialty practices that prescribe some of the most expensive drugs, in order to take advantage of commercial reimbursement for medications that were acquired at the 340B discount price. Independent oncology practices have complained specifically about this happening in their area, where in some cases the DSHs have “stolen” their patients to profit off of the 340B pricing margins. This has the unintended consequence of increasing government spending, according to a study in the New England Journal of Medicine that showed price markups at 340B eligible hospitals were 6.59 times as high as those in independent physician practices after accounting for drug, patient, and geographic factors.

 

Legal Challenges and Legislation

On May 21, 2024, the US Court of Appeals for the DC Circuit issued a unanimous decision in favor of drug manufacturers, finding that certain manufacturer restrictions on the use of contract pharmacies under the 340B drug pricing program are permissible. The court’s decision follows a lower court (3rd Circuit) ruling which concluded that the 340B statute does not require manufacturers to deliver 340B drugs to an “unlimited number of contract pharmacies.” We’re still awaiting a decision from the 7th Circuit Court on a similar issue. If the 7th Circuit agrees with the government, creating a split decision, there is an increase in the likelihood that the Supreme Court would take up the case.

Johnson & Johnson has also sued the federal government for blocking their proposed use of a rebate model for DSHs that purchase through 340B two of its medications, Stelara and Xarelto, whose maximum fair price was negotiated through the Inflation Reduction Act’s Medicare Drug Price Negotiation Program. J&J states this would ensure that the claims are actually acquired and dispensed by a covered 340B entity, as well as ensuring there are no duplicate discounts as statutorily required by the IRA. When initially proposed, HRSA threatened to remove J&J’s access to Medicare and Medicaid if it pursued this change. J&J’s suit challenges that decision.

However, seven states (Arkansas, Kansas, Louisiana, Minnesota, Missouri, Mississippi, and West Virginia) have been active on this issue, passing laws to prevent manufacturers from limiting contract pharmacies’ ability to acquire 340B-discounted drugs. The model legislation also bans restrictions on the “number, location, ownership, or type of 340B contract pharmacy.”

It should also be noted that there are states that are looking for ways to encourage certain independent private practice specialties (such as gastroenterology and rheumatology) to see Medicaid patients, as well as increase testing for sexually transmitted diseases, by offering the possibility of obtaining 340B pricing in their clinics. 

Shifting our focus to Congress, six bipartisan Senators, known as the Group of 6, are working to modernize the 340B program, which hasn’t been updated since the original law in 1992. In 2024, legislation was introduced (see here and here) to reform a number of the features of the 340B drug discount program, including transparency, contract pharmacy requirements, and federal agency oversight.

 

Who’s Guarding the Hen House?

The Government Accountability Office and the Office of Inspector General over the last 5-10 years have asked HRSA to better define an “eligible” patient, to have more specifics concerning hospital eligibility criteria, and to have better oversight of the program to avoid duplicate discounts. HRSA has said that it doesn’t have the ability or the funding to achieve some of these goals. Consequently, little has been done on any of these fronts, creating frustration among pharmaceutical manufacturers and those calling for more oversight of the program to ensure that eligible patients are receiving the benefit of 340B pricing. Again, these frustrations are not pointed at the initial federally qualified centers or “grantees.”

HRSA now audits 200 covered entities a year, which is less than 2% of entities participating in the 340B program. HRSA expects the 340B entities themselves to have an oversight committee in place to ensure compliance with program requirements. 

So essentially, the fox is guarding the hen house?

Dr. Feldman is a rheumatologist in private practice with The Rheumatology Group in New Orleans. She is the CSRO’s vice president of advocacy and government affairs and its immediate past president, as well as past chair of the Alliance for Safe Biologic Medicines and a past member of the American College of Rheumatology insurance subcommittee. You can reach her at rhnews@mdedge.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Mon, 11/18/2024 - 09:52
Un-Gate On Date
Mon, 11/18/2024 - 09:52
Use ProPublica
CFC Schedule Remove Status
Mon, 11/18/2024 - 09:52
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Mon, 11/18/2024 - 09:52

Reassuring Data on GLP-1 RAs and Pancreatic Cancer Risk

Article Type
Changed
Wed, 11/27/2024 - 04:04

New research provides more evidence that glucagon-like peptide 1 receptor agonists (GLP-1 RAs) do not increase the risk for pancreatic cancer.

Instead, the large electronic health record (EHR) analysis of patients with type 2 diabetes (T2D) found those taking GLP-1 RAs had a significantly lower risk for pancreatic cancer than peers on other antidiabetic medications. 

“Although there were previous reports suggesting possible association between pancreatic cancer and GLP-1 receptor agonist medications, this study provides reassurance that there is no observed increased incidence of pancreatic cancer in patients prescribed these medications,” said Khaled Alsabbagh Alchirazi, MD, a gastroenterology fellow with Aurora Healthcare in Brookfield, Wisconsin. 

He presented the study findings at the American College of Gastroenterology (ACG) 2024 Annual Scientific Meeting

 

Important Topic

Patients with T2D are at increased risk for several malignancies, including pancreatic cancer. Given the unique mechanism of action of GLP-1 RAs in the pancreas, it was important to investigate the relationship between use of these drugs and incidence of pancreatic cancer, he explained.

Using the TriNetX database, the study team identified 4.95 million antidiabetic drug naive T2D patients who were prescribed antidiabetic medications for the first time between 2005 and 2020. None had a history of pancreatic cancer. 

A total of 245,532 were prescribed a GLP-1 RA. The researchers compared GLP-1 RAs users to users of other antidiabetic medications — namely, insulin, metformin, alpha-glucosidase inhibitors, dipeptidyl-peptidase 4 inhibitors (DPP-4i), sodium-glucose cotransporter-2 inhibitors (SGLT2i), sulfonylureas, and thiazolidinediones. 

Patients were propensity score-matched based on demographics, health determinants, lifestyle factors, medical history, family history of cancers, and acute/chronic pancreatitis. 

The risk for pancreatic cancer was significantly lower among patients on GLP-1 RAs vs insulin (hazard ratio [HR], 0.47; 95% CI, 0.40-0.55), DPP-4i (HR, 0.80; 95% CI, 0.73-0.89), SGLT2i (HR, 0.78; 95% CI, 0.69-0.89), and sulfonylureas (HR, 0.84; 95% CI, 0.74-0.95), Alchirazi reported.

The results were consistent across different groups, including patients with obesity/ overweight on GLP-1 RAs vs insulin (HR, 0.53; 95% CI, 0.43-0.65) and SGLT2i (HR, 0.81; 95% CI, 0.69-0.96).

Strengths of the analysis included the large and diverse cohort of propensity score-matched patients. Limitations included the retrospective design and use of claims data that did not provide granular data on pathology reports.

The study by Alchirazi and colleagues aligns with a large population-based cohort study from Israel that found no evidence that GLP-1 RAs increase risk for pancreatic cancer over 7 years following initiation.

Separately, a study of more than 1.6 million patients with T2D found that treatment with a GLP-1 RA (vs insulin or metformin) was associated with lower risks for specific types of obesity-related cancers, including pancreatic cancer.

The study had no specific funding. Alchirazi had no relevant disclosures.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

New research provides more evidence that glucagon-like peptide 1 receptor agonists (GLP-1 RAs) do not increase the risk for pancreatic cancer.

Instead, the large electronic health record (EHR) analysis of patients with type 2 diabetes (T2D) found those taking GLP-1 RAs had a significantly lower risk for pancreatic cancer than peers on other antidiabetic medications. 

“Although there were previous reports suggesting possible association between pancreatic cancer and GLP-1 receptor agonist medications, this study provides reassurance that there is no observed increased incidence of pancreatic cancer in patients prescribed these medications,” said Khaled Alsabbagh Alchirazi, MD, a gastroenterology fellow with Aurora Healthcare in Brookfield, Wisconsin. 

He presented the study findings at the American College of Gastroenterology (ACG) 2024 Annual Scientific Meeting

 

Important Topic

Patients with T2D are at increased risk for several malignancies, including pancreatic cancer. Given the unique mechanism of action of GLP-1 RAs in the pancreas, it was important to investigate the relationship between use of these drugs and incidence of pancreatic cancer, he explained.

Using the TriNetX database, the study team identified 4.95 million antidiabetic drug naive T2D patients who were prescribed antidiabetic medications for the first time between 2005 and 2020. None had a history of pancreatic cancer. 

A total of 245,532 were prescribed a GLP-1 RA. The researchers compared GLP-1 RAs users to users of other antidiabetic medications — namely, insulin, metformin, alpha-glucosidase inhibitors, dipeptidyl-peptidase 4 inhibitors (DPP-4i), sodium-glucose cotransporter-2 inhibitors (SGLT2i), sulfonylureas, and thiazolidinediones. 

Patients were propensity score-matched based on demographics, health determinants, lifestyle factors, medical history, family history of cancers, and acute/chronic pancreatitis. 

The risk for pancreatic cancer was significantly lower among patients on GLP-1 RAs vs insulin (hazard ratio [HR], 0.47; 95% CI, 0.40-0.55), DPP-4i (HR, 0.80; 95% CI, 0.73-0.89), SGLT2i (HR, 0.78; 95% CI, 0.69-0.89), and sulfonylureas (HR, 0.84; 95% CI, 0.74-0.95), Alchirazi reported.

The results were consistent across different groups, including patients with obesity/ overweight on GLP-1 RAs vs insulin (HR, 0.53; 95% CI, 0.43-0.65) and SGLT2i (HR, 0.81; 95% CI, 0.69-0.96).

Strengths of the analysis included the large and diverse cohort of propensity score-matched patients. Limitations included the retrospective design and use of claims data that did not provide granular data on pathology reports.

The study by Alchirazi and colleagues aligns with a large population-based cohort study from Israel that found no evidence that GLP-1 RAs increase risk for pancreatic cancer over 7 years following initiation.

Separately, a study of more than 1.6 million patients with T2D found that treatment with a GLP-1 RA (vs insulin or metformin) was associated with lower risks for specific types of obesity-related cancers, including pancreatic cancer.

The study had no specific funding. Alchirazi had no relevant disclosures.

A version of this article appeared on Medscape.com.

New research provides more evidence that glucagon-like peptide 1 receptor agonists (GLP-1 RAs) do not increase the risk for pancreatic cancer.

Instead, the large electronic health record (EHR) analysis of patients with type 2 diabetes (T2D) found those taking GLP-1 RAs had a significantly lower risk for pancreatic cancer than peers on other antidiabetic medications. 

“Although there were previous reports suggesting possible association between pancreatic cancer and GLP-1 receptor agonist medications, this study provides reassurance that there is no observed increased incidence of pancreatic cancer in patients prescribed these medications,” said Khaled Alsabbagh Alchirazi, MD, a gastroenterology fellow with Aurora Healthcare in Brookfield, Wisconsin. 

He presented the study findings at the American College of Gastroenterology (ACG) 2024 Annual Scientific Meeting

 

Important Topic

Patients with T2D are at increased risk for several malignancies, including pancreatic cancer. Given the unique mechanism of action of GLP-1 RAs in the pancreas, it was important to investigate the relationship between use of these drugs and incidence of pancreatic cancer, he explained.

Using the TriNetX database, the study team identified 4.95 million antidiabetic drug naive T2D patients who were prescribed antidiabetic medications for the first time between 2005 and 2020. None had a history of pancreatic cancer. 

A total of 245,532 were prescribed a GLP-1 RA. The researchers compared GLP-1 RAs users to users of other antidiabetic medications — namely, insulin, metformin, alpha-glucosidase inhibitors, dipeptidyl-peptidase 4 inhibitors (DPP-4i), sodium-glucose cotransporter-2 inhibitors (SGLT2i), sulfonylureas, and thiazolidinediones. 

Patients were propensity score-matched based on demographics, health determinants, lifestyle factors, medical history, family history of cancers, and acute/chronic pancreatitis. 

The risk for pancreatic cancer was significantly lower among patients on GLP-1 RAs vs insulin (hazard ratio [HR], 0.47; 95% CI, 0.40-0.55), DPP-4i (HR, 0.80; 95% CI, 0.73-0.89), SGLT2i (HR, 0.78; 95% CI, 0.69-0.89), and sulfonylureas (HR, 0.84; 95% CI, 0.74-0.95), Alchirazi reported.

The results were consistent across different groups, including patients with obesity/ overweight on GLP-1 RAs vs insulin (HR, 0.53; 95% CI, 0.43-0.65) and SGLT2i (HR, 0.81; 95% CI, 0.69-0.96).

Strengths of the analysis included the large and diverse cohort of propensity score-matched patients. Limitations included the retrospective design and use of claims data that did not provide granular data on pathology reports.

The study by Alchirazi and colleagues aligns with a large population-based cohort study from Israel that found no evidence that GLP-1 RAs increase risk for pancreatic cancer over 7 years following initiation.

Separately, a study of more than 1.6 million patients with T2D found that treatment with a GLP-1 RA (vs insulin or metformin) was associated with lower risks for specific types of obesity-related cancers, including pancreatic cancer.

The study had no specific funding. Alchirazi had no relevant disclosures.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM ACG 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Fri, 11/15/2024 - 12:27
Un-Gate On Date
Fri, 11/15/2024 - 12:27
Use ProPublica
CFC Schedule Remove Status
Fri, 11/15/2024 - 12:27
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Fri, 11/15/2024 - 12:27

Building an AI Army of Digital Twins to Fight Cancer

Article Type
Changed
Wed, 11/27/2024 - 04:46

A patient has cancer. It’s decision time.

Clinician and patient alike face, really, the ultimate challenge when making those decisions. They have to consider the patient’s individual circumstances, available treatment options, potential side effects, relevant clinical data such as the patient’s genetic profile and cancer specifics, and more.

“That’s a lot of information to hold,” said Uzma Asghar, PhD, MRCP, a British consultant medical oncologist at The Royal Marsden Hospital and a chief scientific officer at Concr LTD.

What if there were a way to test — quickly and accurately — all the potential paths forward?

That’s the goal of digital twins. An artificial intelligence (AI)–based program uses all the known data on patients and their types of illness and creates a “twin” that can be used over and over to simulate disease progression, test treatments, and predict individual responses to therapies.

“What the [digital twin] model can do for the clinician is to hold all that information and process it really quickly, within a couple of minutes,” Asghar noted.

A digital twin is more than just a computer model or simulation because it copies a real-world person and relies on real-world data. Some digital twin programs also integrate new information as it becomes available. This technology holds promise for personalized medicine, drug discovery, developing screening strategies, and better understanding diseases.
 

How to Deliver a Twin

To create a digital twin, experts develop a computer model with data to hone its expertise in an area of medicine, such as cancer types and treatments. Then “you train the model on information it’s seen, and then introduce a patient and patient’s information,” said Asghar.

Asghar is currently working with colleagues to develop digital twins that could eventually help solve the aforementioned cancer scenario — a doctor and patient decide the best course of cancer treatment. But their applications are manifold, particularly in clinical research.

Digital twins often include a machine learning component, which would fall under the umbrella term of AI, said Asghar, but it’s not like ChatGPT or other generative AI modules many people are now familiar with.

“The difference here is the model is not there to replace the clinician or to replace clinical trials,” Asghar noted. Instead, digital twins help make decisions faster in a way that can be more affordable.
 

Digital Twins to Predict Cancer Outcomes

Asghar is currently involved in UK clinical trials enrolling patients with cancer to test the accuracy of digital twin programs.

At this point, these studies do not yet use digital twins to guide the course of treatment, which is something they hope to do eventually. For now, they are still at the validation phase — the digital twin program makes predictions about the treatments and then the researchers later evaluate how accurate the predictions turned out to be based on real information from the enrolled patients.

Their current model gives predictions for RECIST (response evaluation criteria in solid tumor), treatment response, and survival. In addition to collecting data from ongoing clinical trials, they’ve used retrospective data, such as from the Cancer Tumor Atlas, to test the model.

“We’ve clinically validated it now in over 9000 patients,” said Asghar, who noted that they are constantly testing it on new patients. Their data include 30 chemotherapies and 23 cancer types, but they are focusing on four: Triple-negative breast cancer, cancer of unknown primary, pancreatic cancer, and colorectal cancer.

“The reason for choosing those four cancer types is that they are aggressive, their response to chemotherapy isn’t as great, and the outcome for those patient populations, there’s significant room for improvement,” Asghar explained.

Currently, Asghar said, the model is around 80%-90% correct in predicting what the actual clinical outcomes turn out to be.

The final stage of their work, before it becomes widely available to clinicians, will be to integrate it into a clinical trial in which some clinicians use the model to make decisions about treatment vs some who don’t use the model. By studying patient outcomes in both groups, they will be able to determine the value of the digital twin program they created.
 

 

 

What Else Can a Twin Do? A Lot

While a model that helps clinicians make decisions about cancer treatments may be among the first digital twin programs that become widely available, there are many other kinds of digital twins in the works.

For example, a digital twin could be used as a benchmark for a patient to determine how their cancer might have progressed without treatment. Say a patient’s tumor grew during treatment, it might seem like the treatment failed, but a digital twin might show that if left untreated, the tumor would have grown five times as fast, said Paul Macklin, PhD, professor in the Department of Intelligent Systems Engineering at Indiana University Bloomington.

Alternatively, if the virtual patient’s tumor is around the same size as the real patient’s tumor, “that means that treatment has lost its efficacy. It’s time to do something new,” said Macklin. And a digital twin could help with not only choosing a therapy but also choosing a dosing schedule, he noted.

The models can also be updated as new treatments come out, which could help clinicians virtually explore how they might affect a patient before having that patient switch treatments.

Digital twins could also assist in decision-making based on a patient’s priorities and real-life circumstances. “Maybe your priority is not necessarily to shrink this [tumor] at all costs ... maybe your priority is some mix of that and also quality of life,” Macklin said, referring to potential side effects. Or if someone lives 3 hours from the nearest cancer center, a digital twin could help determine whether less frequent treatments could still be effective.

And while much of the activity around digital twins in biomedical research has been focused on cancer, Asghar said the technology has the potential to be applied to other diseases as well. A digital twin for cardiovascular disease could help doctors choose the best treatment. It could also integrate new information from a smartwatch or glucose monitor to make better predictions and help doctors adjust the treatment plan.
 

Faster, More Effective Research With Twins

Because digital twin programs can quickly analyze large datasets, they can also make real-world studies more effective and efficient.

Though digital twins would not fully replace real clinical trials, they could help run through preliminary scenarios before starting a full clinical trial, which would “save everybody some money, time and pain and risk,” said Macklin.

It’s also possible to use digital twins to design better screening strategies for early cancer detection and monitoring, said Ioannis Zervantonakis, PhD, a bioengineering professor at the University of Pittsburgh.

Zervantonakis is tapping digital twin technology for research that homes in on understanding tumors. In this case, the digital twin is a virtual representation of a real tumor, complete with its complex network of cells and the surrounding tissue.

Zervantonakis’ lab is using the technology to study cell-cell interactions in the tumor microenvironment, with a focus on human epidermal growth factor receptor 2–targeted therapy resistance in breast cancer. The digital twin they developed will simulate tumor growth, predict drug response, analyze cellular interactions, and optimize treatment strategies.
 

 

 

The Long Push Forward

One big hurdle to making digital twins more widely available is that regulation for the technology is still in progress.

“We’re developing the technology, and what’s also happening is the regulatory framework is being developed in parallel. So we’re almost developing things blindly on the basis that we think this is what the regulators would want,” explained Asghar.

“It’s really important that these technologies are regulated properly, just like drugs, and that’s what we’re pushing and advocating for,” said Asghar, noting that people need to know that like drugs, a digital twin has strengths and limitations.

And while a digital twin can be a cost-saving approach in the long run, it does require funding to get a program built, and finding funds can be difficult because not everyone knows about the technology. More funding means more trials.

With more data, Asghar is hopeful that within a few years, a digital twin model could be available for clinicians to use to help inform treatment decisions. This could lead to more effective treatments and, ultimately, better patient outcomes.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

A patient has cancer. It’s decision time.

Clinician and patient alike face, really, the ultimate challenge when making those decisions. They have to consider the patient’s individual circumstances, available treatment options, potential side effects, relevant clinical data such as the patient’s genetic profile and cancer specifics, and more.

“That’s a lot of information to hold,” said Uzma Asghar, PhD, MRCP, a British consultant medical oncologist at The Royal Marsden Hospital and a chief scientific officer at Concr LTD.

What if there were a way to test — quickly and accurately — all the potential paths forward?

That’s the goal of digital twins. An artificial intelligence (AI)–based program uses all the known data on patients and their types of illness and creates a “twin” that can be used over and over to simulate disease progression, test treatments, and predict individual responses to therapies.

“What the [digital twin] model can do for the clinician is to hold all that information and process it really quickly, within a couple of minutes,” Asghar noted.

A digital twin is more than just a computer model or simulation because it copies a real-world person and relies on real-world data. Some digital twin programs also integrate new information as it becomes available. This technology holds promise for personalized medicine, drug discovery, developing screening strategies, and better understanding diseases.
 

How to Deliver a Twin

To create a digital twin, experts develop a computer model with data to hone its expertise in an area of medicine, such as cancer types and treatments. Then “you train the model on information it’s seen, and then introduce a patient and patient’s information,” said Asghar.

Asghar is currently working with colleagues to develop digital twins that could eventually help solve the aforementioned cancer scenario — a doctor and patient decide the best course of cancer treatment. But their applications are manifold, particularly in clinical research.

Digital twins often include a machine learning component, which would fall under the umbrella term of AI, said Asghar, but it’s not like ChatGPT or other generative AI modules many people are now familiar with.

“The difference here is the model is not there to replace the clinician or to replace clinical trials,” Asghar noted. Instead, digital twins help make decisions faster in a way that can be more affordable.
 

Digital Twins to Predict Cancer Outcomes

Asghar is currently involved in UK clinical trials enrolling patients with cancer to test the accuracy of digital twin programs.

At this point, these studies do not yet use digital twins to guide the course of treatment, which is something they hope to do eventually. For now, they are still at the validation phase — the digital twin program makes predictions about the treatments and then the researchers later evaluate how accurate the predictions turned out to be based on real information from the enrolled patients.

Their current model gives predictions for RECIST (response evaluation criteria in solid tumor), treatment response, and survival. In addition to collecting data from ongoing clinical trials, they’ve used retrospective data, such as from the Cancer Tumor Atlas, to test the model.

“We’ve clinically validated it now in over 9000 patients,” said Asghar, who noted that they are constantly testing it on new patients. Their data include 30 chemotherapies and 23 cancer types, but they are focusing on four: Triple-negative breast cancer, cancer of unknown primary, pancreatic cancer, and colorectal cancer.

“The reason for choosing those four cancer types is that they are aggressive, their response to chemotherapy isn’t as great, and the outcome for those patient populations, there’s significant room for improvement,” Asghar explained.

Currently, Asghar said, the model is around 80%-90% correct in predicting what the actual clinical outcomes turn out to be.

The final stage of their work, before it becomes widely available to clinicians, will be to integrate it into a clinical trial in which some clinicians use the model to make decisions about treatment vs some who don’t use the model. By studying patient outcomes in both groups, they will be able to determine the value of the digital twin program they created.
 

 

 

What Else Can a Twin Do? A Lot

While a model that helps clinicians make decisions about cancer treatments may be among the first digital twin programs that become widely available, there are many other kinds of digital twins in the works.

For example, a digital twin could be used as a benchmark for a patient to determine how their cancer might have progressed without treatment. Say a patient’s tumor grew during treatment, it might seem like the treatment failed, but a digital twin might show that if left untreated, the tumor would have grown five times as fast, said Paul Macklin, PhD, professor in the Department of Intelligent Systems Engineering at Indiana University Bloomington.

Alternatively, if the virtual patient’s tumor is around the same size as the real patient’s tumor, “that means that treatment has lost its efficacy. It’s time to do something new,” said Macklin. And a digital twin could help with not only choosing a therapy but also choosing a dosing schedule, he noted.

The models can also be updated as new treatments come out, which could help clinicians virtually explore how they might affect a patient before having that patient switch treatments.

Digital twins could also assist in decision-making based on a patient’s priorities and real-life circumstances. “Maybe your priority is not necessarily to shrink this [tumor] at all costs ... maybe your priority is some mix of that and also quality of life,” Macklin said, referring to potential side effects. Or if someone lives 3 hours from the nearest cancer center, a digital twin could help determine whether less frequent treatments could still be effective.

And while much of the activity around digital twins in biomedical research has been focused on cancer, Asghar said the technology has the potential to be applied to other diseases as well. A digital twin for cardiovascular disease could help doctors choose the best treatment. It could also integrate new information from a smartwatch or glucose monitor to make better predictions and help doctors adjust the treatment plan.
 

Faster, More Effective Research With Twins

Because digital twin programs can quickly analyze large datasets, they can also make real-world studies more effective and efficient.

Though digital twins would not fully replace real clinical trials, they could help run through preliminary scenarios before starting a full clinical trial, which would “save everybody some money, time and pain and risk,” said Macklin.

It’s also possible to use digital twins to design better screening strategies for early cancer detection and monitoring, said Ioannis Zervantonakis, PhD, a bioengineering professor at the University of Pittsburgh.

Zervantonakis is tapping digital twin technology for research that homes in on understanding tumors. In this case, the digital twin is a virtual representation of a real tumor, complete with its complex network of cells and the surrounding tissue.

Zervantonakis’ lab is using the technology to study cell-cell interactions in the tumor microenvironment, with a focus on human epidermal growth factor receptor 2–targeted therapy resistance in breast cancer. The digital twin they developed will simulate tumor growth, predict drug response, analyze cellular interactions, and optimize treatment strategies.
 

 

 

The Long Push Forward

One big hurdle to making digital twins more widely available is that regulation for the technology is still in progress.

“We’re developing the technology, and what’s also happening is the regulatory framework is being developed in parallel. So we’re almost developing things blindly on the basis that we think this is what the regulators would want,” explained Asghar.

“It’s really important that these technologies are regulated properly, just like drugs, and that’s what we’re pushing and advocating for,” said Asghar, noting that people need to know that like drugs, a digital twin has strengths and limitations.

And while a digital twin can be a cost-saving approach in the long run, it does require funding to get a program built, and finding funds can be difficult because not everyone knows about the technology. More funding means more trials.

With more data, Asghar is hopeful that within a few years, a digital twin model could be available for clinicians to use to help inform treatment decisions. This could lead to more effective treatments and, ultimately, better patient outcomes.
 

A version of this article appeared on Medscape.com.

A patient has cancer. It’s decision time.

Clinician and patient alike face, really, the ultimate challenge when making those decisions. They have to consider the patient’s individual circumstances, available treatment options, potential side effects, relevant clinical data such as the patient’s genetic profile and cancer specifics, and more.

“That’s a lot of information to hold,” said Uzma Asghar, PhD, MRCP, a British consultant medical oncologist at The Royal Marsden Hospital and a chief scientific officer at Concr LTD.

What if there were a way to test — quickly and accurately — all the potential paths forward?

That’s the goal of digital twins. An artificial intelligence (AI)–based program uses all the known data on patients and their types of illness and creates a “twin” that can be used over and over to simulate disease progression, test treatments, and predict individual responses to therapies.

“What the [digital twin] model can do for the clinician is to hold all that information and process it really quickly, within a couple of minutes,” Asghar noted.

A digital twin is more than just a computer model or simulation because it copies a real-world person and relies on real-world data. Some digital twin programs also integrate new information as it becomes available. This technology holds promise for personalized medicine, drug discovery, developing screening strategies, and better understanding diseases.
 

How to Deliver a Twin

To create a digital twin, experts develop a computer model with data to hone its expertise in an area of medicine, such as cancer types and treatments. Then “you train the model on information it’s seen, and then introduce a patient and patient’s information,” said Asghar.

Asghar is currently working with colleagues to develop digital twins that could eventually help solve the aforementioned cancer scenario — a doctor and patient decide the best course of cancer treatment. But their applications are manifold, particularly in clinical research.

Digital twins often include a machine learning component, which would fall under the umbrella term of AI, said Asghar, but it’s not like ChatGPT or other generative AI modules many people are now familiar with.

“The difference here is the model is not there to replace the clinician or to replace clinical trials,” Asghar noted. Instead, digital twins help make decisions faster in a way that can be more affordable.
 

Digital Twins to Predict Cancer Outcomes

Asghar is currently involved in UK clinical trials enrolling patients with cancer to test the accuracy of digital twin programs.

At this point, these studies do not yet use digital twins to guide the course of treatment, which is something they hope to do eventually. For now, they are still at the validation phase — the digital twin program makes predictions about the treatments and then the researchers later evaluate how accurate the predictions turned out to be based on real information from the enrolled patients.

Their current model gives predictions for RECIST (response evaluation criteria in solid tumor), treatment response, and survival. In addition to collecting data from ongoing clinical trials, they’ve used retrospective data, such as from the Cancer Tumor Atlas, to test the model.

“We’ve clinically validated it now in over 9000 patients,” said Asghar, who noted that they are constantly testing it on new patients. Their data include 30 chemotherapies and 23 cancer types, but they are focusing on four: Triple-negative breast cancer, cancer of unknown primary, pancreatic cancer, and colorectal cancer.

“The reason for choosing those four cancer types is that they are aggressive, their response to chemotherapy isn’t as great, and the outcome for those patient populations, there’s significant room for improvement,” Asghar explained.

Currently, Asghar said, the model is around 80%-90% correct in predicting what the actual clinical outcomes turn out to be.

The final stage of their work, before it becomes widely available to clinicians, will be to integrate it into a clinical trial in which some clinicians use the model to make decisions about treatment vs some who don’t use the model. By studying patient outcomes in both groups, they will be able to determine the value of the digital twin program they created.
 

 

 

What Else Can a Twin Do? A Lot

While a model that helps clinicians make decisions about cancer treatments may be among the first digital twin programs that become widely available, there are many other kinds of digital twins in the works.

For example, a digital twin could be used as a benchmark for a patient to determine how their cancer might have progressed without treatment. Say a patient’s tumor grew during treatment, it might seem like the treatment failed, but a digital twin might show that if left untreated, the tumor would have grown five times as fast, said Paul Macklin, PhD, professor in the Department of Intelligent Systems Engineering at Indiana University Bloomington.

Alternatively, if the virtual patient’s tumor is around the same size as the real patient’s tumor, “that means that treatment has lost its efficacy. It’s time to do something new,” said Macklin. And a digital twin could help with not only choosing a therapy but also choosing a dosing schedule, he noted.

The models can also be updated as new treatments come out, which could help clinicians virtually explore how they might affect a patient before having that patient switch treatments.

Digital twins could also assist in decision-making based on a patient’s priorities and real-life circumstances. “Maybe your priority is not necessarily to shrink this [tumor] at all costs ... maybe your priority is some mix of that and also quality of life,” Macklin said, referring to potential side effects. Or if someone lives 3 hours from the nearest cancer center, a digital twin could help determine whether less frequent treatments could still be effective.

And while much of the activity around digital twins in biomedical research has been focused on cancer, Asghar said the technology has the potential to be applied to other diseases as well. A digital twin for cardiovascular disease could help doctors choose the best treatment. It could also integrate new information from a smartwatch or glucose monitor to make better predictions and help doctors adjust the treatment plan.
 

Faster, More Effective Research With Twins

Because digital twin programs can quickly analyze large datasets, they can also make real-world studies more effective and efficient.

Though digital twins would not fully replace real clinical trials, they could help run through preliminary scenarios before starting a full clinical trial, which would “save everybody some money, time and pain and risk,” said Macklin.

It’s also possible to use digital twins to design better screening strategies for early cancer detection and monitoring, said Ioannis Zervantonakis, PhD, a bioengineering professor at the University of Pittsburgh.

Zervantonakis is tapping digital twin technology for research that homes in on understanding tumors. In this case, the digital twin is a virtual representation of a real tumor, complete with its complex network of cells and the surrounding tissue.

Zervantonakis’ lab is using the technology to study cell-cell interactions in the tumor microenvironment, with a focus on human epidermal growth factor receptor 2–targeted therapy resistance in breast cancer. The digital twin they developed will simulate tumor growth, predict drug response, analyze cellular interactions, and optimize treatment strategies.
 

 

 

The Long Push Forward

One big hurdle to making digital twins more widely available is that regulation for the technology is still in progress.

“We’re developing the technology, and what’s also happening is the regulatory framework is being developed in parallel. So we’re almost developing things blindly on the basis that we think this is what the regulators would want,” explained Asghar.

“It’s really important that these technologies are regulated properly, just like drugs, and that’s what we’re pushing and advocating for,” said Asghar, noting that people need to know that like drugs, a digital twin has strengths and limitations.

And while a digital twin can be a cost-saving approach in the long run, it does require funding to get a program built, and finding funds can be difficult because not everyone knows about the technology. More funding means more trials.

With more data, Asghar is hopeful that within a few years, a digital twin model could be available for clinicians to use to help inform treatment decisions. This could lead to more effective treatments and, ultimately, better patient outcomes.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Wed, 11/27/2024 - 04:46
Un-Gate On Date
Wed, 11/27/2024 - 04:46
Use ProPublica
CFC Schedule Remove Status
Wed, 11/27/2024 - 04:46
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Wed, 11/27/2024 - 04:46

Smokeless Tobacco, Areca Nut Chewing Behind 1 in 3 Oral Cancers: IARC Report

Article Type
Changed
Wed, 11/27/2024 - 04:46

Globally, nearly one in three cases of oral cancer can be attributed to use of smokeless tobacco and areca nut products, according to a new study from the International Agency for Research on Cancer (IARC), a part of the World Health Organization (WHO).

“Smokeless tobacco and areca nut products are available to consumers in many different forms across the world, but consuming smokeless tobacco and areca nut is linked to multiple diseases, including oral cancer,” Harriet Rumgay, PhD, a scientist in the Cancer Surveillance Branch at IARC and first author of the study in Lancet Oncology, said in a news release.

Worldwide, about 300 million people use smokeless tobacco and 600 million people use areca (also called betel) nut, one of the most popular psychoactive substances in the world after nicotine, alcohol, and caffeine. Smokeless tobacco products are consumed without burning and can be chewed, sucked, inhaled, applied locally, or ingested. Areca nut is the seed of the areca palm and can be consumed in various forms.

“Our estimates highlight the burden these products pose on health care and the importance of prevention strategies to reduce consumption of smokeless tobacco and areca nut,” Rumgay said.

According to the new report, in 2022, an estimated 120,200 of the 389,800 (30.8%) global cases of oral cancer were attributable to these products.

More than three quarters (77%) of attributable cases were among men and about one quarter (23%) among women.

The vast majority (96%) of all oral cancer cases caused by smokeless tobacco and areca nut use occurred in low- and middle-income countries.

Regions with the highest burden of oral cancers from these products were Southcentral Asia — with 105,500 of 120,200 cases (nearly 88%), including 83,400 in India, 9700 in Bangladesh, 8900 in Pakistan, and 1300 in Sri Lanka — followed by Southeastern Asia with a total of 3900 cases (1600 in Myanmar, 990 in Indonesia, and 785 in Thailand) and East Asia with 3300 cases (3200 in China).
 

Limitations and Action Points

The authors noted a limitation of the analysis is not accounting for the potential synergistic effects of combined use of smokeless tobacco or areca nut products with other risk factors for oral cancer, such as smoking tobacco or drinking alcohol.

The researchers explained that combined consumption of smokeless tobacco or areca nut, smoked tobacco, and alcohol has a “multiplicative effect” on oral cancer risk, with reported odds ratios increasing from 2.7 for smokeless tobacco only, 7.0 for smoked tobacco only, and 1.6 for alcohol only to 16.2 for all three exposures (vs no use).

However, the proportion of people who chewed tobacco and also smoked in countries with high smokeless tobacco or areca nut use was small. In India, for example, 6% of men and 0.5% of women in 2016-2017 were dual users of both smoked and smokeless tobacco, compared with 23% of men and 12% of women who only used smokeless tobacco.

Overall, curbing or preventing smokeless tobacco and areca nut use could help avoid many instances of oral cancer.

Despite “encouraging trends” in control of tobacco smoking in many regions of the world over the past two decades, progress in reducing the prevalence of smokeless tobacco consumption has stalled in many countries that are major consumers, the authors said.

Compounding the problem, areca nut does not fall within the WHO framework of tobacco control and there are very few areca nut control policies worldwide.

Smokeless tobacco control must be “prioritized” and a framework on areca nut control should be developed with guidelines to incorporate areca nut prevention into cancer control programs, the authors concluded.

Funding for the study was provided by the French National Cancer Institute. The authors had no relevant disclosures.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Globally, nearly one in three cases of oral cancer can be attributed to use of smokeless tobacco and areca nut products, according to a new study from the International Agency for Research on Cancer (IARC), a part of the World Health Organization (WHO).

“Smokeless tobacco and areca nut products are available to consumers in many different forms across the world, but consuming smokeless tobacco and areca nut is linked to multiple diseases, including oral cancer,” Harriet Rumgay, PhD, a scientist in the Cancer Surveillance Branch at IARC and first author of the study in Lancet Oncology, said in a news release.

Worldwide, about 300 million people use smokeless tobacco and 600 million people use areca (also called betel) nut, one of the most popular psychoactive substances in the world after nicotine, alcohol, and caffeine. Smokeless tobacco products are consumed without burning and can be chewed, sucked, inhaled, applied locally, or ingested. Areca nut is the seed of the areca palm and can be consumed in various forms.

“Our estimates highlight the burden these products pose on health care and the importance of prevention strategies to reduce consumption of smokeless tobacco and areca nut,” Rumgay said.

According to the new report, in 2022, an estimated 120,200 of the 389,800 (30.8%) global cases of oral cancer were attributable to these products.

More than three quarters (77%) of attributable cases were among men and about one quarter (23%) among women.

The vast majority (96%) of all oral cancer cases caused by smokeless tobacco and areca nut use occurred in low- and middle-income countries.

Regions with the highest burden of oral cancers from these products were Southcentral Asia — with 105,500 of 120,200 cases (nearly 88%), including 83,400 in India, 9700 in Bangladesh, 8900 in Pakistan, and 1300 in Sri Lanka — followed by Southeastern Asia with a total of 3900 cases (1600 in Myanmar, 990 in Indonesia, and 785 in Thailand) and East Asia with 3300 cases (3200 in China).
 

Limitations and Action Points

The authors noted a limitation of the analysis is not accounting for the potential synergistic effects of combined use of smokeless tobacco or areca nut products with other risk factors for oral cancer, such as smoking tobacco or drinking alcohol.

The researchers explained that combined consumption of smokeless tobacco or areca nut, smoked tobacco, and alcohol has a “multiplicative effect” on oral cancer risk, with reported odds ratios increasing from 2.7 for smokeless tobacco only, 7.0 for smoked tobacco only, and 1.6 for alcohol only to 16.2 for all three exposures (vs no use).

However, the proportion of people who chewed tobacco and also smoked in countries with high smokeless tobacco or areca nut use was small. In India, for example, 6% of men and 0.5% of women in 2016-2017 were dual users of both smoked and smokeless tobacco, compared with 23% of men and 12% of women who only used smokeless tobacco.

Overall, curbing or preventing smokeless tobacco and areca nut use could help avoid many instances of oral cancer.

Despite “encouraging trends” in control of tobacco smoking in many regions of the world over the past two decades, progress in reducing the prevalence of smokeless tobacco consumption has stalled in many countries that are major consumers, the authors said.

Compounding the problem, areca nut does not fall within the WHO framework of tobacco control and there are very few areca nut control policies worldwide.

Smokeless tobacco control must be “prioritized” and a framework on areca nut control should be developed with guidelines to incorporate areca nut prevention into cancer control programs, the authors concluded.

Funding for the study was provided by the French National Cancer Institute. The authors had no relevant disclosures.

A version of this article first appeared on Medscape.com.

Globally, nearly one in three cases of oral cancer can be attributed to use of smokeless tobacco and areca nut products, according to a new study from the International Agency for Research on Cancer (IARC), a part of the World Health Organization (WHO).

“Smokeless tobacco and areca nut products are available to consumers in many different forms across the world, but consuming smokeless tobacco and areca nut is linked to multiple diseases, including oral cancer,” Harriet Rumgay, PhD, a scientist in the Cancer Surveillance Branch at IARC and first author of the study in Lancet Oncology, said in a news release.

Worldwide, about 300 million people use smokeless tobacco and 600 million people use areca (also called betel) nut, one of the most popular psychoactive substances in the world after nicotine, alcohol, and caffeine. Smokeless tobacco products are consumed without burning and can be chewed, sucked, inhaled, applied locally, or ingested. Areca nut is the seed of the areca palm and can be consumed in various forms.

“Our estimates highlight the burden these products pose on health care and the importance of prevention strategies to reduce consumption of smokeless tobacco and areca nut,” Rumgay said.

According to the new report, in 2022, an estimated 120,200 of the 389,800 (30.8%) global cases of oral cancer were attributable to these products.

More than three quarters (77%) of attributable cases were among men and about one quarter (23%) among women.

The vast majority (96%) of all oral cancer cases caused by smokeless tobacco and areca nut use occurred in low- and middle-income countries.

Regions with the highest burden of oral cancers from these products were Southcentral Asia — with 105,500 of 120,200 cases (nearly 88%), including 83,400 in India, 9700 in Bangladesh, 8900 in Pakistan, and 1300 in Sri Lanka — followed by Southeastern Asia with a total of 3900 cases (1600 in Myanmar, 990 in Indonesia, and 785 in Thailand) and East Asia with 3300 cases (3200 in China).
 

Limitations and Action Points

The authors noted a limitation of the analysis is not accounting for the potential synergistic effects of combined use of smokeless tobacco or areca nut products with other risk factors for oral cancer, such as smoking tobacco or drinking alcohol.

The researchers explained that combined consumption of smokeless tobacco or areca nut, smoked tobacco, and alcohol has a “multiplicative effect” on oral cancer risk, with reported odds ratios increasing from 2.7 for smokeless tobacco only, 7.0 for smoked tobacco only, and 1.6 for alcohol only to 16.2 for all three exposures (vs no use).

However, the proportion of people who chewed tobacco and also smoked in countries with high smokeless tobacco or areca nut use was small. In India, for example, 6% of men and 0.5% of women in 2016-2017 were dual users of both smoked and smokeless tobacco, compared with 23% of men and 12% of women who only used smokeless tobacco.

Overall, curbing or preventing smokeless tobacco and areca nut use could help avoid many instances of oral cancer.

Despite “encouraging trends” in control of tobacco smoking in many regions of the world over the past two decades, progress in reducing the prevalence of smokeless tobacco consumption has stalled in many countries that are major consumers, the authors said.

Compounding the problem, areca nut does not fall within the WHO framework of tobacco control and there are very few areca nut control policies worldwide.

Smokeless tobacco control must be “prioritized” and a framework on areca nut control should be developed with guidelines to incorporate areca nut prevention into cancer control programs, the authors concluded.

Funding for the study was provided by the French National Cancer Institute. The authors had no relevant disclosures.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM THE LANCET ONCOLOGY

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Wed, 11/27/2024 - 04:46
Un-Gate On Date
Wed, 11/27/2024 - 04:46
Use ProPublica
CFC Schedule Remove Status
Wed, 11/27/2024 - 04:46
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Wed, 11/27/2024 - 04:46

Does Radiation Timing Affect QOL After Prostate Surgery?

Article Type
Changed
Wed, 11/27/2024 - 04:42

 

TOPLINE:

Receiving radiotherapy after prostatectomy does negatively affect long-term health-related quality of life, including sexual function, urinary incontinence, and urinary irritation, but the timing of radiation after prostatectomy — within a year or over a year from surgery — does not appear to significantly affect patients’ quality of life over the long term, a recent analysis finds.

METHODOLOGY:

  • Delaying radiotherapy after prostatectomy can help avoid overtreatment and mitigate genitourinary and erectile toxic effects. However, few studies have compared long-term patient-reported health-related quality-of-life outcomes on the basis of the timing of postprostatectomy radiotherapy.
  • Researchers evaluated 1203 men (median age, 60.5 years; 92% were White and 6.8% were Black) with localized prostate cancer who underwent radical prostatectomy from the PROST-QA (2003-2006) and RP2 Consortium (2010-2013). Among these patients, 1082 underwent surgery only, 57 received early radiotherapy (within 12 months of surgery), and 64 underwent late radiotherapy (12 months or more after surgery).
  • Patients who received early radiotherapy were more likely to receive androgen deprivation therapy than those who underwent late radiotherapy (40.4% vs 12.5%; P < .001).
  • Primary outcome was health-related quality of life measured using the Expanded Prostate Cancer Index Composite at baseline, 2, 6, and 12 months, and annually after that. Health-related quality-of-life measures included sexual function, urinary incontinence, urinary irritation and/or obstruction, and bowel or rectal function.
  • The median follow-up duration was 85.6 months.

TAKEAWAY:

  • Postprostatectomy radiotherapy was associated with a significantly greater decline in health-related quality of life across all domains, including sexual function and urinary incontinence.
  • Patients who received early radiation initially experienced worse urinary incontinence and sexual health, compared with patients in the late group, but the early group also had higher-risk disease and were more likely to receive concurrent androgen deprivation therapy.
  • In the long term, the early radiotherapy group experienced more pronounced recovery of sexual function, urinary irritation, and urinary incontinence than the late radiotherapy group.
  • Ultimately, patients in the early radiotherapy group had similar, potentially better, long-term health-related quality-of-life domain scores than those in the late group over the long term. For instance, the likelihood of being pad free increased for patients treated early with radiation, while it decreased for those treated late. In patients who received early radiation, the rate of freedom from pad use increased from 39% before radiation to 67% at the sixth follow-up visit after radiation, while it decreased from 73% to 48% in those who received late radiation.

IN PRACTICE:

“Long-term patient-reported sexual, incontinence, and urinary irritative outcomes did not significantly differ between early vs late postprostatectomy [radiotherapy],” the authors said. In fact, “men receiving early [radiation] experienced greater recovery of these toxicity domains and achieved similar, and possibly better, domain scores as those receiving late [radiation] at long-term follow-up.” Overall, “these results may help guide treatment counseling and support consideration of early [radiotherapy] after prostatectomy for men at particularly high risk of recurrence and metastasis.”

 

 

SOURCE:

The study, led by Sagar A. Patel, MD, MSc, Emory University in Atlanta, was published online in JAMA Network Open.

LIMITATIONS:

The early and late postprostatectomy radiotherapy groups were relatively small and underpowered to detect statistically significant differences between groups. The study has a nonrandomized design, which may introduce unaccounted for imbalances among the different groups. The study did not directly compare health-related quality of life between patients receiving adjuvant vs salvage radiotherapy.

DISCLOSURES:

This study received funding from National Institutes of Health grants and the Paul Calabresi Career Development Award for Clinical Oncology. Several authors reported receiving personal fees, grants, and having other ties with various sources. Additional disclosures are noted in the original article.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Receiving radiotherapy after prostatectomy does negatively affect long-term health-related quality of life, including sexual function, urinary incontinence, and urinary irritation, but the timing of radiation after prostatectomy — within a year or over a year from surgery — does not appear to significantly affect patients’ quality of life over the long term, a recent analysis finds.

METHODOLOGY:

  • Delaying radiotherapy after prostatectomy can help avoid overtreatment and mitigate genitourinary and erectile toxic effects. However, few studies have compared long-term patient-reported health-related quality-of-life outcomes on the basis of the timing of postprostatectomy radiotherapy.
  • Researchers evaluated 1203 men (median age, 60.5 years; 92% were White and 6.8% were Black) with localized prostate cancer who underwent radical prostatectomy from the PROST-QA (2003-2006) and RP2 Consortium (2010-2013). Among these patients, 1082 underwent surgery only, 57 received early radiotherapy (within 12 months of surgery), and 64 underwent late radiotherapy (12 months or more after surgery).
  • Patients who received early radiotherapy were more likely to receive androgen deprivation therapy than those who underwent late radiotherapy (40.4% vs 12.5%; P < .001).
  • Primary outcome was health-related quality of life measured using the Expanded Prostate Cancer Index Composite at baseline, 2, 6, and 12 months, and annually after that. Health-related quality-of-life measures included sexual function, urinary incontinence, urinary irritation and/or obstruction, and bowel or rectal function.
  • The median follow-up duration was 85.6 months.

TAKEAWAY:

  • Postprostatectomy radiotherapy was associated with a significantly greater decline in health-related quality of life across all domains, including sexual function and urinary incontinence.
  • Patients who received early radiation initially experienced worse urinary incontinence and sexual health, compared with patients in the late group, but the early group also had higher-risk disease and were more likely to receive concurrent androgen deprivation therapy.
  • In the long term, the early radiotherapy group experienced more pronounced recovery of sexual function, urinary irritation, and urinary incontinence than the late radiotherapy group.
  • Ultimately, patients in the early radiotherapy group had similar, potentially better, long-term health-related quality-of-life domain scores than those in the late group over the long term. For instance, the likelihood of being pad free increased for patients treated early with radiation, while it decreased for those treated late. In patients who received early radiation, the rate of freedom from pad use increased from 39% before radiation to 67% at the sixth follow-up visit after radiation, while it decreased from 73% to 48% in those who received late radiation.

IN PRACTICE:

“Long-term patient-reported sexual, incontinence, and urinary irritative outcomes did not significantly differ between early vs late postprostatectomy [radiotherapy],” the authors said. In fact, “men receiving early [radiation] experienced greater recovery of these toxicity domains and achieved similar, and possibly better, domain scores as those receiving late [radiation] at long-term follow-up.” Overall, “these results may help guide treatment counseling and support consideration of early [radiotherapy] after prostatectomy for men at particularly high risk of recurrence and metastasis.”

 

 

SOURCE:

The study, led by Sagar A. Patel, MD, MSc, Emory University in Atlanta, was published online in JAMA Network Open.

LIMITATIONS:

The early and late postprostatectomy radiotherapy groups were relatively small and underpowered to detect statistically significant differences between groups. The study has a nonrandomized design, which may introduce unaccounted for imbalances among the different groups. The study did not directly compare health-related quality of life between patients receiving adjuvant vs salvage radiotherapy.

DISCLOSURES:

This study received funding from National Institutes of Health grants and the Paul Calabresi Career Development Award for Clinical Oncology. Several authors reported receiving personal fees, grants, and having other ties with various sources. Additional disclosures are noted in the original article.

A version of this article appeared on Medscape.com.

 

TOPLINE:

Receiving radiotherapy after prostatectomy does negatively affect long-term health-related quality of life, including sexual function, urinary incontinence, and urinary irritation, but the timing of radiation after prostatectomy — within a year or over a year from surgery — does not appear to significantly affect patients’ quality of life over the long term, a recent analysis finds.

METHODOLOGY:

  • Delaying radiotherapy after prostatectomy can help avoid overtreatment and mitigate genitourinary and erectile toxic effects. However, few studies have compared long-term patient-reported health-related quality-of-life outcomes on the basis of the timing of postprostatectomy radiotherapy.
  • Researchers evaluated 1203 men (median age, 60.5 years; 92% were White and 6.8% were Black) with localized prostate cancer who underwent radical prostatectomy from the PROST-QA (2003-2006) and RP2 Consortium (2010-2013). Among these patients, 1082 underwent surgery only, 57 received early radiotherapy (within 12 months of surgery), and 64 underwent late radiotherapy (12 months or more after surgery).
  • Patients who received early radiotherapy were more likely to receive androgen deprivation therapy than those who underwent late radiotherapy (40.4% vs 12.5%; P < .001).
  • Primary outcome was health-related quality of life measured using the Expanded Prostate Cancer Index Composite at baseline, 2, 6, and 12 months, and annually after that. Health-related quality-of-life measures included sexual function, urinary incontinence, urinary irritation and/or obstruction, and bowel or rectal function.
  • The median follow-up duration was 85.6 months.

TAKEAWAY:

  • Postprostatectomy radiotherapy was associated with a significantly greater decline in health-related quality of life across all domains, including sexual function and urinary incontinence.
  • Patients who received early radiation initially experienced worse urinary incontinence and sexual health, compared with patients in the late group, but the early group also had higher-risk disease and were more likely to receive concurrent androgen deprivation therapy.
  • In the long term, the early radiotherapy group experienced more pronounced recovery of sexual function, urinary irritation, and urinary incontinence than the late radiotherapy group.
  • Ultimately, patients in the early radiotherapy group had similar, potentially better, long-term health-related quality-of-life domain scores than those in the late group over the long term. For instance, the likelihood of being pad free increased for patients treated early with radiation, while it decreased for those treated late. In patients who received early radiation, the rate of freedom from pad use increased from 39% before radiation to 67% at the sixth follow-up visit after radiation, while it decreased from 73% to 48% in those who received late radiation.

IN PRACTICE:

“Long-term patient-reported sexual, incontinence, and urinary irritative outcomes did not significantly differ between early vs late postprostatectomy [radiotherapy],” the authors said. In fact, “men receiving early [radiation] experienced greater recovery of these toxicity domains and achieved similar, and possibly better, domain scores as those receiving late [radiation] at long-term follow-up.” Overall, “these results may help guide treatment counseling and support consideration of early [radiotherapy] after prostatectomy for men at particularly high risk of recurrence and metastasis.”

 

 

SOURCE:

The study, led by Sagar A. Patel, MD, MSc, Emory University in Atlanta, was published online in JAMA Network Open.

LIMITATIONS:

The early and late postprostatectomy radiotherapy groups were relatively small and underpowered to detect statistically significant differences between groups. The study has a nonrandomized design, which may introduce unaccounted for imbalances among the different groups. The study did not directly compare health-related quality of life between patients receiving adjuvant vs salvage radiotherapy.

DISCLOSURES:

This study received funding from National Institutes of Health grants and the Paul Calabresi Career Development Award for Clinical Oncology. Several authors reported receiving personal fees, grants, and having other ties with various sources. Additional disclosures are noted in the original article.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Wed, 11/27/2024 - 04:42
Un-Gate On Date
Wed, 11/27/2024 - 04:42
Use ProPublica
CFC Schedule Remove Status
Wed, 11/27/2024 - 04:42
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Wed, 11/27/2024 - 04:42

What Matters Most for Young Patients With CRC: Survey Highlights Top Concerns

Article Type
Changed
Wed, 11/27/2024 - 04:49

Mental health, family planning, and career aspirations are among the unique challenges faced by younger adults diagnosed with colorectal cancer (CRC) — issues that may not be adequately addressed by cancer care providers, a new survey showed.

“We tend to think of cancer as a disease of older populations, but it’s impacting younger people who are in important developmental stages of their lives,” said Samantha Savitch, MD, in a podcast from the American College of Surgeons (ACS) Clinical Congress 2024, where she presented her research.

In fact, since 1994, cases of young-onset CRC have increased by more than 50%, according to the National Cancer Institute.

“Our goal with the study was to better understand what young adults with colorectal cancer really care about, so that we can ensure that we’re properly addressing their needs as part of like comprehensive cancer care,” Savitch, with the University of Michigan, Ann Arbor, Michigan, explained.

The researchers interviewed a sample of 35 patients who were diagnosed with CRC before the age of 50 years. The researchers asked patients open-ended questions about the influence their CRC diagnosis had on their lives, the daily challenges they experienced, as well as concerns about the future.

Patients expressed the greatest concern about four areas of health and well-being: Physical health, mental health, family planning, and career.

For physical health, patients worried about incontinence, loss of vitality, and expenses related to healthcare. On the mental health front, patients expressed concern about the uncertainty surrounding long-term survival and anxiety about the timing of their diagnosis. Family planning was a key issue as well, with patients highlighting uncertainties about fertility after chemotherapy. On the career front, patients also noted concerns surrounding job security, challenges pursuing advanced degrees, and a reliance on benefits from employment.

These concerns were not gender-specific. Career, physical health, financial security, mental health, fertility, and family planning were equally important to men and women.

Savitch provided a sample of quotes from interviewees that illustrated their specific concerns in each category.

A 47-year-old man reflected on his physical health now that his rectum is gone. “I no longer have that feeling of sensation like in my cheeks; basically, the cheeks and the anus area is all dead,” he said. A 48-year-old woman discussed the havoc chemotherapy wrecked on her teeth. “I don’t want to get emotional, I just went to the dentist yesterday, and I just get so frustrated ... All these things to pay. I should be happy to be alive,” she said. But “I have so much money in my mouth.”

On the mental health front, a 34-year-old woman described the fear she felt about a cancer recurrence following the birth of her daughter. After a CT scan, she had to experience 2 weeks of limbo, thinking, “I have cancer again.” She had begun a journal dedicated to her daughter in case she had a recurrence and died. “I always think that I am going to die. I think about death every day.”

Reflecting on her future fertility, a 22-year-old woman recalled the uncertainty surrounding whether chemotherapy would affect her ability to have children. “I would get really nervous,” she said, “so I was like, ‘I will do the injections. I just want to save a few of my eggs just in case.’ ” A 33-year-old man opted not to freeze his sperm because “I didn’t know if I was going to live or die, I didn’t know anything ... I barely had any money. So, like, do I risk putting this money up to freeze something when I don’t even know if I am going to be here or not?”

On the career front, a 48-year-old man highlighted how his cancer completely changed his family’s life.”I went from being a provider for my family, making enough money to take care of my family, where my wife was staying home, to now not being able to work and her having to pick up little side jobs and stuff just to try to help make ends meet.”

“These aspects of cancer care are rarely discussed, so it is important to acknowledge that patients care about fertility and family planning, their career aspirations, building assets — all things they must put on hold because of their cancer diagnosis,” Savitch said in a news release.

“This goes beyond just colorectal cancer,” Savitch added. “There are a lot of patients experiencing similar challenges, so we need more research to better understand these issues in patients with colorectal cancer as well as other cancers and, ultimately, to restructure our comprehensive cancer programs to make sure we are treating the patient and not just the disease.”

Support for the study was provided by the Rogel Cancer Center at the University of Michigan. Savitch had no relevant disclosures.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Mental health, family planning, and career aspirations are among the unique challenges faced by younger adults diagnosed with colorectal cancer (CRC) — issues that may not be adequately addressed by cancer care providers, a new survey showed.

“We tend to think of cancer as a disease of older populations, but it’s impacting younger people who are in important developmental stages of their lives,” said Samantha Savitch, MD, in a podcast from the American College of Surgeons (ACS) Clinical Congress 2024, where she presented her research.

In fact, since 1994, cases of young-onset CRC have increased by more than 50%, according to the National Cancer Institute.

“Our goal with the study was to better understand what young adults with colorectal cancer really care about, so that we can ensure that we’re properly addressing their needs as part of like comprehensive cancer care,” Savitch, with the University of Michigan, Ann Arbor, Michigan, explained.

The researchers interviewed a sample of 35 patients who were diagnosed with CRC before the age of 50 years. The researchers asked patients open-ended questions about the influence their CRC diagnosis had on their lives, the daily challenges they experienced, as well as concerns about the future.

Patients expressed the greatest concern about four areas of health and well-being: Physical health, mental health, family planning, and career.

For physical health, patients worried about incontinence, loss of vitality, and expenses related to healthcare. On the mental health front, patients expressed concern about the uncertainty surrounding long-term survival and anxiety about the timing of their diagnosis. Family planning was a key issue as well, with patients highlighting uncertainties about fertility after chemotherapy. On the career front, patients also noted concerns surrounding job security, challenges pursuing advanced degrees, and a reliance on benefits from employment.

These concerns were not gender-specific. Career, physical health, financial security, mental health, fertility, and family planning were equally important to men and women.

Savitch provided a sample of quotes from interviewees that illustrated their specific concerns in each category.

A 47-year-old man reflected on his physical health now that his rectum is gone. “I no longer have that feeling of sensation like in my cheeks; basically, the cheeks and the anus area is all dead,” he said. A 48-year-old woman discussed the havoc chemotherapy wrecked on her teeth. “I don’t want to get emotional, I just went to the dentist yesterday, and I just get so frustrated ... All these things to pay. I should be happy to be alive,” she said. But “I have so much money in my mouth.”

On the mental health front, a 34-year-old woman described the fear she felt about a cancer recurrence following the birth of her daughter. After a CT scan, she had to experience 2 weeks of limbo, thinking, “I have cancer again.” She had begun a journal dedicated to her daughter in case she had a recurrence and died. “I always think that I am going to die. I think about death every day.”

Reflecting on her future fertility, a 22-year-old woman recalled the uncertainty surrounding whether chemotherapy would affect her ability to have children. “I would get really nervous,” she said, “so I was like, ‘I will do the injections. I just want to save a few of my eggs just in case.’ ” A 33-year-old man opted not to freeze his sperm because “I didn’t know if I was going to live or die, I didn’t know anything ... I barely had any money. So, like, do I risk putting this money up to freeze something when I don’t even know if I am going to be here or not?”

On the career front, a 48-year-old man highlighted how his cancer completely changed his family’s life.”I went from being a provider for my family, making enough money to take care of my family, where my wife was staying home, to now not being able to work and her having to pick up little side jobs and stuff just to try to help make ends meet.”

“These aspects of cancer care are rarely discussed, so it is important to acknowledge that patients care about fertility and family planning, their career aspirations, building assets — all things they must put on hold because of their cancer diagnosis,” Savitch said in a news release.

“This goes beyond just colorectal cancer,” Savitch added. “There are a lot of patients experiencing similar challenges, so we need more research to better understand these issues in patients with colorectal cancer as well as other cancers and, ultimately, to restructure our comprehensive cancer programs to make sure we are treating the patient and not just the disease.”

Support for the study was provided by the Rogel Cancer Center at the University of Michigan. Savitch had no relevant disclosures.

A version of this article first appeared on Medscape.com.

Mental health, family planning, and career aspirations are among the unique challenges faced by younger adults diagnosed with colorectal cancer (CRC) — issues that may not be adequately addressed by cancer care providers, a new survey showed.

“We tend to think of cancer as a disease of older populations, but it’s impacting younger people who are in important developmental stages of their lives,” said Samantha Savitch, MD, in a podcast from the American College of Surgeons (ACS) Clinical Congress 2024, where she presented her research.

In fact, since 1994, cases of young-onset CRC have increased by more than 50%, according to the National Cancer Institute.

“Our goal with the study was to better understand what young adults with colorectal cancer really care about, so that we can ensure that we’re properly addressing their needs as part of like comprehensive cancer care,” Savitch, with the University of Michigan, Ann Arbor, Michigan, explained.

The researchers interviewed a sample of 35 patients who were diagnosed with CRC before the age of 50 years. The researchers asked patients open-ended questions about the influence their CRC diagnosis had on their lives, the daily challenges they experienced, as well as concerns about the future.

Patients expressed the greatest concern about four areas of health and well-being: Physical health, mental health, family planning, and career.

For physical health, patients worried about incontinence, loss of vitality, and expenses related to healthcare. On the mental health front, patients expressed concern about the uncertainty surrounding long-term survival and anxiety about the timing of their diagnosis. Family planning was a key issue as well, with patients highlighting uncertainties about fertility after chemotherapy. On the career front, patients also noted concerns surrounding job security, challenges pursuing advanced degrees, and a reliance on benefits from employment.

These concerns were not gender-specific. Career, physical health, financial security, mental health, fertility, and family planning were equally important to men and women.

Savitch provided a sample of quotes from interviewees that illustrated their specific concerns in each category.

A 47-year-old man reflected on his physical health now that his rectum is gone. “I no longer have that feeling of sensation like in my cheeks; basically, the cheeks and the anus area is all dead,” he said. A 48-year-old woman discussed the havoc chemotherapy wrecked on her teeth. “I don’t want to get emotional, I just went to the dentist yesterday, and I just get so frustrated ... All these things to pay. I should be happy to be alive,” she said. But “I have so much money in my mouth.”

On the mental health front, a 34-year-old woman described the fear she felt about a cancer recurrence following the birth of her daughter. After a CT scan, she had to experience 2 weeks of limbo, thinking, “I have cancer again.” She had begun a journal dedicated to her daughter in case she had a recurrence and died. “I always think that I am going to die. I think about death every day.”

Reflecting on her future fertility, a 22-year-old woman recalled the uncertainty surrounding whether chemotherapy would affect her ability to have children. “I would get really nervous,” she said, “so I was like, ‘I will do the injections. I just want to save a few of my eggs just in case.’ ” A 33-year-old man opted not to freeze his sperm because “I didn’t know if I was going to live or die, I didn’t know anything ... I barely had any money. So, like, do I risk putting this money up to freeze something when I don’t even know if I am going to be here or not?”

On the career front, a 48-year-old man highlighted how his cancer completely changed his family’s life.”I went from being a provider for my family, making enough money to take care of my family, where my wife was staying home, to now not being able to work and her having to pick up little side jobs and stuff just to try to help make ends meet.”

“These aspects of cancer care are rarely discussed, so it is important to acknowledge that patients care about fertility and family planning, their career aspirations, building assets — all things they must put on hold because of their cancer diagnosis,” Savitch said in a news release.

“This goes beyond just colorectal cancer,” Savitch added. “There are a lot of patients experiencing similar challenges, so we need more research to better understand these issues in patients with colorectal cancer as well as other cancers and, ultimately, to restructure our comprehensive cancer programs to make sure we are treating the patient and not just the disease.”

Support for the study was provided by the Rogel Cancer Center at the University of Michigan. Savitch had no relevant disclosures.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM ACS 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Fri, 11/15/2024 - 09:29
Un-Gate On Date
Fri, 11/15/2024 - 09:29
Use ProPublica
CFC Schedule Remove Status
Fri, 11/15/2024 - 09:29
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Fri, 11/15/2024 - 09:29

Many Patients With Cancer Visit EDs Before Diagnosis

Article Type
Changed
Wed, 11/27/2024 - 03:11

More than one third of patients with cancer visited an emergency department (ED) in the 90 days before their diagnosis, according to a study of medical records from Ontario, Canada.

Researchers examined Institute for Clinical Evaluative Sciences (ICES) data that had been gathered from January 1, 2014, to December 31, 2021. The study focused on patients aged 18 years or older with confirmed primary cancer diagnoses.

Factors associated with an increased likelihood of an ED visit ahead of diagnosis included having certain cancers, living in rural areas, and having less access to primary care, according to study author Keerat Grewal, MD, an emergency physician and clinician scientist at the Schwartz/Reisman Emergency Medicine Institute at Sinai Health in Toronto, Ontario, Canada, and coauthors.

“The ED is a distressing environment for patients to receive a possible cancer diagnosis,” the authors wrote. “Moreover, it is frequently ill equipped to provide ongoing continuity of care, which can lead patients down a poorly defined diagnostic pathway before receiving a confirmed diagnosis based on tissue and a subsequent treatment plan.”

The findings were published online on November 4 in CMAJ).
 

Neurologic Cancers Prominent

In an interview, Grewal said in an interview that the study reflects her desire as an emergency room physician to understand why so many patients with cancer get the initial reports about their disease from clinicians whom they often have just met for the first time.

Among patients with an ED visit before cancer diagnosis, 51.4% were admitted to hospital from the most recent visit.

Compared with patients with a family physician on whom they could rely for routine care, those who had no outpatient visits (odds ratio [OR], 2.09) or fewer than three outpatient visits (OR, 1.41) in the 6-30 months before cancer diagnosis were more likely to have an ED visit before their cancer diagnosis.

Other factors associated with increased odds of ED use before cancer diagnosis included rurality (OR, 1.15), residence in northern Ontario (northeast region: OR, 1.14 and northwest region: OR, 1.27 vs Toronto region), and living in the most marginalized areas (material resource deprivation: OR, 1.37 and housing stability: OR, 1.09 vs least marginalized area).

The researchers also found that patients with certain cancers were more likely to have sought care in the ED. They compared these cancers with breast cancer, which is often detected through screening.

“Patients with neurologic cancers had extremely high odds of ED use before cancer diagnosis,” the authors wrote. “This is likely because of the emergent nature of presentation, with acute neurologic symptoms such as weakness, confusion, or seizures, which require urgent assessment.” On the other hand, pancreatic, liver, or thoracic cancer can trigger nonspecific symptoms that may be ignored until they reach a crisis level that prompts an ED visit.

The limitations of the study included its inability to identify cancer-related ED visits and its narrow focus on patients in Ontario, according to the researchers. But the use of the ICES databases also allowed researchers access to a broader pool of data than are available in many other cases.

The findings in the new paper echo those of previous research, the authors noted. Research in the United Kingdom found that 24%-31% of cancer diagnoses involved the ED. In addition, a study of people enrolled in the US Medicare program, which serves patients aged 65 years or older, found that 23% were seen in the ED in the 30 days before diagnosis.
 

 

 

‘Unpacking the Data’

The current findings also are consistent with those of an International Cancer Benchmarking Partnership study that was published in 2022 in The Lancet Oncology, said Erika Nicholson, MHS, vice president of cancer systems and innovation at the Canadian Partnership Against Cancer. The latter study analyzed cancer registration and linked hospital admissions data from 14 jurisdictions in Australia, Canada, Denmark, New Zealand, Norway, and the United Kingdom.

“We see similar trends in terms of people visiting EDs and being diagnosed through EDs internationally,” Nicholson said. “We’re working with partners to put in place different strategies to address the challenges” that this phenomenon presents in terms of improving screening and follow-up care.

“Cancer is not one disease, but many diseases,” she said. “They present differently. We’re focused on really unpacking the data and understanding them.”

All this research highlights the need for more services and personnel to address cancer, including people who are trained to help patients cope after getting concerning news through emergency care, she said.

“That means having a system that fully supports you and helps you navigate through that diagnostic process,” Nicholson said. Addressing the added challenges for patients who don’t have secure housing is a special need, she added.

This study was supported by the Canadian Institutes of Health Research (CIHR). Grewal reported receiving grants from CIHR and the Canadian Association of Emergency Physicians. Nicholson reported no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

More than one third of patients with cancer visited an emergency department (ED) in the 90 days before their diagnosis, according to a study of medical records from Ontario, Canada.

Researchers examined Institute for Clinical Evaluative Sciences (ICES) data that had been gathered from January 1, 2014, to December 31, 2021. The study focused on patients aged 18 years or older with confirmed primary cancer diagnoses.

Factors associated with an increased likelihood of an ED visit ahead of diagnosis included having certain cancers, living in rural areas, and having less access to primary care, according to study author Keerat Grewal, MD, an emergency physician and clinician scientist at the Schwartz/Reisman Emergency Medicine Institute at Sinai Health in Toronto, Ontario, Canada, and coauthors.

“The ED is a distressing environment for patients to receive a possible cancer diagnosis,” the authors wrote. “Moreover, it is frequently ill equipped to provide ongoing continuity of care, which can lead patients down a poorly defined diagnostic pathway before receiving a confirmed diagnosis based on tissue and a subsequent treatment plan.”

The findings were published online on November 4 in CMAJ).
 

Neurologic Cancers Prominent

In an interview, Grewal said in an interview that the study reflects her desire as an emergency room physician to understand why so many patients with cancer get the initial reports about their disease from clinicians whom they often have just met for the first time.

Among patients with an ED visit before cancer diagnosis, 51.4% were admitted to hospital from the most recent visit.

Compared with patients with a family physician on whom they could rely for routine care, those who had no outpatient visits (odds ratio [OR], 2.09) or fewer than three outpatient visits (OR, 1.41) in the 6-30 months before cancer diagnosis were more likely to have an ED visit before their cancer diagnosis.

Other factors associated with increased odds of ED use before cancer diagnosis included rurality (OR, 1.15), residence in northern Ontario (northeast region: OR, 1.14 and northwest region: OR, 1.27 vs Toronto region), and living in the most marginalized areas (material resource deprivation: OR, 1.37 and housing stability: OR, 1.09 vs least marginalized area).

The researchers also found that patients with certain cancers were more likely to have sought care in the ED. They compared these cancers with breast cancer, which is often detected through screening.

“Patients with neurologic cancers had extremely high odds of ED use before cancer diagnosis,” the authors wrote. “This is likely because of the emergent nature of presentation, with acute neurologic symptoms such as weakness, confusion, or seizures, which require urgent assessment.” On the other hand, pancreatic, liver, or thoracic cancer can trigger nonspecific symptoms that may be ignored until they reach a crisis level that prompts an ED visit.

The limitations of the study included its inability to identify cancer-related ED visits and its narrow focus on patients in Ontario, according to the researchers. But the use of the ICES databases also allowed researchers access to a broader pool of data than are available in many other cases.

The findings in the new paper echo those of previous research, the authors noted. Research in the United Kingdom found that 24%-31% of cancer diagnoses involved the ED. In addition, a study of people enrolled in the US Medicare program, which serves patients aged 65 years or older, found that 23% were seen in the ED in the 30 days before diagnosis.
 

 

 

‘Unpacking the Data’

The current findings also are consistent with those of an International Cancer Benchmarking Partnership study that was published in 2022 in The Lancet Oncology, said Erika Nicholson, MHS, vice president of cancer systems and innovation at the Canadian Partnership Against Cancer. The latter study analyzed cancer registration and linked hospital admissions data from 14 jurisdictions in Australia, Canada, Denmark, New Zealand, Norway, and the United Kingdom.

“We see similar trends in terms of people visiting EDs and being diagnosed through EDs internationally,” Nicholson said. “We’re working with partners to put in place different strategies to address the challenges” that this phenomenon presents in terms of improving screening and follow-up care.

“Cancer is not one disease, but many diseases,” she said. “They present differently. We’re focused on really unpacking the data and understanding them.”

All this research highlights the need for more services and personnel to address cancer, including people who are trained to help patients cope after getting concerning news through emergency care, she said.

“That means having a system that fully supports you and helps you navigate through that diagnostic process,” Nicholson said. Addressing the added challenges for patients who don’t have secure housing is a special need, she added.

This study was supported by the Canadian Institutes of Health Research (CIHR). Grewal reported receiving grants from CIHR and the Canadian Association of Emergency Physicians. Nicholson reported no relevant financial relationships.

A version of this article appeared on Medscape.com.

More than one third of patients with cancer visited an emergency department (ED) in the 90 days before their diagnosis, according to a study of medical records from Ontario, Canada.

Researchers examined Institute for Clinical Evaluative Sciences (ICES) data that had been gathered from January 1, 2014, to December 31, 2021. The study focused on patients aged 18 years or older with confirmed primary cancer diagnoses.

Factors associated with an increased likelihood of an ED visit ahead of diagnosis included having certain cancers, living in rural areas, and having less access to primary care, according to study author Keerat Grewal, MD, an emergency physician and clinician scientist at the Schwartz/Reisman Emergency Medicine Institute at Sinai Health in Toronto, Ontario, Canada, and coauthors.

“The ED is a distressing environment for patients to receive a possible cancer diagnosis,” the authors wrote. “Moreover, it is frequently ill equipped to provide ongoing continuity of care, which can lead patients down a poorly defined diagnostic pathway before receiving a confirmed diagnosis based on tissue and a subsequent treatment plan.”

The findings were published online on November 4 in CMAJ).
 

Neurologic Cancers Prominent

In an interview, Grewal said in an interview that the study reflects her desire as an emergency room physician to understand why so many patients with cancer get the initial reports about their disease from clinicians whom they often have just met for the first time.

Among patients with an ED visit before cancer diagnosis, 51.4% were admitted to hospital from the most recent visit.

Compared with patients with a family physician on whom they could rely for routine care, those who had no outpatient visits (odds ratio [OR], 2.09) or fewer than three outpatient visits (OR, 1.41) in the 6-30 months before cancer diagnosis were more likely to have an ED visit before their cancer diagnosis.

Other factors associated with increased odds of ED use before cancer diagnosis included rurality (OR, 1.15), residence in northern Ontario (northeast region: OR, 1.14 and northwest region: OR, 1.27 vs Toronto region), and living in the most marginalized areas (material resource deprivation: OR, 1.37 and housing stability: OR, 1.09 vs least marginalized area).

The researchers also found that patients with certain cancers were more likely to have sought care in the ED. They compared these cancers with breast cancer, which is often detected through screening.

“Patients with neurologic cancers had extremely high odds of ED use before cancer diagnosis,” the authors wrote. “This is likely because of the emergent nature of presentation, with acute neurologic symptoms such as weakness, confusion, or seizures, which require urgent assessment.” On the other hand, pancreatic, liver, or thoracic cancer can trigger nonspecific symptoms that may be ignored until they reach a crisis level that prompts an ED visit.

The limitations of the study included its inability to identify cancer-related ED visits and its narrow focus on patients in Ontario, according to the researchers. But the use of the ICES databases also allowed researchers access to a broader pool of data than are available in many other cases.

The findings in the new paper echo those of previous research, the authors noted. Research in the United Kingdom found that 24%-31% of cancer diagnoses involved the ED. In addition, a study of people enrolled in the US Medicare program, which serves patients aged 65 years or older, found that 23% were seen in the ED in the 30 days before diagnosis.
 

 

 

‘Unpacking the Data’

The current findings also are consistent with those of an International Cancer Benchmarking Partnership study that was published in 2022 in The Lancet Oncology, said Erika Nicholson, MHS, vice president of cancer systems and innovation at the Canadian Partnership Against Cancer. The latter study analyzed cancer registration and linked hospital admissions data from 14 jurisdictions in Australia, Canada, Denmark, New Zealand, Norway, and the United Kingdom.

“We see similar trends in terms of people visiting EDs and being diagnosed through EDs internationally,” Nicholson said. “We’re working with partners to put in place different strategies to address the challenges” that this phenomenon presents in terms of improving screening and follow-up care.

“Cancer is not one disease, but many diseases,” she said. “They present differently. We’re focused on really unpacking the data and understanding them.”

All this research highlights the need for more services and personnel to address cancer, including people who are trained to help patients cope after getting concerning news through emergency care, she said.

“That means having a system that fully supports you and helps you navigate through that diagnostic process,” Nicholson said. Addressing the added challenges for patients who don’t have secure housing is a special need, she added.

This study was supported by the Canadian Institutes of Health Research (CIHR). Grewal reported receiving grants from CIHR and the Canadian Association of Emergency Physicians. Nicholson reported no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM CMAJ

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Wed, 11/20/2024 - 10:09
Un-Gate On Date
Wed, 11/20/2024 - 10:09
Use ProPublica
CFC Schedule Remove Status
Wed, 11/20/2024 - 10:09
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Wed, 11/20/2024 - 10:09